You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

284 lines
9.0 KiB
Python

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

#### PATTERN | FR ##################################################################################
# -*- coding: utf-8 -*-
# Copyright (c) 2013 University of Antwerp, Belgium
# Copyright (c) 2013 St. Lucas University College of Art & Design, Antwerp.
# Author: Tom De Smedt <tom@organisms.be>
# License: BSD (see LICENSE.txt for details).
# http://www.clips.ua.ac.be/pages/pattern
####################################################################################################
# French linguistical tools using fast regular expressions.
from __future__ import unicode_literals
from __future__ import division
from builtins import str, bytes, dict, int
from builtins import map, zip, filter
from builtins import object, range
import os
import sys
try:
MODULE = os.path.dirname(os.path.realpath(__file__))
except:
MODULE = ""
sys.path.insert(0, os.path.join(MODULE, "..", "..", "..", ".."))
# Import parser base classes.
from pattern.text import (
Lexicon, Model, Morphology, Context, Parser as _Parser, ngrams, pprint, commandline,
PUNCTUATION
)
# Import parser universal tagset.
from pattern.text import (
penntreebank2universal as _penntreebank2universal,
PTB, PENN, UNIVERSAL,
NOUN, VERB, ADJ, ADV, PRON, DET, PREP, ADP, NUM, CONJ, INTJ, PRT, PUNC, X
)
# Import parse tree base classes.
from pattern.text.tree import (
Tree, Text, Sentence, Slice, Chunk, PNPChunk, Chink, Word, table,
SLASH, WORD, POS, CHUNK, PNP, REL, ANCHOR, LEMMA, AND, OR
)
# Import sentiment analysis base classes.
from pattern.text import (
Sentiment as _Sentiment,
NOUN, VERB, ADJECTIVE, ADVERB,
MOOD, IRONY
)
# Import spelling base class.
from pattern.text import (
Spelling
)
# Import verb tenses.
from pattern.text import (
INFINITIVE, PRESENT, PAST, FUTURE,
FIRST, SECOND, THIRD,
SINGULAR, PLURAL, SG, PL,
INDICATIVE, IMPERATIVE, SUBJUNCTIVE, CONDITIONAL,
IMPERFECTIVE, PERFECTIVE, PROGRESSIVE,
IMPERFECT, PRETERITE,
PARTICIPLE, GERUND
)
# Import inflection functions.
from pattern.text.fr.inflect import (
pluralize, singularize, NOUN, VERB, ADJECTIVE,
verbs, conjugate, lemma, lexeme, tenses,
predicative, attributive
)
# Import all submodules.
from pattern.text.fr import inflect
sys.path.pop(0)
#--- FRENCH PARSER ---------------------------------------------------------------------------------
# The French parser is based on Lefff (Lexique des Formes Fléchies du Français).
# Benoît Sagot, Lionel Clément, Érice Villemonte de la Clergerie, Pierre Boullier.
# The Lefff 2 syntactic lexicon for French: architecture, acquisition.
# http://alpage.inria.fr/~sagot/lefff-en.html
# For words in Lefff that can have different part-of-speech tags,
# we used Lexique to find the most frequent POS-tag:
# http://www.lexique.org/
_subordinating_conjunctions = set((
"afin", "comme", "lorsque", "parce", "puisque", "quand", "que", "quoique", "si"
))
def penntreebank2universal(token, tag):
""" Converts a Penn Treebank II tag to a universal tag.
For example: comme/IN => comme/CONJ
"""
if tag == "IN" and token.lower() in _subordinating_conjunctions:
return CONJ
return _penntreebank2universal(token, tag)
ABBREVIATIONS = set((
"av.", "boul.", "C.-B.", "c.-à-d.", "ex.", "éd.", "fig.", "I.-P.-E.", "J.-C.",
"Ltee.", "Ltée.", "M.", "Me.", "Mlle.", "Mlles.", "MM.", "N.-B.", "N.-É.", "p.",
"S.B.E.", "Ste.", "T.-N.", "t.a.b."
))
# While contractions in English are optional,
# they are required in French:
replacements = {
"l'": "l' ", # le/la
"c'": "c' ", # ce
"d'": "d' ", # de
"j'": "j' ", # je
"m'": "m' ", # me
"n'": "n' ", # ne
"qu'": "qu' ", # que
"s'": "s' ", # se
"t'": "t' ", # te
"jusqu'": "jusqu' ",
"lorsqu'": "lorsqu' ",
"puisqu'": "puisqu' ",
# Same rule for Unicode apostrophe, see also Parser.find_tokens():
r"(l|c|d|j|m|n|qu|s|t|jusqu|lorsqu|puisqu)": "\\1&rsquo; "
}
replacements.update(((k.upper(), v.upper()) for k, v in list(replacements.items())))
def find_lemmata(tokens):
""" Annotates the tokens with lemmata for plural nouns and conjugated verbs,
where each token is a [word, part-of-speech] list.
"""
for token in tokens:
word, pos, lemma = token[0], token[1], token[0]
if pos.startswith(("DT", "PR", "WP")):
lemma = singularize(word, pos=pos)
if pos.startswith(("RB", "IN")) and (word.endswith(("'", "")) or word == "du"):
lemma = singularize(word, pos=pos)
if pos.startswith(("JJ",)):
lemma = predicative(word)
if pos == "NNS":
lemma = singularize(word)
if pos.startswith(("VB", "MD")):
lemma = conjugate(word, INFINITIVE) or word
token.append(lemma.lower())
return tokens
class Parser(_Parser):
def find_tokens(self, tokens, **kwargs):
kwargs.setdefault("abbreviations", ABBREVIATIONS)
kwargs.setdefault("replace", replacements)
s = _Parser.find_tokens(self, tokens, **kwargs)
s = [s.replace("&rsquo ;", "") if isinstance(s, str) else s for s in s]
return s
def find_lemmata(self, tokens, **kwargs):
return find_lemmata(tokens)
def find_tags(self, tokens, **kwargs):
if kwargs.get("tagset") in (PENN, None):
kwargs.setdefault("map", lambda token, tag: (token, tag))
if kwargs.get("tagset") == UNIVERSAL:
kwargs.setdefault("map", lambda token, tag: penntreebank2universal(token, tag))
return _Parser.find_tags(self, tokens, **kwargs)
class Sentiment(_Sentiment):
def load(self, path=None):
_Sentiment.load(self, path)
# Map "précaire" to "precaire" (without diacritics, +1% accuracy).
if not path:
for w, pos in list(dict.items(self)):
w0 = w
if not w.endswith(("à", "è", "é", "ê", "ï")):
w = w.replace("à", "a")
w = w.replace("é", "e")
w = w.replace("è", "e")
w = w.replace("ê", "e")
w = w.replace("ï", "i")
if w != w0:
for pos, (p, s, i) in pos.items():
self.annotate(w, pos, p, s, i)
parser = Parser(
lexicon = os.path.join(MODULE, "fr-lexicon.txt"),
frequency = os.path.join(MODULE, "fr-frequency.txt"),
morphology = os.path.join(MODULE, "fr-morphology.txt"),
context = os.path.join(MODULE, "fr-context.txt"),
default = ("NN", "NNP", "CD"),
language = "fr"
)
lexicon = parser.lexicon # Expose lexicon.
sentiment = Sentiment(
path = os.path.join(MODULE, "fr-sentiment.xml"),
synset = None,
negations = ("n'", "ne", "ni", "non", "pas", "rien", "sans", "aucun", "jamais"),
modifiers = ("RB",),
modifier = lambda w: w.endswith("ment"),
tokenizer = parser.find_tokens,
language = "fr"
)
spelling = Spelling(
path = os.path.join(MODULE, "fr-spelling.txt")
)
def tokenize(s, *args, **kwargs):
""" Returns a list of sentences, where punctuation marks have been split from words.
"""
return parser.find_tokens(s, *args, **kwargs)
def parse(s, *args, **kwargs):
""" Returns a tagged Unicode string.
"""
return parser.parse(s, *args, **kwargs)
def parsetree(s, *args, **kwargs):
""" Returns a parsed Text from the given string.
"""
return Text(parse(s, *args, **kwargs))
def tree(s, token=[WORD, POS, CHUNK, PNP, REL, LEMMA]):
""" Returns a parsed Text from the given parsed string.
"""
return Text(s, token)
def tag(s, tokenize=True, encoding="utf-8", **kwargs):
""" Returns a list of (token, tag)-tuples from the given string.
"""
tags = []
for sentence in parse(s, tokenize, True, False, False, False, encoding, **kwargs).split():
for token in sentence:
tags.append((token[0], token[1]))
return tags
def keywords(s, top=10, **kwargs):
""" Returns a sorted list of keywords in the given string.
"""
return parser.find_keywords(s, **dict({
"frequency": parser.frequency,
"top": top,
"pos": ("NN",),
"ignore": ("rt",)}, **kwargs))
def suggest(w):
""" Returns a list of (word, confidence)-tuples of spelling corrections.
"""
return spelling.suggest(w)
def polarity(s, **kwargs):
""" Returns the sentence polarity (positive/negative) between -1.0 and 1.0.
"""
return sentiment(s, **kwargs)[0]
def subjectivity(s, **kwargs):
""" Returns the sentence subjectivity (objective/subjective) between 0.0 and 1.0.
"""
return sentiment(s, **kwargs)[1]
def positive(s, threshold=0.1, **kwargs):
""" Returns True if the given sentence has a positive sentiment (polarity >= threshold).
"""
return polarity(s, **kwargs) >= threshold
split = tree # Backwards compatibility.
#---------------------------------------------------------------------------------------------------
# python -m pattern.fr xml -s "C'est l'exception qui confirme la règle." -OTCL
if __name__ == "__main__":
commandline(parse)