|
|
1
|
|
|
|
|
|
. .
|
|
|
|
|
|
arXiv:1701.00100v1 [math.CA] 31 Dec 2016
|
|
|
|
|
|
, x ( ) ln-1 x (
|
|
|
) x i , i = -1, R, = 0 ( ). . , .
|
|
|
On properties of the coefficients of the complicated and exotic expansions of the solutions of the sixth Painlev´e
|
|
|
equation
|
|
|
I. V. Goryuchkina
|
|
|
|
|
|
It is known, that among the formal solutions of the sixth Painlev´e equation there met series with integer power exponents of the independent variable x with coefficients in form of formal Laurent series (with finite main parts) in log-1 x (complicated expansions), or in x i , where
|
|
|
i = -1, R, = 0 (exotic expansions). These coefficients can be computed consecutively. Here we research analytic properties of the series, that are the coefficients of the complicated and exotic expansions of the solutions of the sixth Painlev´e equation.
|
|
|
|
|
|
1. .
|
|
|
|
|
|
(y )2 1 1
|
|
|
|
|
|
1
|
|
|
|
|
|
11
|
|
|
|
|
|
1
|
|
|
|
|
|
y=
|
|
|
|
|
|
+
|
|
|
|
|
|
+
|
|
|
|
|
|
-y +
|
|
|
|
|
|
+
|
|
|
|
|
|
+
|
|
|
|
|
|
2 y y-1 y-x
|
|
|
|
|
|
x x-1 y-x
|
|
|
|
|
|
y(y - 1)(y - x)
|
|
|
|
|
|
x x - 1 x(x - 1)
|
|
|
|
|
|
+ x2(x - 1)2
|
|
|
|
|
|
a
|
|
|
|
|
|
+
|
|
|
|
|
|
by2
|
|
|
|
|
|
+
|
|
|
|
|
|
c (y
|
|
|
|
|
|
-
|
|
|
|
|
|
1)2
|
|
|
|
|
|
+
|
|
|
|
|
|
d
|
|
|
|
|
|
(y
|
|
|
|
|
|
-
|
|
|
|
|
|
x)2
|
|
|
|
|
|
,
|
|
|
|
|
|
(1)
|
|
|
|
|
|
a, b, c, d , x y ,
|
|
|
|
|
|
y = dy/dx. x = 0, x =
|
|
|
|
|
|
1 x = , ,
|
|
|
|
|
|
1) x = z, y = z/w, 2) x = 1/z, y = 1/w, 3) x = 1 - z, y = 1 - w,
|
|
|
|
|
|
(. [1]). . x = 0 (1),
|
|
|
|
|
|
2
|
|
|
, .
|
|
|
x , ln-1 x(- ) x i ( R, i = -1) ( ) , . [2]. , x , ln-1 x x i ( = 0). , , (1) , .
|
|
|
|
|
|
|
|
|
|
|
|
y = k(x) xk,
|
|
|
|
|
|
(2)
|
|
|
|
|
|
k=0
|
|
|
|
|
|
k(x)
|
|
|
|
|
|
|
|
|
|
|
|
k(x) =
|
|
|
|
|
|
ckj j,
|
|
|
|
|
|
j=0
|
|
|
|
|
|
ckj C, Z,
|
|
|
|
|
|
= ln-1 x = x i ( = 0).
|
|
|
|
|
|
(3)
|
|
|
|
|
|
-
|
|
|
|
|
|
, (2), , [2].
|
|
|
, [3] () , . , [3] , ( ) , . -,
|
|
|
|
|
|
3
|
|
|
. [3] . , [3] . , . ( [3], ) , [3], , . , y = 0(x) + u , 0(x) . ( ) , , u = 1(x)x. , (2), . .
|
|
|
, k(x) (2) (1), , , . , , . . (. . ), . .
|
|
|
k(x) .
|
|
|
() 0(x) x i , = 0 (x = 0, 1, ) . [4] , (. .
|
|
|
|
|
|
4
|
|
|
). , .. k(x) .
|
|
|
(. [5], [6]) , ( , ), . .
|
|
|
: k(x) (2) (1).
|
|
|
, , , , [3] . : [3] , , .
|
|
|
|
|
|
2. . -
|
|
|
|
|
|
|
|
|
|
|
|
, .
|
|
|
|
|
|
(x) x = 0 r R {},
|
|
|
|
|
|
|
|
|
|
|
|
ln |(x)|
|
|
|
|
|
|
lim
|
|
|
|
|
|
= r,
|
|
|
|
|
|
(4)
|
|
|
|
|
|
x0 ln |x|
|
|
|
|
|
|
xD
|
|
|
|
|
|
D ,
|
|
|
|
|
|
. (x) x =
|
|
|
|
|
|
r R {},
|
|
|
|
|
|
ln |(x)|
|
|
|
|
|
|
lim
|
|
|
|
|
|
= r,
|
|
|
|
|
|
(5)
|
|
|
|
|
|
x xD
|
|
|
|
|
|
ln |x|
|
|
|
|
|
|
5
|
|
|
D , .
|
|
|
(x), r R {} , , r.
|
|
|
(2) .
|
|
|
|
|
|
|
|
|
g(x, u, u , . . . , u(n)) = 0,
|
|
|
|
|
|
(6)
|
|
|
|
|
|
|
|
|
|
|
|
(x) xq1uq20(xu )q21 . . . (xnu(n))q2n,
|
|
|
|
|
|
(7)
|
|
|
|
|
|
(x) -
|
|
|
(.. ), q1 C, q21, . . . , q2n Z+, (n)(x) 0, (n)(x) -n.
|
|
|
(6) u =
|
|
|
|
|
|
|
|
|
|
|
|
= k(x)xk,
|
|
|
|
|
|
(8)
|
|
|
|
|
|
k=0
|
|
|
|
|
|
k(x) , k R, (kn)(x) 0, k(n)(x) -n, , k+1 > k.
|
|
|
(7) (6) -
|
|
|
( ) (q1, q2),
|
|
|
q2 = q20 + . . . + q2n. [3]
|
|
|
|
|
|
(x) xq1q20(x )q21 . . . (xn(n))q2n
|
|
|
|
|
|
q1 + q20. {Qi = (q1i , q2i ), i = 0, . . . , m} -
|
|
|
(6), . . ,
|
|
|
, R (1, 0). Qi, R = ci R. c = min ci.
|
|
|
i=0,...,m
|
|
|
(7) (6) -
|
|
|
, Qi, R = c R, (. [7]), g^(x, u0, . . . , un),
|
|
|
|
|
|
g^(x, u0, . . . , un) = 0
|
|
|
|
|
|
(9)
|
|
|
|
|
|
6
|
|
|
.
|
|
|
|
|
|
1. (6) u = , (8), (9) ()
|
|
|
|
|
|
u = ^, ^ = 0(x).
|
|
|
|
|
|
(10)
|
|
|
|
|
|
. 0 = 0, (6)
|
|
|
|
|
|
u = x0v.
|
|
|
|
|
|
(11)
|
|
|
|
|
|
|
|
|
|
|
|
G(x, v, v , . . . , v(n)) = 0,
|
|
|
|
|
|
(12)
|
|
|
|
|
|
v = , = x0 , .
|
|
|
|
|
|
, (11)
|
|
|
|
|
|
(6)
|
|
|
|
|
|
(x) xq1uq20(xu )q21 . . . (xnu(n))q2n
|
|
|
|
|
|
|
|
|
|
|
|
(x) xq1+q20vq~20(xv )q~21 . . . (xnv(n))q~2n,
|
|
|
|
|
|
(13)
|
|
|
|
|
|
q~20, . . . , q~2n Z+, q~20 + . . . + q~2n = q2. , (11) g^(x, u, u . . . , u(n)) xc P0(x, v, v . . . , v(n)), c q1 +q20, P0(x, v, v . . . , v(n)) v, v . . . , v(n) , (6) (13) q1 + q20 > c. (12)
|
|
|
xc [P0(x, v0, . . . , vn) + x1P1(x, v0, . . . , vn) + . . . + xtPt(x, v0, . . . , vn)] = 0,
|
|
|
vj = xjv(j), P0(x, v0, . . . , vn), . . . , Pt(x, v0, . . . , vn) v0, . . . , vn , 1, . . . , n R+, 1, . . . , n = 0. xc,
|
|
|
P0(x, v0, . . . , vn) + x1P1(x, v0, . . . , vn) + . . . + xtPt(x, v0, . . . , vn) = 0, (14)
|
|
|
G(x, v0, . . . , vn) = 0. (14) 1 3 [3] , p G(x, 0, . . . , n) 0 (
|
|
|
|
|
|
7
|
|
|
, Pj x, 0, . . . , n = 0 p Pj(x, 0, . . . , n) = 0, Pj x, 0, . . . , n ).
|
|
|
|
|
|
|
|
|
u = ,
|
|
|
|
|
|
|
|
|
= ~ k0(x1, . . . , xN ) k0(x)
|
|
|
k0=0
|
|
|
|
|
|
(14)
|
|
|
|
|
|
u = ^ + w, ^ = ~ 0(x1, . . . , xN ) 0(x).
|
|
|
|
|
|
(15)
|
|
|
|
|
|
(15) (14), ( , (14) v0, . . . , vn) ,
|
|
|
|
|
|
P0(x, ^ 0, . . . , ^ n) +
|
|
|
|
|
|
P0(x,
|
|
|
|
|
|
^ 0, . v0
|
|
|
|
|
|
.
|
|
|
|
|
|
.
|
|
|
|
|
|
,
|
|
|
|
|
|
^ n)
|
|
|
|
|
|
w0
|
|
|
|
|
|
+
|
|
|
|
|
|
.
|
|
|
|
|
|
.
|
|
|
|
|
|
.
|
|
|
|
|
|
+
|
|
|
|
|
|
P0(x,
|
|
|
|
|
|
^ 0, . vn
|
|
|
|
|
|
.
|
|
|
|
|
|
.
|
|
|
|
|
|
,
|
|
|
|
|
|
^ n)
|
|
|
|
|
|
wn
|
|
|
|
|
|
+
|
|
|
|
|
|
+ . . . + x1P1(x, ^ 0, . . . , ^ n) + · · · = 0, ^ j = xj ^ (j), wj = xj w(j). (16)
|
|
|
(16), -
|
|
|
, P0(x, ^ 0, . . . , ^ n), p(P0(x, ^ 0, . . . , ^ n)) , - ( P0(x, ^ 0, . . . , ^ n) = 0).
|
|
|
(16) . , p(wj) > p(^ j) = 0, P0(x, ^ 0, . . . , ^ n), . . . , Pt(x, ^ 0, . . . , ^ n) v0, . . . , vn ,
|
|
|
, 2 3 [3], n > · · · > 1 > 0. -
|
|
|
(14), (16) , . . P0(x, ^ 0, . . . , ^ n) = 0. -
|
|
|
P0(x, v0, . . . , vn) = 0 (11) x c, ,
|
|
|
|
|
|
g^(x, ^0, . . . , ^n) = 0, ^j = xj ^(j), ^ = x0 ^ . 2
|
|
|
|
|
|
3. . (1) . x2(x - 1)2y(y - 1)(y - x), .
|
|
|
2x2(x - 1)2y(y - 1)(y - x)y - x2(x - 1)2(3y2 - 2xy - 2y + x)y 2+, (17)
|
|
|
|
|
|
8
|
|
|
+2xy(x - 1)(y - 1)(2xy - x2 - y)y - 2y6a + 4a(x + 1)y5-
|
|
|
-2 (a + d)x2 + (4a + b + c - d)x + (a - c) y4+
|
|
|
+4x ((a + b + c + d)x + (a + b - c - d)) y3-
|
|
|
-2 (b + c)x3 + (a + 4b - c + d)x2 + (b - d)x y2 + 4bx2(x + 1)y - 2bx3 = 0,
|
|
|
, (1), . [2]. [2] , 0(x)
|
|
|
(2) , = ln-1 x = x i . x , . , , (2) .
|
|
|
(17)
|
|
|
|
|
|
y = 0(x) + xu.
|
|
|
|
|
|
(18)
|
|
|
|
|
|
|
|
|
|
|
|
L 0, 0, ¨ 0, U + xM x, 0, 0, ¨ 0, U + H x, 0, 0, ¨ 0 = 0, (19)
|
|
|
|
|
|
U = (u0, u1, u2), uj = xju(j),
|
|
|
|
|
|
0
|
|
|
|
|
|
=
|
|
|
|
|
|
0(x),
|
|
|
|
|
|
0
|
|
|
|
|
|
=
|
|
|
|
|
|
x d0(x) , dx
|
|
|
|
|
|
¨ 0
|
|
|
|
|
|
=
|
|
|
|
|
|
x2
|
|
|
|
|
|
d20(x) dx2
|
|
|
|
|
|
,
|
|
|
|
|
|
|
|
|
|
|
|
L 0, 0, ¨ 0, U = 220 (0 - 1) u2 +
|
|
|
|
|
|
20 320 - 30 0 - 30 + 2 0 u1 -
|
|
|
|
|
|
(20)
|
|
|
|
|
|
2 6a50 - 10a40 + 4a30 - 4c30 - 30 - 320¨ 0 + 30 20 + 20 + 20¨ 0 - 20 u0,
|
|
|
|
|
|
M x, 0, 0, ¨ 0, U H x, 0, 0, ¨ 0 . (19)
|
|
|
|
|
|
|
|
|
|
|
|
u = k+1(x) xk.
|
|
|
|
|
|
(21)
|
|
|
|
|
|
k=0
|
|
|
|
|
|
9
|
|
|
4. . (19) c (21), . (19) u0, u1, u2 , L 0, 0, ¨ 0, U ) xM (x, 0, 0, ¨ 0, U ). x = 0 , L 0, 0, ¨ 0, U . , L
|
|
|
, u0, u1 u2 , M .
|
|
|
[2] a = c, a, c = 0 (2) k(x), ln-1 x
|
|
|
|
|
|
2(c - a)
|
|
|
|
|
|
0(x)
|
|
|
|
|
|
=
|
|
|
|
|
|
(c
|
|
|
|
|
|
-
|
|
|
|
|
|
a)2(ln x
|
|
|
|
|
|
+
|
|
|
|
|
|
C )2
|
|
|
|
|
|
-
|
|
|
|
|
|
. 2a
|
|
|
|
|
|
(22)
|
|
|
|
|
|
(21) (22) (19)
|
|
|
|
|
|
|
|
|
k=1
|
|
|
|
|
|
|
|
|
Lk(0, 0, ¨ 0, k, k, ¨ k) - Nk(0, 0, . . . , ¨ 0, k-1, k-1, ¨ k-1)
|
|
|
|
|
|
j
|
|
|
|
|
|
=
|
|
|
|
|
|
j (x),
|
|
|
|
|
|
j
|
|
|
|
|
|
=
|
|
|
|
|
|
x dj (x) , dx
|
|
|
|
|
|
¨ j
|
|
|
|
|
|
=
|
|
|
|
|
|
x2
|
|
|
|
|
|
d2j (x) dx2
|
|
|
|
|
|
,
|
|
|
|
|
|
Lk 0, 0, ¨ 0, k, k, ¨ k =
|
|
|
|
|
|
xk,
|
|
|
(23) (24)
|
|
|
|
|
|
= L 0, 0, ¨ 0, k, k + (k - 1)k, ¨ k + 2(k - 1) k + (k - 1)(k - 2)k ,
|
|
|
Nk 0, 0, ¨ 0, . . . , k-1, k-1, ¨ k-1 . , , k(x) -
|
|
|
k
|
|
|
|
|
|
Lk 0, 0, ¨ 0, k, k, ¨ k = Nk 0, 0, ¨ 0, . . . , k-1, k-1, ¨ k-1 . (25)
|
|
|
|
|
|
(25) x ,
|
|
|
|
|
|
= ( + C)-1 = (ln x + C)-1, C C.
|
|
|
|
|
|
(26)
|
|
|
|
|
|
, (26) ,
|
|
|
|
|
|
x dy = -2 dy ,
|
|
|
|
|
|
dx
|
|
|
|
|
|
d
|
|
|
|
|
|
x2
|
|
|
|
|
|
d2y dx2
|
|
|
|
|
|
=
|
|
|
|
|
|
4
|
|
|
|
|
|
d2y d2
|
|
|
|
|
|
+ (23
|
|
|
|
|
|
+
|
|
|
|
|
|
2) dy . d
|
|
|
|
|
|
10
|
|
|
|
|
|
(-2a2 + a2 - 2ac + c2)4
|
|
|
|
|
|
|
|
|
|
|
|
(-c + a)64
|
|
|
|
|
|
.
|
|
|
|
|
|
|
|
|
|
|
|
Lk
|
|
|
|
|
|
,
|
|
|
|
|
|
^k(),
|
|
|
|
|
|
d^k() d
|
|
|
|
|
|
,
|
|
|
|
|
|
d2^k() d2
|
|
|
|
|
|
= Nk(),
|
|
|
|
|
|
(27)
|
|
|
|
|
|
|
|
|
|
|
|
Lk
|
|
|
|
|
|
,
|
|
|
|
|
|
^k(),
|
|
|
|
|
|
d^k() d
|
|
|
|
|
|
,
|
|
|
|
|
|
d2^k() d2
|
|
|
|
|
|
=
|
|
|
|
|
|
4P2()
|
|
|
|
|
|
d2^k() d2
|
|
|
|
|
|
+
|
|
|
|
|
|
2P1()
|
|
|
|
|
|
d^k() d
|
|
|
|
|
|
+
|
|
|
|
|
|
P0()^k(),
|
|
|
|
|
|
^k() = k(x), P2 P0 , P1 , P2(0), P1(0), P0(0) = 0, Nk() .
|
|
|
|
|
|
,
|
|
|
|
|
|
= 0 . ,
|
|
|
|
|
|
|
|
|
|
|
|
a2()2
|
|
|
|
|
|
d2 d2
|
|
|
|
|
|
+
|
|
|
|
|
|
d a1() d
|
|
|
|
|
|
+
|
|
|
|
|
|
a0(),
|
|
|
|
|
|
a2(), a1(), a0() ,
|
|
|
a2() a1(), a0().
|
|
|
, k(x), ln-1(x) c , . ,
|
|
|
|
|
|
-
|
|
|
|
|
|
(21) -
|
|
|
|
|
|
(25) ( 0(x) (22)). (27) , ..
|
|
|
|
|
|
Lk
|
|
|
|
|
|
,
|
|
|
|
|
|
^k(),
|
|
|
|
|
|
d^k() d
|
|
|
|
|
|
,
|
|
|
|
|
|
d2^k() d2
|
|
|
|
|
|
= -8k2^k() + . . . ,
|
|
|
|
|
|
( ), . k(x) ln-1 x.
|
|
|
a = c = 0 (2) c
|
|
|
|
|
|
1
|
|
|
|
|
|
0(x)
|
|
|
|
|
|
=
|
|
|
|
|
|
2a
|
|
|
|
|
|
(ln x
|
|
|
|
|
|
+
|
|
|
|
|
|
, C)
|
|
|
|
|
|
C C.
|
|
|
|
|
|
(28)
|
|
|
|
|
|
,
|
|
|
|
|
|
11
|
|
|
(2) c (22). .
|
|
|
.
|
|
|
|
|
|
1. k(x) (k 1) (2) c (22) (28) ln-1 x,
|
|
|
.
|
|
|
|
|
|
[8] [9].
|
|
|
, . , , . , ( ) k(x) ln-1 x , , .
|
|
|
|
|
|
5. .
|
|
|
(21) (19) k(x) xi
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
-4C0(2a - 2c + C1)
|
|
|
|
|
|
|
|
|
|
|
|
, (29)
|
|
|
|
|
|
x 2c-2a-C1(C12 + 8C1a + 16a2 - 16ac) - 2C1C0 + C02x- 2c-2a-C1
|
|
|
|
|
|
C0, C1 , C0 = 0, 2c-2a-C1 R, 2c - 2a - C1 < 0, = sgn(Im 2c - 2a - C1).
|
|
|
(., , [2]) B0 , B1 , B2 , B6 B7 . , ( C0 C1) (2) -
|
|
|
(29) (1). ,
|
|
|
|
|
|
· B0
|
|
|
|
|
|
0(x)
|
|
|
|
|
|
=
|
|
|
|
|
|
2c
|
|
|
|
|
|
- C3 2a
|
|
|
|
|
|
|
|
|
cos2(ln(C2x) C3-2c/2)
|
|
|
|
|
|
1 +
|
|
|
|
|
|
|
|
|
|
|
|
sin2(ln(C2x)C3-2c/2) ,
|
|
|
|
|
|
(30)
|
|
|
|
|
|
a = 0, C0 =
|
|
|
|
|
|
C32
|
|
|
|
|
|
+
|
|
|
|
|
|
4C3a
|
|
|
|
|
|
|
|
|
+
|
|
|
|
|
|
4a2
|
|
|
|
|
|
-
|
|
|
|
|
|
16ac ,
|
|
|
|
|
|
C2 2c-C3
|
|
|
|
|
|
C1 = C3 - 2a,
|
|
|
|
|
|
C32 +
|
|
|
|
|
|
4C3a + 4a2 - 16ac = 0, C3 = 2c, C2 = 0, 2c - C3 R, 2c - C3 < 0,
|
|
|
|
|
|
12
|
|
|
2at2 + (C3 - 2a)t + 2c - C3 = 0, = sgn(Im 2c - C3);
|
|
|
|
|
|
· B1
|
|
|
|
|
|
1 - c/a
|
|
|
|
|
|
|
|
|
|
|
|
0(x)
|
|
|
|
|
|
= 1
|
|
|
|
|
|
|
|
|
-
|
|
|
|
|
|
,
|
|
|
|
|
|
C2x
|
|
|
|
|
|
2c-
|
|
|
|
|
|
2a
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
(31)
|
|
|
|
|
|
a = c = 0, C0 = 8 a( c - a) C2, C1 = 4 a( c - a), C2 = 0,
|
|
|
|
|
|
Re( 2c - 2a) = 0, = sgn(Im( 2c - 2a));
|
|
|
|
|
|
· B2
|
|
|
|
|
|
1 + c/a
|
|
|
|
|
|
0(x)
|
|
|
|
|
|
=
|
|
|
|
|
|
1
|
|
|
|
|
|
|
|
|
-C2x 2c+ 2a
|
|
|
|
|
|
,
|
|
|
|
|
|
(32)
|
|
|
|
|
|
a = c = 0, C0 = -8 a( c + a) C2, C1 = -4 a( c + a),
|
|
|
|
|
|
C2 = 0, Re( 2c + 2a) = 0, = sgn(Im( 2c + 2a));
|
|
|
|
|
|
· B6
|
|
|
|
|
|
1
|
|
|
|
|
|
0(x)
|
|
|
|
|
|
=
|
|
|
|
|
|
1
|
|
|
|
|
|
+
|
|
|
|
|
|
, C2x 2a
|
|
|
|
|
|
(33)
|
|
|
|
|
|
a = 0, c = 0, C0 = 8aC2, C1 = -4a, C2 = 0, = sgn(Im 2a);
|
|
|
|
|
|
· B7
|
|
|
|
|
|
0(x)
|
|
|
|
|
|
=
|
|
|
|
|
|
2c - C1 C1
|
|
|
|
|
|
1
|
|
|
|
|
|
sin2(ln(C2x) C1-2c/2)
|
|
|
|
|
|
|
|
|
a = 0,C0 = -C1/C2 2c-C1, C2 = 0, 2c - C1 R, = sgn(Im 2c - C1).
|
|
|
|
|
|
(34) 2c - C1 < 0,
|
|
|
|
|
|
( C0 C1) (1), (2) (29). , (29) Cxi.
|
|
|
1(x). , . (21) (19), , x.
|
|
|
|
|
|
L1 0, 0, ¨ 0, 1, 1, ¨ 1 + N1 0, 0, ¨ 0 = 0,
|
|
|
|
|
|
(35)
|
|
|
|
|
|
0, 0, ¨ 0, 1, 1, ¨ 1 (23),
|
|
|
|
|
|
L1 0, 0, ¨ 0, 1, 1, ¨ 1 = 220(0 - 1)¨ 1 + 20(320 - 30 0 - 30 + 2 0) 1
|
|
|
|
|
|
13
|
|
|
-2(6a50 - 10a40 + 4a30 - 4c30 + 30 - 320¨ 0 + 30 20 + 20 + 20¨ 0 - 20)1, N1 0, 0, ¨ 0 = 4a50 - 2(4a + b + c - d)40 + 4(a + b - c - d)30 - 630 0
|
|
|
|
|
|
-430¨ 0 + 620 20 - 2(b - d)20 + 620 0 + 220¨ 0 - 20 20 + 20¨ 0 - 20.
|
|
|
(29) (35) x = C = Cxi, R, = 0. , ,
|
|
|
|
|
|
dy
|
|
|
|
|
|
dy
|
|
|
|
|
|
x = i ,
|
|
|
|
|
|
dx
|
|
|
|
|
|
d
|
|
|
|
|
|
x2
|
|
|
|
|
|
d2y dx2
|
|
|
|
|
|
=
|
|
|
|
|
|
-22
|
|
|
|
|
|
d2y d2
|
|
|
|
|
|
-
|
|
|
|
|
|
(
|
|
|
|
|
|
+
|
|
|
|
|
|
dy i) ,
|
|
|
d
|
|
|
|
|
|
. . -
|
|
|
. -
|
|
|
,
|
|
|
. (29), 0, 0, ¨ 0 -
|
|
|
Cxi = Cxi
|
|
|
|
|
|
42
|
|
|
|
|
|
0
|
|
|
|
|
|
=
|
|
|
|
|
|
A2
|
|
|
|
|
|
+
|
|
|
|
|
|
B
|
|
|
|
|
|
+
|
|
|
|
|
|
, 1
|
|
|
|
|
|
A = 4 + 4(a + c)2 + 4(a - c)2, B = 22 - 4(a - c),
|
|
|
|
|
|
0
|
|
|
|
|
|
=
|
|
|
|
|
|
4 i 3(A2 - 1) -(A2 + B + 1)2
|
|
|
|
|
|
,
|
|
|
|
|
|
(36)
|
|
|
|
|
|
¨ 0
|
|
|
|
|
|
=
|
|
|
|
|
|
43(A2(i
|
|
|
|
|
|
-
|
|
|
|
|
|
)4
|
|
|
|
|
|
+
|
|
|
|
|
|
AB(i + )3 + 6A2 (A2 + B + 1)3
|
|
|
|
|
|
-
|
|
|
|
|
|
B(i
|
|
|
|
|
|
-
|
|
|
|
|
|
)
|
|
|
|
|
|
-
|
|
|
|
|
|
i
|
|
|
|
|
|
-
|
|
|
|
|
|
) .
|
|
|
|
|
|
(35) y = 1(x)
|
|
|
|
|
|
(A2 + B + 1)6
|
|
|
|
|
|
- 16 4 2
|
|
|
|
|
|
|
|
|
|
|
|
8
|
|
|
|
|
|
p2j
|
|
|
|
|
|
j+2
|
|
|
|
|
|
d2y d2
|
|
|
|
|
|
+
|
|
|
|
|
|
p1j
|
|
|
|
|
|
j+1
|
|
|
|
|
|
dy d
|
|
|
|
|
|
+
|
|
|
|
|
|
p0j
|
|
|
|
|
|
j y
|
|
|
|
|
|
+ tj j = 0,
|
|
|
|
|
|
(37)
|
|
|
|
|
|
j=0
|
|
|
|
|
|
p2j, p1j, p0j, tj C, p20 p28 = 0. (37) ,
|
|
|
|
|
|
y = C1 y1() + C2 y2() + y3(),
|
|
|
|
|
|
C1, C2 , y1(), y2(), y3() .
|
|
|
, (35) = Cxi (A2 + B + 1)6,
|
|
|
|
|
|
14
|
|
|
, -16 4 2 (37), d2y
|
|
|
d2
|
|
|
|
|
|
-
|
|
|
|
|
|
(A2
|
|
|
|
|
|
+ B 84
|
|
|
|
|
|
+
|
|
|
|
|
|
1)6
|
|
|
|
|
|
20(0
|
|
|
|
|
|
-
|
|
|
|
|
|
1).
|
|
|
|
|
|
(38)
|
|
|
|
|
|
(38) , 5 = 0, a1, a2, a3, a4 . , = 0 2, = a1 = a2 1, a1 a2 (A-42)2+B+1 = 0, a3 a4 3, a3 a4 A2+B+1 = 0. (37) = 0, , a1, a2, a3, a4. p20 p28 = 0, (37) , . (37) = + aj, , (37) . , , . [10]. , , . , (37)
|
|
|
|
|
|
y = CiFi( - aj)( - aj)i lnµi ( - aj)+
|
|
|
i=1,2
|
|
|
|
|
|
+ F3( - aj)( - aj)3 lnµ3 ( - aj),
|
|
|
|
|
|
(39)
|
|
|
|
|
|
F1(), F2(), F3() C{}, 1, 2, 3 C, µ1, µ2, µ3 Z. ,
|
|
|
. , [11].
|
|
|
(37) . , y3() , y1() y2() , = 0 = .
|
|
|
|
|
|
2. 1(x) (21) (19) (29) Cxi.
|
|
|
|
|
|
15
|
|
|
, 1(x) = y3(Cxi), y3() (37).
|
|
|
|
|
|
2. -
|
|
|
|
|
|
(37) , ,
|
|
|
|
|
|
(39), , -
|
|
|
|
|
|
. -
|
|
|
|
|
|
1,
|
|
|
|
|
|
(37), -
|
|
|
|
|
|
. -
|
|
|
|
|
|
-.
|
|
|
|
|
|
, ( -
|
|
|
|
|
|
), ,
|
|
|
|
|
|
( ), -
|
|
|
|
|
|
(- -
|
|
|
|
|
|
)
|
|
|
|
|
|
,
|
|
|
|
|
|
(37).
|
|
|
|
|
|
(37) , -
|
|
|
|
|
|
. - (37)
|
|
|
|
|
|
[(0, 0), (0, 1), (8, 1), (8, 0)]. -
|
|
|
|
|
|
|
|
|
|
|
|
(
|
|
|
|
|
|
) ( -
|
|
|
|
|
|
),
|
|
|
|
|
|
( -
|
|
|
|
|
|
) (
|
|
|
|
|
|
).
|
|
|
|
|
|
() 0
|
|
|
|
|
|
. 0 -
|
|
|
|
|
|
|
|
|
|
|
|
-222
|
|
|
|
|
|
d2y d2
|
|
|
|
|
|
+
|
|
|
|
|
|
2(
|
|
|
|
|
|
+
|
|
|
|
|
|
dy 2i)
|
|
|
d
|
|
|
|
|
|
-
|
|
|
|
|
|
2(
|
|
|
|
|
|
+
|
|
|
|
|
|
i)2y
|
|
|
|
|
|
=0
|
|
|
|
|
|
|
|
|
|
|
|
-
|
|
|
|
|
|
222
|
|
|
|
|
|
d2y d2
|
|
|
|
|
|
+
|
|
|
|
|
|
2(
|
|
|
|
|
|
+
|
|
|
|
|
|
dy 2i)
|
|
|
d
|
|
|
|
|
|
-
|
|
|
|
|
|
2(
|
|
|
|
|
|
+
|
|
|
|
|
|
i)2y
|
|
|
|
|
|
+
|
|
|
|
|
|
(
|
|
|
|
|
|
+
|
|
|
|
|
|
i)2
|
|
|
|
|
|
-
|
|
|
|
|
|
1
|
|
|
|
|
|
+
|
|
|
|
|
|
2b
|
|
|
|
|
|
-
|
|
|
|
|
|
2d
|
|
|
|
|
|
= 0,
|
|
|
|
|
|
. , (0, 1), [(0, 1), (0, 0)]. -
|
|
|
|
|
|
16
|
|
|
|
|
|
|
|
|
|
|
|
y
|
|
|
|
|
|
=
|
|
|
|
|
|
(C1
|
|
|
|
|
|
+
|
|
|
|
|
|
C2
|
|
|
|
|
|
ln
|
|
|
|
|
|
)1+
|
|
|
|
|
|
i
|
|
|
|
|
|
+
|
|
|
|
|
|
(
|
|
|
|
|
|
+
|
|
|
|
|
|
i)2 + 2(
|
|
|
|
|
|
1 + 2b + i)2
|
|
|
|
|
|
-
|
|
|
|
|
|
2d ,
|
|
|
|
|
|
(40)
|
|
|
|
|
|
|
|
|
|
|
|
y
|
|
|
|
|
|
=
|
|
|
|
|
|
(C1
|
|
|
|
|
|
+
|
|
|
|
|
|
C2
|
|
|
|
|
|
ln
|
|
|
|
|
|
)1+
|
|
|
|
|
|
i
|
|
|
|
|
|
,
|
|
|
|
|
|
C1, C2 . , , (40) , .
|
|
|
[7], , (40)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
y = C1
|
|
|
|
|
|
a1kk + C2 ln
|
|
|
|
|
|
a2kk
|
|
|
|
|
|
i
|
|
|
+
|
|
|
|
|
|
a3kk,
|
|
|
|
|
|
k=0
|
|
|
|
|
|
k=0
|
|
|
|
|
|
k=0
|
|
|
|
|
|
(41)
|
|
|
|
|
|
a1k, a2k, a3k C, a10 = a20 = 1,
|
|
|
|
|
|
( + i)2 + 1 + 2b - 2d
|
|
|
|
|
|
a30 =
|
|
|
|
|
|
2( + i)2
|
|
|
|
|
|
,
|
|
|
|
|
|
(37). -
|
|
|
|
|
|
|
|
|
A48
|
|
|
|
|
|
-222
|
|
|
|
|
|
d2y d2
|
|
|
|
|
|
-
|
|
|
|
|
|
2(3
|
|
|
|
|
|
-
|
|
|
|
|
|
dy 2i)
|
|
|
d
|
|
|
|
|
|
-
|
|
|
|
|
|
2(
|
|
|
|
|
|
-
|
|
|
|
|
|
i)2y
|
|
|
|
|
|
=0
|
|
|
|
|
|
|
|
|
|
|
|
A48
|
|
|
|
|
|
-222
|
|
|
|
|
|
d2y d2
|
|
|
|
|
|
-
|
|
|
|
|
|
2(3
|
|
|
|
|
|
-
|
|
|
|
|
|
dy 2i)
|
|
|
d
|
|
|
|
|
|
-
|
|
|
|
|
|
2(
|
|
|
|
|
|
-
|
|
|
|
|
|
i)2y
|
|
|
|
|
|
-
|
|
|
|
|
|
(
|
|
|
|
|
|
-
|
|
|
|
|
|
i)2
|
|
|
|
|
|
-
|
|
|
|
|
|
1
|
|
|
|
|
|
+
|
|
|
|
|
|
2b
|
|
|
|
|
|
-
|
|
|
|
|
|
2d
|
|
|
|
|
|
= 0,
|
|
|
|
|
|
. (8, 1), [(8, 1), (8, 0)].
|
|
|
|
|
|
y
|
|
|
|
|
|
=
|
|
|
|
|
|
(C1
|
|
|
|
|
|
+
|
|
|
|
|
|
C2
|
|
|
|
|
|
ln
|
|
|
|
|
|
)-1+
|
|
|
|
|
|
i
|
|
|
|
|
|
+
|
|
|
|
|
|
(
|
|
|
|
|
|
-
|
|
|
|
|
|
i)2 + 2(
|
|
|
|
|
|
1 + 2b - i)2
|
|
|
|
|
|
-
|
|
|
|
|
|
2d ,
|
|
|
|
|
|
(42)
|
|
|
|
|
|
|
|
|
|
|
|
y
|
|
|
|
|
|
=
|
|
|
|
|
|
(C1
|
|
|
|
|
|
+
|
|
|
|
|
|
C2
|
|
|
|
|
|
ln
|
|
|
|
|
|
)-1+
|
|
|
|
|
|
i
|
|
|
|
|
|
,
|
|
|
|
|
|
C1, C2 . ,
|
|
|
|
|
|
17
|
|
|
, (42) , .
|
|
|
(42)
|
|
|
|
|
|
y=
|
|
|
|
|
|
C1 b1k + C2 ln b2k
|
|
|
|
|
|
i
|
|
|
+
|
|
|
|
|
|
|
|
|
|
|
|
b3k ,
|
|
|
|
|
|
k
|
|
|
|
|
|
k
|
|
|
|
|
|
k
|
|
|
|
|
|
k=0
|
|
|
|
|
|
k=0
|
|
|
|
|
|
k=0
|
|
|
|
|
|
(43)
|
|
|
|
|
|
b1k, b2k, b3k C, b10 = b20 = 1,
|
|
|
|
|
|
( - i)2 + 1 + 2b - 2d
|
|
|
|
|
|
b30 =
|
|
|
|
|
|
2( - i)2
|
|
|
|
|
|
,
|
|
|
|
|
|
(37). (37) a1 a2,
|
|
|
(A - 42)2 + B + 1 = 0. (37) = + aj, j = 1, 2. . , , .
|
|
|
|
|
|
8
|
|
|
|
|
|
P2j
|
|
|
|
|
|
j +1
|
|
|
|
|
|
d2y d 2
|
|
|
|
|
|
+
|
|
|
|
|
|
P1j
|
|
|
|
|
|
j
|
|
|
|
|
|
dy d
|
|
|
|
|
|
+
|
|
|
|
|
|
P0j
|
|
|
|
|
|
jy
|
|
|
|
|
|
+
|
|
|
|
|
|
Tj
|
|
|
|
|
|
j
|
|
|
|
|
|
= 0,
|
|
|
|
|
|
(44)
|
|
|
|
|
|
j=0
|
|
|
|
|
|
P2j, P1j, P0j, Tj C, P20 = 0. - (44) (-1, 1), (0, 0), (8, 0), (8, 1). , , = 0, . . , (-1, 1) [(-1, 1), (0, 0)] . -y + y = 0 -y + y = , C, (44), y = C1 = 0 y = , C1 . C1, C2 (C2 C)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
y = C1 c1kk + C22 c2kk + c3kk,
|
|
|
|
|
|
k=0
|
|
|
|
|
|
k=0
|
|
|
|
|
|
k=0
|
|
|
|
|
|
(45)
|
|
|
|
|
|
c1k, c2k, c3k C, c10 = c20 = 1, c30 = , (44).
|
|
|
|
|
|
18
|
|
|
(37) a3 a4, A2 +B+ 1 = 0. (37) = + aj, j = 3, 4. . , , .
|
|
|
|
|
|
8
|
|
|
|
|
|
S2j
|
|
|
|
|
|
j +3
|
|
|
|
|
|
d2y d 2
|
|
|
|
|
|
+
|
|
|
|
|
|
S1j
|
|
|
|
|
|
j +2
|
|
|
|
|
|
dy d
|
|
|
|
|
|
+
|
|
|
|
|
|
S0j
|
|
|
|
|
|
j +2y
|
|
|
|
|
|
+
|
|
|
|
|
|
Kj
|
|
|
|
|
|
j
|
|
|
|
|
|
= 0,
|
|
|
|
|
|
(46)
|
|
|
|
|
|
j=0
|
|
|
|
|
|
S2j, S1j, S0j, Kj C, S20 = 0. - (1, 1), (0, 0), (8, 0), (8, 1). -
|
|
|
|
|
|
, ,
|
|
|
|
|
|
-
|
|
|
|
|
|
= 0, . . , (1, 1)
|
|
|
|
|
|
[(1, 1), (0, 0)] -
|
|
|
|
|
|
.
|
|
|
|
|
|
2(y + 3y ) = 0 2(y + 3y ) = , C,
|
|
|
|
|
|
|
|
|
|
|
|
(44),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
y
|
|
|
|
|
|
=
|
|
|
|
|
|
C1 2
|
|
|
|
|
|
,
|
|
|
|
|
|
C1
|
|
|
|
|
|
=
|
|
|
|
|
|
0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
y=
|
|
|
|
|
|
,
|
|
|
|
|
|
C1
|
|
|
|
|
|
. -
|
|
|
|
|
|
C1, C2 (C2 C)
|
|
|
|
|
|
|
|
|
|
|
|
y
|
|
|
|
|
|
=
|
|
|
|
|
|
C1 2
|
|
|
|
|
|
|
|
|
|
|
|
d1kk + C2
|
|
|
|
|
|
|
|
|
|
|
|
d2k k
|
|
|
|
|
|
+
|
|
|
|
|
|
1
|
|
|
|
|
|
|
|
|
|
|
|
d3k k ,
|
|
|
|
|
|
k=0
|
|
|
|
|
|
k=0
|
|
|
|
|
|
k=0
|
|
|
|
|
|
(47)
|
|
|
|
|
|
d1k, d2k, d3k C, d10 = d20 = 1, d30 = , (44). , 0, , a1, a2, a3, a4
|
|
|
(37) . , y = C1y1() + C2y2() + y3()
|
|
|
|
|
|
i
|
|
|
|
|
|
i
|
|
|
|
|
|
y = C1f1() + C2 ln f2() + f3(),
|
|
|
|
|
|
f1(), f2(), f3() , . . y1() =
|
|
|
|
|
|
i
|
|
|
|
|
|
i
|
|
|
|
|
|
C1f1() y2() = C2 ln f2() , -
|
|
|
|
|
|
,
|
|
|
|
|
|
.
|
|
|
|
|
|
19
|
|
|
y3() = f3() , . , 1(x) = y3(Cxi). 2
|
|
|
|
|
|
k(x) (21) (19) (29).
|
|
|
|
|
|
|
|
|
Lk(0, 0, ¨ 0, k, k, ¨ k) - Nk(0, 0, . . . , ¨ 0, k-1, k-1, ¨ k-1) xk,
|
|
|
k=1
|
|
|
|
|
|
j, j, ¨ j (23), Lk 0, 0, ¨ 0, k, k, ¨ k -
|
|
|
|
|
|
(24), Nk 0, 0, ¨ 0, . . . , k-1, k-1, ¨ k-1 .
|
|
|
, (21) (19), k(x), k N
|
|
|
|
|
|
Lk(0, 0, ¨ 0, k, k, ¨ k) = Nk(0, 0, . . . , ¨ 0, k-1, k-1, ¨ k-1).
|
|
|
|
|
|
(48)
|
|
|
|
|
|
, (48) k, , .
|
|
|
x = C = Cxi, R, = 0, k(x) = ^k(), k N, (48). , (48)
|
|
|
|
|
|
Q2()
|
|
|
|
|
|
2
|
|
|
|
|
|
d2^k() d2
|
|
|
|
|
|
+
|
|
|
|
|
|
Q1k()
|
|
|
|
|
|
|
|
|
|
|
|
d^k() d
|
|
|
|
|
|
+
|
|
|
|
|
|
Q0k()^k()
|
|
|
|
|
|
=
|
|
|
|
|
|
Nk(),
|
|
|
|
|
|
(49)
|
|
|
|
|
|
Q2() = -22 20(0 - 1),
|
|
|
|
|
|
Q1k() = 2 i (i + 2k - 3)Q2() + i Q1(),
|
|
|
|
|
|
Q0k() = (k - 2)(k - 1)Q2() + (k - 1)Q1() + Q0(), Q1() = 20(320 - 30 0 - 30 + 2 0),
|
|
|
Q0() = -2(6a50-10a40+4a30-4c30+30-320¨ 0+30 20+20+20¨ 0- 20)1, 0, 0, ¨ 0 (36), Nk() .
|
|
|
|
|
|
3. (49) ^k() ( ) .
|
|
|
|
|
|
20
|
|
|
|
|
|
3. k (49).
|
|
|
|
|
|
|
|
|
|
|
|
^k() = rk kjj,
|
|
|
|
|
|
(50)
|
|
|
|
|
|
j=0
|
|
|
|
|
|
rk Z, kj C. k = 1 1. k = 2. (49)
|
|
|
0 1, . .
|
|
|
|
|
|
N2 R2 A2jj, R2 Z,
|
|
|
j=0
|
|
|
A2j C. Q2, Q1k, Q2k, , ^2() =
|
|
|
|
|
|
r2 2jj (49),
|
|
|
j=0
|
|
|
|
|
|
|
|
|
|
|
|
8 B2a2
|
|
|
|
|
|
(2i
|
|
|
|
|
|
-
|
|
|
|
|
|
)242
|
|
|
|
|
|
+
|
|
|
|
|
|
O(3)
|
|
|
|
|
|
|
|
|
|
|
|
2jr2+j = R2
|
|
|
|
|
|
A2j j .
|
|
|
|
|
|
j=0
|
|
|
|
|
|
j=0
|
|
|
|
|
|
(51)
|
|
|
|
|
|
a = 0, B = 0, 2i - = 0, R. r2, R2, (51) . 2j . k = 3, N3 , ( ) 0 1, ( ) 2. (50) (49)
|
|
|
|
|
|
|
|
|
|
|
|
8 B2a2
|
|
|
|
|
|
(ki
|
|
|
|
|
|
-
|
|
|
|
|
|
k
|
|
|
|
|
|
+
|
|
|
|
|
|
)242
|
|
|
|
|
|
+
|
|
|
|
|
|
O(3)
|
|
|
|
|
|
|
|
|
|
|
|
kjrk+j = Rk
|
|
|
|
|
|
Akj j ,
|
|
|
|
|
|
j=0
|
|
|
|
|
|
j=0
|
|
|
|
|
|
(52)
|
|
|
|
|
|
Rk Z, Akj C. k = 2. , ^3() . , , (49) . 2
|
|
|
|
|
|
4. k(x) = ^k() (21) (19) (29) = 0 ( ) .
|
|
|
4 , (49) . 2
|
|
|
|
|
|
21
|
|
|
5. (49) 0, , a1, a2, a3, a4 C, .
|
|
|
5. 0, , a1, a2, a3, a4 C. . (49) k = 2 . , (49) k = 2 , . k = 3, (49) ( ), . , , k. 2
|
|
|
5 , (49) = 0, , a1, a2, a3, a4 C. , (19) (21) (29), Cxi = 0, , a1, a2, a3, a4.
|
|
|
, ^k() = a1, a2, a3, a4 C (49).
|
|
|
, 3(x) 4(x) (21) (29) (19) Cxi. , . .
|
|
|
. k(x) = ^k() = Cxi .
|
|
|
|
|
|
1. Gromak I.V., Laine I., Shimomura S. Painlev´e Differential Equations in the Complex Plain. Berlin, New York: Walter de Gruyter. 2002.
|
|
|
2. .., .. // . 2010. . 71. . 6118.
|
|
|
3. .. // . 2016. . 17. 2(58). . 64-87
|
|
|
|
|
|
22
|
|
|
4. Guzzetti D. Poles Distribution of PVI transcendents close to a critical point // Physica D. 2012. doi:10.1016/j.physd.2012.02.015.
|
|
|
5. Gontsov, R.R., Goryuchkina, I.V. On the convergence of generalized power series satisfying an algebraic ODE. Asympt. Anal. 2015. 93(4). P. 311325.
|
|
|
6. Gontsov R., Goryuchkina I. An analytic proof of the Malgrange-Sibuya theorem on the convergence of formal solutions of an ODE. J. Dynam. Control Syst. 2016. V. 22(1). P. 91-100.
|
|
|
7. .. // . 2004. . 59. 3. . 3180.
|
|
|
8. .. // . ... 2011. 15. 26 .
|
|
|
9. .. , , " . ", . 2015. C. 1333.
|
|
|
10. .. . .:. 2009. 200 .
|
|
|
11. .. . .-.: . 1941. 400 .
|
|
|
|
|
|
|