
Journal of Machine Learning Research 13 (2012) 2063-2067 Submitted 8/11; Revised 3/12; Published 6/12

Pattern for Python

Tom De Smedt TOM.DESMEDT@UA .AC.BE

Walter Daelemans WALTER.DAELEMANS@UA .AC.BE

CLiPS Computational Linguistics Group
University of Antwerp
2000 Antwerp, Belgium

Editor: Cheng Soon Ong

Abstract

Pattern is a package for Python 2.4+ with functionality for web mining (Google + Twitter +
Wikipedia, web spider, HTML DOM parser), natural language processing (tagger/chunker, n-gram
search, sentiment analysis, WordNet), machine learning (vector space model,k-means clustering,
Naive Bayes +k-NN + SVM classifiers) and network analysis (graph centrality and visualization).
It is well documented and bundled with 30+ examples and 350+ unit tests. The source code is
licensed under BSD and available fromhttp://www.clips.ua.ac.be/pages/pattern .

Keywords: Python, data mining, natural language processing, machinelearning, graph networks

1. Introduction

The World Wide Web is an immense collection of linguistic information that has in the last decade
gathered attention as a valuable resource for tasks such as machine translation, opinion mining and
trend detection, that is, “Web as Corpus” (Kilgarriff and Grefenstette, 2003). This use of the WWW
poses a challenge since the Web is interspersed with code (HTML markup) and lacks metadata
(language identification, part-of-speech tags, semantic labels).

“Pattern” (BSD license) is a Python package for web mining, natural language processing, ma-
chine learning and network analysis, with a focus on ease-of-use. It offers a mash-up of tools often
used when harnessing the Web as a corpus, which usually requires several independent toolkits
chained together in a practical application. Several such toolkits with a userinterface exist in the
scientific community, for exampleORANGE (Dem̌sar et al., 2004) for machine learning andGEPHI

(Bastian et al., 2009) for graph visualization. By contrast,PATTERN is more related to toolkits such
asNLTK (Bird et al., 2009),PYBRAIN (Schaul et al., 2010) andNETWORKX (Hagberg et al., 2008),
in that it is geared towards integration in the user’s own programs. Also, it does not specialize in
one domain but provides general cross-domain functionality.

The package aims to be useful to both a scientific and a non-scientific audience. The syntax is
straightforward. Function names and parameters were so chosen as to make the commands self-
explanatory. The documentation assumes no prior knowledge. We believe that PATTERN is valuable
as a learning environment for students, as a rapid development framework for web developers, and
in research projects with a short development cycle.

©2012 Tom De Smedt and Walter Daelemans.

DE SMEDT AND DAELEMANS

Figure 1: Example workflow. Text is mined from the web and searched by syntax and semantics.
Sentiment analysis (positive/negative) is performed on matching phrases.

2. Package Overview

PATTERN is organized in separate modules that can be chained together, as shown inFigure 1.
For example, text from Wikipedia (pattern.web) can be parsed for part-of-speech tags (pattern.en),
queried by syntax and semantics (pattern.search), and used to train a classifier (pattern.vector).

pattern.web Tools for web data mining, using a download mechanism that supports caching,
proxies, asynchronous requests and redirection. ASearchEngine class provides a uniform API
to multiple web services: Google, Bing, Yahoo!, Twitter, Wikipedia, Flickr andnews feeds us-
ing FEED PARSER(packages.python.org/feedparser). The module includes an HTML parser based
on BEAUTIFUL SOUP (crummy.com/software/beautifulsoup), a PDF parser based onPDFMINER

(unixuser.org/ euske/python/pdfminer), a web crawler, and a webmail interface.

pattern.en Fast, regular expressions-based shallow parser for English (identifies sentence con-
stituents, e.g., nouns, verbs), using a finite state part-of-speech tagger(Brill, 1992) extended with a
tokenizer, lemmatizer and chunker. Accuracy for Brill’s tagger is 95% andup. A parser with higher
accuracy (MBSP) can be plugged in. The module has aSentence class for parse tree traversal,
functions for singularization/pluralization (Conway, 1998), conjugation,modality and sentiment
analysis. It comes bundled withWORDNET3 (Fellbaum, 1998) andPYWORDNET.

pattern.nl Lightweight implementation of pattern.en for Dutch, using theBRILL -NL language
model (Geertzen, 2010). Contributors are encouraged to read the developer documentation on how
to add support for other languages.

pattern.search N-gram pattern matching algorithm forSentence objects. The algorithm uses
an approach similar to regular expressions. Search queries can includea mixture of words, phrases,
part-of-speech-tags, taxonomy terms (e.g.,pet = dog, cat or goldfish) and control characters (e.g.,
+ = multiple,* = any,() = optional) to extract relevant information.

pattern.vector Vector space model using aDocument and aCorpus class. Documents are lem-
matized bag-of-words that can be grouped in a sparse corpus to computeTF-IDF, distance metrics
(cosine, Euclidean, Manhattan, Hamming) and dimension reduction (Latent Semantic Analysis).
The module includes a hierarchical and ak-means clustering algorithm, optimized with thek-
means++ initialization algorithm (Arthur and Vassilvitskii, 2007) and triangle inequality (Elkan,
2003). A Naive Bayes, ak-NN, and a SVM classifier usingLIBSVM (Chang and Li, 2011) are
included, with tools for feature selection (information gain) and K-fold cross validation.

2064

PATTERN FORPYTHON

pattern.graph Graph data structure usingNode, Edge andGraph classes, useful (for example)
for modeling semantic networks. The module has algorithms for shortest path finding, subgraph par-
titioning, eigenvector centrality and betweenness centrality (Brandes, 2001). Centrality algorithms
were ported fromNETWORKX. The module has a force-based layout algorithm that positions nodes
in 2D space. Visualizations can be exported to HTML and manipulated in a browser (using our
canvas.js helper module for the HTML5 Canvas2D element).

pattern.metrics Descriptive statistics functions. Evaluation metrics including a code profiler,
functions for accuracy, precision and recall, confusion matrix, inter-rater agreement (Fleiss’ kappa),
string similarity (Levenshtein, Dice) and readability (Flesch).

pattern.db Wrappers forCSV files andSQLITE andMYSQL databases.

3. Example Script

As an example, we chain together fourPATTERN modules to train ak-NN classifier on adjectives
mined from Twitter. First, we mine 1,500 tweets with the hashtag #win or #fail (ourclasses), for
example: “$20 tip off asweet little old lady today #win”. We parse the part-of-speech tags for
each tweet, keeping adjectives. We group the adjective vectors in a corpus and use it to train the
classifier. It predicts “sweet” asWINand “stupid” asFAIL . The results may vary depending on what
is currently buzzing on Twitter.

The source code is shown in Figure 2. Its size is representative for manyreal-world scenarios,
although a real-world classifier may need more training data and more rigorous feature selection.

from pattern.web import Twitter
from pattern.en import Sentence, parse
from pattern.search import search
from pattern.vector import Document, Corpus, KNN

corpus = Corpus()
for i in range(1, 15):

for tweet in Twitter().search(' #win OR #fail ' , start =i, count =100):
p = ' #win ' in tweet.description.lower() and ' WIN' or ' FAIL '
s = tweet.description.lower()
s = Sentence(parse(s))
s = search(' JJ ' , s) # JJ = adjective
s = [match[0].string for match in s]
s = ' ' .join(s)
if len(s) > 0:

corpus.append(Document(s, type =p))

classifier = KNN()
for document in corpus:

classifier.train(document)
print classifier.classify(' sweet ') # yields 'WIN'
print classifier.classify(' stupid ') # yields 'FAIL'

Figure 2: Example source code for ak-NN classifier trained on Twitter messages.

2065

DE SMEDT AND DAELEMANS

4. Case Study

As a case study, we used PATTERN to create a Dutch sentiment lexicon (De Smedt and Daelemans,
2012). We mined online Dutch book reviews and extracted the 1,000 most frequent adjectives.
These were manually annotated with positivity, negativity, and subjectivity scores. We then en-
larged the lexicon using distributional expansion. From theTWNC corpus (Ordelman et al., 2007)
we extracted the most frequent nouns and the adjectives preceding those nouns. This results in a
vector space with approximately 5,750 adjective vectors with nouns as features. For each annotated
adjective we then computedk-NN and inherited its scores to neighbor adjectives. The lexicon is
bundled intoPATTERN 2.3.

5. Documentation

PATTERNcomes bundled with examples and unit tests. The documentation contains a quickoverview,
installation instructions, and for each module a detailed page with the API reference, examples of
use and a discussion of the scientific principles. The documentation assumesno prior knowledge,
except for a background in Python programming. The unit test suite includes a set of corpora for
testing accuracy, for examplePOLARITY DATA SET V2.0 (Pang and Lee, 2004).

6. Source Code

PATTERN is written in pure Python, meaning that we sacrifice performance for development speed
and readability (i.e., slow clustering algorithms). The package runs on all platforms and has no
dependencies, with the exception of NumPy when LSA is used. The sourcecode is annotated with
developer comments. It is hosted online on GitHub (github.com) using the Git revision control
system. Contributions are welcomed.

The source code is released under a BSD license, so it can be incorporated into proprietary
products or used in combination with other open source packages such asSCRAPY (web mining),
NLTK (natural language processing),PYBRAIN andPYML (machine learning) andNETWORKX (net-
work analysis). We provide an interface toMBSP FOR PYTHON(De Smedt et al., 2010), a robust,
memory-based shallow parser built on theTIMBL machine learning software. The API’s for the
PATTERN parser andMBSP are identical.

Acknowledgments

Development was funded by the Industrial Research Fund (IOF) of theUniversity of Antwerp.

References

David Arthur and Sergei Vassilvitskii. k-means++: the advantages of careful seeding.Proceed-
ings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 1027–1035,
2007.

Mathieu Bastian, Sebastien Heymann, and Mathieu Jacomy. Gephi: An open source software for
exploring and manipulating networks.Proceedings of the Third International ICWSM Confer-
ence, 2009.

2066

PATTERN FORPYTHON

Steven Bird, Ewan Klein, and Edward Loper.Natural Language Processing with Python. O’Reilly
Media, 2009.

Ulrik Brandes. A faster algorithm for betweenness centrality.The Journal of Mathematical Sociol-
ogy, 25(2):163–177, 2001.

Eric Brill. A simple rule-based part of speech tagger.Proceedings of the Third Conference on
Applied Natural Language Processing, pages 152–155, 1992.

Chih-Chung Chang and Chih-Jen Li. LIBSVM: A library for support vector machines. ACM
Transactions on Intelligent Systems and Technology, 2(3), 2011.

Damian Conway. An algorithmic approach to english pluralization.Proceedings of the Second
Annual Perl Conference, 1998.

Tom De Smedt and Walter Daelemans. Vreselijk mooi! (terribly beautiful): A subjectivity lexicon
for dutch adjectives.Proceedings of the 8th Language Resources and Evaluation Conference
(LREC’12), pages 3568—-3572, 2012.

Tom De Smedt, Vincent Van Asch, and Walter Daelemans. Memory-based shallow parser for
python.CLiPS Technical Report Series, 2, 2010.

Janez Dem̌sar, Blǎz Zupan, Gregor Leban, and Tomaz Curk. Orange: From experimentalmachine
learning to interactive data mining.Knowledge Discovery in Databases, 3202:537–539, 2004.

Charles Elkan. Using the triangle inequality to accelerate k-means.Proceedings of the Twentieth
International Conference on Machine Learning, pages 147–153, 2003.

Christiane Fellbaum.WordNet: An Electronic Lexical Database. MIT Press, Cambridge, 1998.

Jeroen Geertzen. Jeroen geertzen :: software & demos : Brill-nl, June 2010. URL http:
//cosmion.net/jeroen/software/brill_pos/ .

Aric Hagberg, Daniel Schult, and Pieter Swart. Exploring network structure, dynamics, and function
using networkx.Proceedings of the 7th Python in Science Conference, pages 11–15, 2008.

Adam Kilgarriff and Gregory Grefenstette. Introduction to the special issue on the web as corpus.
Computational Linguistics, 29(3):333–347, 2003.

Roeland Ordelman, Franciska de Jong, Arjan van Hessen, and HendriHondorp. TwNC: A multi-
faceted dutch news corpus.ELRA Newsletter, 12:3–4, 2007.

Bo Pang and Lillian Lee. A sentimental education: Sentiment analysis using subjectivity summa-
rization based on minimum cuts.Proceedings of the ACL, pages 271–278, 2004.

Tom Schaul, Justin Bayer, Daan Wierstra, Yi Sun, Martin Felder, FrankSehnke, Thomas R̈uckstieß,
and J̈urgen Schmidhuber. Pybrain.Journal of Machine Learning Research, pages 743–746, 2010.

2067

