from __future__ import division
import glob
from nltk import *
import re
import nltk
import codecs
from nltk import sent_tokenize, word_tokenize, pos_tag
from nltk.probability import FreqDist
from nltk.corpus import stopwords
from PIL import Image
import base64
nltk.download('stopwords')
# infofile = open('faceapp_infos.txt','r')
# infotext = infofile.read()
#open the txt file, read, and tokenize
file = open('faceapp.txt','r')
text = file.read()
#not sure if this works..
x = 1
t_file = open('russia-estonia.txt', 'r')
t_text = t_file.read()
#stopwords
default_stopwords = set(stopwords.words('english'))
custom_stopwords = set(codecs.open('stopwords.txt', 'r').read().splitlines())
all_stopwords = default_stopwords | custom_stopwords
# multi-line string HTML
print('''
')
#insert an image
# https://upload.wikimedia.org/wikipedia/commons/1/15/Joffe_signing_the_Treaty_of_Tartu.jpg
FaceApp_img_url = base64.b64encode(open('img/faceapp_logo.png', 'rb').read()).decode('utf-8')
FaceApp_image = '
FaceApp
'.format(FaceApp_img_url)
print(FaceApp_image)
#info box
print('
')
infotext = [('Service', 'FaceApp'), ('Type', 'Image editing'), ('Initial release', 'December 31, 2016'), ('Type', 'Image editing'), ('source', '
link'), ('Description', 'FaceApp is a mobile application for iOS and Android developed by Russian company Wireless Lab. The app generates highly realistic transformations of human faces in photographs by using neural networks based on artificial intelligence. The app can transform a face to make it smile, look younger, look older, or change gender.')]
for title, info in infotext:
print('
{0}
{1}
'.format(title, info))
print('
')
#ToS text
print('
')
tokenized = word_tokenize(text)
tagged = pos_tag(tokenized)
for word, pos in tagged:
print('{}'.format(pos, word))
print('
')
#colonial words list
print('
colonial words:')
tokens_without_stopwords = nltk.FreqDist(words.lower() for words in tokenized if words.lower() not in all_stopwords)
frequency_word = FreqDist(tokens_without_stopwords)
top_words = tokens_without_stopwords.most_common(20)
for chosen_words, frequency in top_words:
print('
{}({}) '.format(chosen_words, frequency))
print('
')
#t_wrapper (second wrapper)
print('
')
#insert an image
# https://upload.wikimedia.org/wikipedia/commons/1/15/Joffe_signing_the_Treaty_of_Tartu.jpg
img_url = base64.b64encode(open('img/tartu.jpeg', 'rb').read()).decode('utf-8')
t_image = '
Peace Treaty of Tartu
'.format(img_url)
print(t_image)
#t_info box
print('
')
t_infotext = [('Name of Treaty', 'Peace Treaty of Tartu'), ('Date', 'February 2, 1920'), ('Location', 'Tartu, Estonia'), ('Signed', 'February 2, 1920'), ('Type', 'bilateral peace treaty'), ('source', '
link'), ('Description', 'The Tartu Peace Treaty or Treaty of Tartu is a peace treaty between Estonia and Russian Soviet Federative Socialist Republic signed on 2 February 1920, ending the Estonian War of Independence.')]
for t_title, t_info in t_infotext:
print('
{0}
{1}
'.format(t_title, t_info))
print('
')
#ToS text
print('
')
t_tokenized = word_tokenize(t_text)
t_tagged = pos_tag(t_tokenized)
for t_word, t_pos in t_tagged:
print('{}'.format(t_pos, t_word))
print('
')
#treaty colonial words list
print('
colonial words:')
t_tokens_without_stopwords = nltk.FreqDist(words.lower() for words in t_tokenized if words.lower() not in all_stopwords)
t_frequency_word = FreqDist(t_tokens_without_stopwords)
t_top_words = t_tokens_without_stopwords.most_common(20)
for t_chosen_words, t_frequency in t_top_words:
print('
{}({}) '.format(t_chosen_words, t_frequency))
print('
')
print('
')
print('''''')