from __future__ import division
import glob
from nltk import *
import re
import nltk
import codecs
from nltk import sent_tokenize, word_tokenize, pos_tag
from nltk.probability import FreqDist
from nltk.corpus import stopwords
nltk.download('stopwords')
#open the txt file, read, and tokenize
file = open('faceapp.txt','r')
text = file.read()
x = 1
#stopwords
default_stopwords = set(stopwords.words('english'))
custom_stopwords = set(codecs.open('stopwords.txt', 'r').read().splitlines())
all_stopwords = default_stopwords | custom_stopwords
print(
'''
'''
)
#info box
print('')
infotext = [('service', 'FaceApp'), ('Type', 'Image editing'), ('Initial release', 'December 31 2016'), ('Type', 'Image editing'), ('source', '
link')]
for title, info in infotext:
print('
{0}:{1}'.format(title, info))
print('
')
#ToS text
print('')
tokenized = word_tokenize(text)
tagged = pos_tag(tokenized)
for word, pos in tagged:
print('{}'.format(pos, word))
print('
')
#colonial words list
print(' colonial words:')
tokens_without_stopwords = nltk.FreqDist(words.lower() for words in tokenized if words.lower() not in all_stopwords)
frequency_word = FreqDist(tokens_without_stopwords)
top_words = tokens_without_stopwords.most_common(100)
for chosen_words, frequency in top_words:
print('
{}({}) '.format(chosen_words, frequency))
print('''
''')
# # for new_file in tokens_without_stopwords:
# appendFile = open('tokenized_words.txt', 'a')
# appendFile.write(" " + new_file)
# appendFile.close()
# #shows only stopwords
# processed_word_list = []
# for word in tokenized:
# # print(word)
# if word not in all_stopwords:
# processed_word_list.append('*')
# else:
# processed_word_list.append(word)
# print(processed_word_list)
# # # result putting in a graph
# top_words_plot = frequency_word.plot(10)
# print(top_words_plot)