You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
2192 lines
69 KiB
Python
2192 lines
69 KiB
Python
5 years ago
|
"""
|
||
|
A collection of utility functions and classes. Originally, many
|
||
|
(but not all) were from the Python Cookbook -- hence the name cbook.
|
||
|
|
||
|
This module is safe to import from anywhere within matplotlib;
|
||
|
it imports matplotlib only at runtime.
|
||
|
"""
|
||
|
|
||
|
import collections
|
||
|
import collections.abc
|
||
|
import contextlib
|
||
|
import functools
|
||
|
import glob
|
||
|
import gzip
|
||
|
import itertools
|
||
|
import locale
|
||
|
import numbers
|
||
|
import operator
|
||
|
import os
|
||
|
from pathlib import Path
|
||
|
import re
|
||
|
import shlex
|
||
|
import subprocess
|
||
|
import sys
|
||
|
import time
|
||
|
import traceback
|
||
|
import types
|
||
|
import warnings
|
||
|
import weakref
|
||
|
from weakref import WeakMethod
|
||
|
|
||
|
import numpy as np
|
||
|
|
||
|
import matplotlib
|
||
|
from .deprecation import (
|
||
|
deprecated, warn_deprecated,
|
||
|
_rename_parameter, _delete_parameter, _make_keyword_only,
|
||
|
_suppress_matplotlib_deprecation_warning,
|
||
|
MatplotlibDeprecationWarning, mplDeprecation)
|
||
|
|
||
|
|
||
|
def _exception_printer(exc):
|
||
|
traceback.print_exc()
|
||
|
|
||
|
|
||
|
class _StrongRef:
|
||
|
"""
|
||
|
Wrapper similar to a weakref, but keeping a strong reference to the object.
|
||
|
"""
|
||
|
|
||
|
def __init__(self, obj):
|
||
|
self._obj = obj
|
||
|
|
||
|
def __call__(self):
|
||
|
return self._obj
|
||
|
|
||
|
def __eq__(self, other):
|
||
|
return isinstance(other, _StrongRef) and self._obj == other._obj
|
||
|
|
||
|
def __hash__(self):
|
||
|
return hash(self._obj)
|
||
|
|
||
|
|
||
|
class CallbackRegistry:
|
||
|
"""Handle registering and disconnecting for a set of signals and callbacks:
|
||
|
|
||
|
>>> def oneat(x):
|
||
|
... print('eat', x)
|
||
|
>>> def ondrink(x):
|
||
|
... print('drink', x)
|
||
|
|
||
|
>>> from matplotlib.cbook import CallbackRegistry
|
||
|
>>> callbacks = CallbackRegistry()
|
||
|
|
||
|
>>> id_eat = callbacks.connect('eat', oneat)
|
||
|
>>> id_drink = callbacks.connect('drink', ondrink)
|
||
|
|
||
|
>>> callbacks.process('drink', 123)
|
||
|
drink 123
|
||
|
>>> callbacks.process('eat', 456)
|
||
|
eat 456
|
||
|
>>> callbacks.process('be merry', 456) # nothing will be called
|
||
|
>>> callbacks.disconnect(id_eat)
|
||
|
>>> callbacks.process('eat', 456) # nothing will be called
|
||
|
|
||
|
In practice, one should always disconnect all callbacks when they are
|
||
|
no longer needed to avoid dangling references (and thus memory leaks).
|
||
|
However, real code in Matplotlib rarely does so, and due to its design,
|
||
|
it is rather difficult to place this kind of code. To get around this,
|
||
|
and prevent this class of memory leaks, we instead store weak references
|
||
|
to bound methods only, so when the destination object needs to die, the
|
||
|
CallbackRegistry won't keep it alive.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
exception_handler : callable, optional
|
||
|
If provided must have signature ::
|
||
|
|
||
|
def handler(exc: Exception) -> None:
|
||
|
|
||
|
If not None this function will be called with any `Exception`
|
||
|
subclass raised by the callbacks in `CallbackRegistry.process`.
|
||
|
The handler may either consume the exception or re-raise.
|
||
|
|
||
|
The callable must be pickle-able.
|
||
|
|
||
|
The default handler is ::
|
||
|
|
||
|
def h(exc):
|
||
|
traceback.print_exc()
|
||
|
"""
|
||
|
|
||
|
# We maintain two mappings:
|
||
|
# callbacks: signal -> {cid -> callback}
|
||
|
# _func_cid_map: signal -> {callback -> cid}
|
||
|
# (actually, callbacks are weakrefs to the actual callbacks).
|
||
|
|
||
|
def __init__(self, exception_handler=_exception_printer):
|
||
|
self.exception_handler = exception_handler
|
||
|
self.callbacks = {}
|
||
|
self._cid_gen = itertools.count()
|
||
|
self._func_cid_map = {}
|
||
|
|
||
|
# In general, callbacks may not be pickled; thus, we simply recreate an
|
||
|
# empty dictionary at unpickling. In order to ensure that `__setstate__`
|
||
|
# (which just defers to `__init__`) is called, `__getstate__` must
|
||
|
# return a truthy value (for pickle protocol>=3, i.e. Py3, the
|
||
|
# *actual* behavior is that `__setstate__` will be called as long as
|
||
|
# `__getstate__` does not return `None`, but this is undocumented -- see
|
||
|
# http://bugs.python.org/issue12290).
|
||
|
|
||
|
def __getstate__(self):
|
||
|
return {'exception_handler': self.exception_handler}
|
||
|
|
||
|
def __setstate__(self, state):
|
||
|
self.__init__(**state)
|
||
|
|
||
|
def connect(self, s, func):
|
||
|
"""Register *func* to be called when signal *s* is generated.
|
||
|
"""
|
||
|
self._func_cid_map.setdefault(s, {})
|
||
|
try:
|
||
|
proxy = WeakMethod(func, self._remove_proxy)
|
||
|
except TypeError:
|
||
|
proxy = _StrongRef(func)
|
||
|
if proxy in self._func_cid_map[s]:
|
||
|
return self._func_cid_map[s][proxy]
|
||
|
|
||
|
cid = next(self._cid_gen)
|
||
|
self._func_cid_map[s][proxy] = cid
|
||
|
self.callbacks.setdefault(s, {})
|
||
|
self.callbacks[s][cid] = proxy
|
||
|
return cid
|
||
|
|
||
|
# Keep a reference to sys.is_finalizing, as sys may have been cleared out
|
||
|
# at that point.
|
||
|
def _remove_proxy(self, proxy, *, _is_finalizing=sys.is_finalizing):
|
||
|
if _is_finalizing():
|
||
|
# Weakrefs can't be properly torn down at that point anymore.
|
||
|
return
|
||
|
for signal, proxies in list(self._func_cid_map.items()):
|
||
|
try:
|
||
|
del self.callbacks[signal][proxies[proxy]]
|
||
|
except KeyError:
|
||
|
pass
|
||
|
if len(self.callbacks[signal]) == 0:
|
||
|
del self.callbacks[signal]
|
||
|
del self._func_cid_map[signal]
|
||
|
|
||
|
def disconnect(self, cid):
|
||
|
"""Disconnect the callback registered with callback id *cid*.
|
||
|
"""
|
||
|
for eventname, callbackd in list(self.callbacks.items()):
|
||
|
try:
|
||
|
del callbackd[cid]
|
||
|
except KeyError:
|
||
|
continue
|
||
|
else:
|
||
|
for signal, functions in list(self._func_cid_map.items()):
|
||
|
for function, value in list(functions.items()):
|
||
|
if value == cid:
|
||
|
del functions[function]
|
||
|
return
|
||
|
|
||
|
def process(self, s, *args, **kwargs):
|
||
|
"""
|
||
|
Process signal *s*.
|
||
|
|
||
|
All of the functions registered to receive callbacks on *s* will be
|
||
|
called with ``*args`` and ``**kwargs``.
|
||
|
"""
|
||
|
for cid, ref in list(self.callbacks.get(s, {}).items()):
|
||
|
func = ref()
|
||
|
if func is not None:
|
||
|
try:
|
||
|
func(*args, **kwargs)
|
||
|
# this does not capture KeyboardInterrupt, SystemExit,
|
||
|
# and GeneratorExit
|
||
|
except Exception as exc:
|
||
|
if self.exception_handler is not None:
|
||
|
self.exception_handler(exc)
|
||
|
else:
|
||
|
raise
|
||
|
|
||
|
|
||
|
class silent_list(list):
|
||
|
"""
|
||
|
A list with a short ``repr()``.
|
||
|
|
||
|
This is meant to be used for a homogeneous list of artists, so that they
|
||
|
don't cause long, meaningless output.
|
||
|
|
||
|
Instead of ::
|
||
|
|
||
|
[<matplotlib.lines.Line2D object at 0x7f5749fed3c8>,
|
||
|
<matplotlib.lines.Line2D object at 0x7f5749fed4e0>,
|
||
|
<matplotlib.lines.Line2D object at 0x7f5758016550>]
|
||
|
|
||
|
one will get ::
|
||
|
|
||
|
<a list of 3 Line2D objects>
|
||
|
"""
|
||
|
def __init__(self, type, seq=None):
|
||
|
self.type = type
|
||
|
if seq is not None:
|
||
|
self.extend(seq)
|
||
|
|
||
|
def __repr__(self):
|
||
|
return '<a list of %d %s objects>' % (len(self), self.type)
|
||
|
|
||
|
__str__ = __repr__
|
||
|
|
||
|
def __getstate__(self):
|
||
|
# store a dictionary of this SilentList's state
|
||
|
return {'type': self.type, 'seq': self[:]}
|
||
|
|
||
|
def __setstate__(self, state):
|
||
|
self.type = state['type']
|
||
|
self.extend(state['seq'])
|
||
|
|
||
|
|
||
|
class IgnoredKeywordWarning(UserWarning):
|
||
|
"""
|
||
|
A class for issuing warnings about keyword arguments that will be ignored
|
||
|
by Matplotlib.
|
||
|
"""
|
||
|
pass
|
||
|
|
||
|
|
||
|
def local_over_kwdict(local_var, kwargs, *keys):
|
||
|
"""
|
||
|
Enforces the priority of a local variable over potentially conflicting
|
||
|
argument(s) from a kwargs dict. The following possible output values are
|
||
|
considered in order of priority::
|
||
|
|
||
|
local_var > kwargs[keys[0]] > ... > kwargs[keys[-1]]
|
||
|
|
||
|
The first of these whose value is not None will be returned. If all are
|
||
|
None then None will be returned. Each key in keys will be removed from the
|
||
|
kwargs dict in place.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
local_var : any object
|
||
|
The local variable (highest priority).
|
||
|
|
||
|
kwargs : dict
|
||
|
Dictionary of keyword arguments; modified in place.
|
||
|
|
||
|
keys : str(s)
|
||
|
Name(s) of keyword arguments to process, in descending order of
|
||
|
priority.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
out : any object
|
||
|
Either local_var or one of kwargs[key] for key in keys.
|
||
|
|
||
|
Raises
|
||
|
------
|
||
|
IgnoredKeywordWarning
|
||
|
For each key in keys that is removed from kwargs but not used as
|
||
|
the output value.
|
||
|
|
||
|
"""
|
||
|
out = local_var
|
||
|
for key in keys:
|
||
|
kwarg_val = kwargs.pop(key, None)
|
||
|
if kwarg_val is not None:
|
||
|
if out is None:
|
||
|
out = kwarg_val
|
||
|
else:
|
||
|
_warn_external('"%s" keyword argument will be ignored' % key,
|
||
|
IgnoredKeywordWarning)
|
||
|
return out
|
||
|
|
||
|
|
||
|
def strip_math(s):
|
||
|
"""
|
||
|
Remove latex formatting from mathtext.
|
||
|
|
||
|
Only handles fully math and fully non-math strings.
|
||
|
"""
|
||
|
if len(s) >= 2 and s[0] == s[-1] == "$":
|
||
|
s = s[1:-1]
|
||
|
for tex, plain in [
|
||
|
(r"\times", "x"), # Specifically for Formatter support.
|
||
|
(r"\mathdefault", ""),
|
||
|
(r"\rm", ""),
|
||
|
(r"\cal", ""),
|
||
|
(r"\tt", ""),
|
||
|
(r"\it", ""),
|
||
|
("\\", ""),
|
||
|
("{", ""),
|
||
|
("}", ""),
|
||
|
]:
|
||
|
s = s.replace(tex, plain)
|
||
|
return s
|
||
|
|
||
|
|
||
|
@deprecated('3.1', alternative='np.iterable')
|
||
|
def iterable(obj):
|
||
|
"""return true if *obj* is iterable"""
|
||
|
try:
|
||
|
iter(obj)
|
||
|
except TypeError:
|
||
|
return False
|
||
|
return True
|
||
|
|
||
|
|
||
|
@deprecated("3.1", alternative="isinstance(..., collections.abc.Hashable)")
|
||
|
def is_hashable(obj):
|
||
|
"""Returns true if *obj* can be hashed"""
|
||
|
try:
|
||
|
hash(obj)
|
||
|
except TypeError:
|
||
|
return False
|
||
|
return True
|
||
|
|
||
|
|
||
|
def is_writable_file_like(obj):
|
||
|
"""Return whether *obj* looks like a file object with a *write* method."""
|
||
|
return callable(getattr(obj, 'write', None))
|
||
|
|
||
|
|
||
|
def file_requires_unicode(x):
|
||
|
"""
|
||
|
Return whether the given writable file-like object requires Unicode to be
|
||
|
written to it.
|
||
|
"""
|
||
|
try:
|
||
|
x.write(b'')
|
||
|
except TypeError:
|
||
|
return True
|
||
|
else:
|
||
|
return False
|
||
|
|
||
|
|
||
|
def to_filehandle(fname, flag='r', return_opened=False, encoding=None):
|
||
|
"""
|
||
|
Convert a path to an open file handle or pass-through a file-like object.
|
||
|
|
||
|
Consider using `open_file_cm` instead, as it allows one to properly close
|
||
|
newly created file objects more easily.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
fname : str or path-like or file-like object
|
||
|
If `str` or `os.PathLike`, the file is opened using the flags specified
|
||
|
by *flag* and *encoding*. If a file-like object, it is passed through.
|
||
|
flag : str, default 'r'
|
||
|
Passed as the *mode* argument to `open` when *fname* is `str` or
|
||
|
`os.PathLike`; ignored if *fname* is file-like.
|
||
|
return_opened : bool, default False
|
||
|
If True, return both the file object and a boolean indicating whether
|
||
|
this was a new file (that the caller needs to close). If False, return
|
||
|
only the new file.
|
||
|
encoding : str or None, default None
|
||
|
Passed as the *mode* argument to `open` when *fname* is `str` or
|
||
|
`os.PathLike`; ignored if *fname* is file-like.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
fh : file-like
|
||
|
opened : bool
|
||
|
*opened* is only returned if *return_opened* is True.
|
||
|
"""
|
||
|
if isinstance(fname, os.PathLike):
|
||
|
fname = os.fspath(fname)
|
||
|
if isinstance(fname, str):
|
||
|
if fname.endswith('.gz'):
|
||
|
# get rid of 'U' in flag for gzipped files.
|
||
|
flag = flag.replace('U', '')
|
||
|
fh = gzip.open(fname, flag)
|
||
|
elif fname.endswith('.bz2'):
|
||
|
# python may not be complied with bz2 support,
|
||
|
# bury import until we need it
|
||
|
import bz2
|
||
|
# get rid of 'U' in flag for bz2 files
|
||
|
flag = flag.replace('U', '')
|
||
|
fh = bz2.BZ2File(fname, flag)
|
||
|
else:
|
||
|
fh = open(fname, flag, encoding=encoding)
|
||
|
opened = True
|
||
|
elif hasattr(fname, 'seek'):
|
||
|
fh = fname
|
||
|
opened = False
|
||
|
else:
|
||
|
raise ValueError('fname must be a PathLike or file handle')
|
||
|
if return_opened:
|
||
|
return fh, opened
|
||
|
return fh
|
||
|
|
||
|
|
||
|
@contextlib.contextmanager
|
||
|
def open_file_cm(path_or_file, mode="r", encoding=None):
|
||
|
r"""Pass through file objects and context-manage `.PathLike`\s."""
|
||
|
fh, opened = to_filehandle(path_or_file, mode, True, encoding)
|
||
|
if opened:
|
||
|
with fh:
|
||
|
yield fh
|
||
|
else:
|
||
|
yield fh
|
||
|
|
||
|
|
||
|
def is_scalar_or_string(val):
|
||
|
"""Return whether the given object is a scalar or string like."""
|
||
|
return isinstance(val, str) or not np.iterable(val)
|
||
|
|
||
|
|
||
|
def get_sample_data(fname, asfileobj=True):
|
||
|
"""
|
||
|
Return a sample data file. *fname* is a path relative to the
|
||
|
`mpl-data/sample_data` directory. If *asfileobj* is `True`
|
||
|
return a file object, otherwise just a file path.
|
||
|
|
||
|
Sample data files are stored in the 'mpl-data/sample_data' directory within
|
||
|
the Matplotlib package.
|
||
|
|
||
|
If the filename ends in .gz, the file is implicitly ungzipped.
|
||
|
"""
|
||
|
path = Path(matplotlib.get_data_path(), 'sample_data', fname)
|
||
|
if asfileobj:
|
||
|
suffix = path.suffix.lower()
|
||
|
if suffix == '.gz':
|
||
|
return gzip.open(path)
|
||
|
elif suffix in ['.csv', '.xrc', '.txt']:
|
||
|
return path.open('r')
|
||
|
else:
|
||
|
return path.open('rb')
|
||
|
else:
|
||
|
return str(path)
|
||
|
|
||
|
|
||
|
def _get_data_path(*args):
|
||
|
"""
|
||
|
Return the `Path` to a resource file provided by Matplotlib.
|
||
|
|
||
|
``*args`` specify a path relative to the base data path.
|
||
|
"""
|
||
|
return Path(matplotlib.get_data_path(), *args)
|
||
|
|
||
|
|
||
|
def flatten(seq, scalarp=is_scalar_or_string):
|
||
|
"""
|
||
|
Return a generator of flattened nested containers.
|
||
|
|
||
|
For example:
|
||
|
|
||
|
>>> from matplotlib.cbook import flatten
|
||
|
>>> l = (('John', ['Hunter']), (1, 23), [[([42, (5, 23)], )]])
|
||
|
>>> print(list(flatten(l)))
|
||
|
['John', 'Hunter', 1, 23, 42, 5, 23]
|
||
|
|
||
|
By: Composite of Holger Krekel and Luther Blissett
|
||
|
From: https://code.activestate.com/recipes/121294/
|
||
|
and Recipe 1.12 in cookbook
|
||
|
"""
|
||
|
for item in seq:
|
||
|
if scalarp(item) or item is None:
|
||
|
yield item
|
||
|
else:
|
||
|
yield from flatten(item, scalarp)
|
||
|
|
||
|
|
||
|
@functools.lru_cache()
|
||
|
def get_realpath_and_stat(path):
|
||
|
realpath = os.path.realpath(path)
|
||
|
stat = os.stat(realpath)
|
||
|
stat_key = (stat.st_ino, stat.st_dev)
|
||
|
return realpath, stat_key
|
||
|
|
||
|
|
||
|
# A regular expression used to determine the amount of space to
|
||
|
# remove. It looks for the first sequence of spaces immediately
|
||
|
# following the first newline, or at the beginning of the string.
|
||
|
_find_dedent_regex = re.compile(r"(?:(?:\n\r?)|^)( *)\S")
|
||
|
# A cache to hold the regexs that actually remove the indent.
|
||
|
_dedent_regex = {}
|
||
|
|
||
|
|
||
|
@deprecated("3.1", alternative="inspect.cleandoc")
|
||
|
def dedent(s):
|
||
|
"""
|
||
|
Remove excess indentation from docstring *s*.
|
||
|
|
||
|
Discards any leading blank lines, then removes up to n whitespace
|
||
|
characters from each line, where n is the number of leading
|
||
|
whitespace characters in the first line. It differs from
|
||
|
textwrap.dedent in its deletion of leading blank lines and its use
|
||
|
of the first non-blank line to determine the indentation.
|
||
|
|
||
|
It is also faster in most cases.
|
||
|
"""
|
||
|
# This implementation has a somewhat obtuse use of regular
|
||
|
# expressions. However, this function accounted for almost 30% of
|
||
|
# matplotlib startup time, so it is worthy of optimization at all
|
||
|
# costs.
|
||
|
|
||
|
if not s: # includes case of s is None
|
||
|
return ''
|
||
|
|
||
|
match = _find_dedent_regex.match(s)
|
||
|
if match is None:
|
||
|
return s
|
||
|
|
||
|
# This is the number of spaces to remove from the left-hand side.
|
||
|
nshift = match.end(1) - match.start(1)
|
||
|
if nshift == 0:
|
||
|
return s
|
||
|
|
||
|
# Get a regex that will remove *up to* nshift spaces from the
|
||
|
# beginning of each line. If it isn't in the cache, generate it.
|
||
|
unindent = _dedent_regex.get(nshift, None)
|
||
|
if unindent is None:
|
||
|
unindent = re.compile("\n\r? {0,%d}" % nshift)
|
||
|
_dedent_regex[nshift] = unindent
|
||
|
|
||
|
result = unindent.sub("\n", s).strip()
|
||
|
return result
|
||
|
|
||
|
|
||
|
class maxdict(dict):
|
||
|
"""
|
||
|
A dictionary with a maximum size.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
This doesn't override all the relevant methods to constrain the size,
|
||
|
just ``__setitem__``, so use with caution.
|
||
|
"""
|
||
|
def __init__(self, maxsize):
|
||
|
dict.__init__(self)
|
||
|
self.maxsize = maxsize
|
||
|
self._killkeys = []
|
||
|
|
||
|
def __setitem__(self, k, v):
|
||
|
if k not in self:
|
||
|
if len(self) >= self.maxsize:
|
||
|
del self[self._killkeys[0]]
|
||
|
del self._killkeys[0]
|
||
|
self._killkeys.append(k)
|
||
|
dict.__setitem__(self, k, v)
|
||
|
|
||
|
|
||
|
class Stack:
|
||
|
"""
|
||
|
Stack of elements with a movable cursor.
|
||
|
|
||
|
Mimics home/back/forward in a web browser.
|
||
|
"""
|
||
|
|
||
|
def __init__(self, default=None):
|
||
|
self.clear()
|
||
|
self._default = default
|
||
|
|
||
|
def __call__(self):
|
||
|
"""Return the current element, or None."""
|
||
|
if not len(self._elements):
|
||
|
return self._default
|
||
|
else:
|
||
|
return self._elements[self._pos]
|
||
|
|
||
|
def __len__(self):
|
||
|
return len(self._elements)
|
||
|
|
||
|
def __getitem__(self, ind):
|
||
|
return self._elements[ind]
|
||
|
|
||
|
def forward(self):
|
||
|
"""Move the position forward and return the current element."""
|
||
|
self._pos = min(self._pos + 1, len(self._elements) - 1)
|
||
|
return self()
|
||
|
|
||
|
def back(self):
|
||
|
"""Move the position back and return the current element."""
|
||
|
if self._pos > 0:
|
||
|
self._pos -= 1
|
||
|
return self()
|
||
|
|
||
|
def push(self, o):
|
||
|
"""
|
||
|
Push *o* to the stack at current position. Discard all later elements.
|
||
|
|
||
|
*o* is returned.
|
||
|
"""
|
||
|
self._elements = self._elements[:self._pos + 1] + [o]
|
||
|
self._pos = len(self._elements) - 1
|
||
|
return self()
|
||
|
|
||
|
def home(self):
|
||
|
"""
|
||
|
Push the first element onto the top of the stack.
|
||
|
|
||
|
The first element is returned.
|
||
|
"""
|
||
|
if not len(self._elements):
|
||
|
return
|
||
|
self.push(self._elements[0])
|
||
|
return self()
|
||
|
|
||
|
def empty(self):
|
||
|
"""Return whether the stack is empty."""
|
||
|
return len(self._elements) == 0
|
||
|
|
||
|
def clear(self):
|
||
|
"""Empty the stack."""
|
||
|
self._pos = -1
|
||
|
self._elements = []
|
||
|
|
||
|
def bubble(self, o):
|
||
|
"""
|
||
|
Raise *o* to the top of the stack. *o* must be present in the stack.
|
||
|
|
||
|
*o* is returned.
|
||
|
"""
|
||
|
if o not in self._elements:
|
||
|
raise ValueError('Unknown element o')
|
||
|
old = self._elements[:]
|
||
|
self.clear()
|
||
|
bubbles = []
|
||
|
for thiso in old:
|
||
|
if thiso == o:
|
||
|
bubbles.append(thiso)
|
||
|
else:
|
||
|
self.push(thiso)
|
||
|
for _ in bubbles:
|
||
|
self.push(o)
|
||
|
return o
|
||
|
|
||
|
def remove(self, o):
|
||
|
"""Remove *o* from the stack."""
|
||
|
if o not in self._elements:
|
||
|
raise ValueError('Unknown element o')
|
||
|
old = self._elements[:]
|
||
|
self.clear()
|
||
|
for thiso in old:
|
||
|
if thiso != o:
|
||
|
self.push(thiso)
|
||
|
|
||
|
|
||
|
def report_memory(i=0): # argument may go away
|
||
|
"""Return the memory consumed by the process."""
|
||
|
def call(command, os_name):
|
||
|
try:
|
||
|
return subprocess.check_output(command)
|
||
|
except subprocess.CalledProcessError:
|
||
|
raise NotImplementedError(
|
||
|
"report_memory works on %s only if "
|
||
|
"the '%s' program is found" % (os_name, command[0])
|
||
|
)
|
||
|
|
||
|
pid = os.getpid()
|
||
|
if sys.platform == 'sunos5':
|
||
|
lines = call(['ps', '-p', '%d' % pid, '-o', 'osz'], 'Sun OS')
|
||
|
mem = int(lines[-1].strip())
|
||
|
elif sys.platform == 'linux':
|
||
|
lines = call(['ps', '-p', '%d' % pid, '-o', 'rss,sz'], 'Linux')
|
||
|
mem = int(lines[1].split()[1])
|
||
|
elif sys.platform == 'darwin':
|
||
|
lines = call(['ps', '-p', '%d' % pid, '-o', 'rss,vsz'], 'Mac OS')
|
||
|
mem = int(lines[1].split()[0])
|
||
|
elif sys.platform == 'win32':
|
||
|
lines = call(["tasklist", "/nh", "/fi", "pid eq %d" % pid], 'Windows')
|
||
|
mem = int(lines.strip().split()[-2].replace(',', ''))
|
||
|
else:
|
||
|
raise NotImplementedError(
|
||
|
"We don't have a memory monitor for %s" % sys.platform)
|
||
|
return mem
|
||
|
|
||
|
|
||
|
_safezip_msg = 'In safezip, len(args[0])=%d but len(args[%d])=%d'
|
||
|
|
||
|
|
||
|
@deprecated("3.1")
|
||
|
def safezip(*args):
|
||
|
"""make sure *args* are equal len before zipping"""
|
||
|
Nx = len(args[0])
|
||
|
for i, arg in enumerate(args[1:]):
|
||
|
if len(arg) != Nx:
|
||
|
raise ValueError(_safezip_msg % (Nx, i + 1, len(arg)))
|
||
|
return list(zip(*args))
|
||
|
|
||
|
|
||
|
def safe_masked_invalid(x, copy=False):
|
||
|
x = np.array(x, subok=True, copy=copy)
|
||
|
if not x.dtype.isnative:
|
||
|
# Note that the argument to `byteswap` is 'inplace',
|
||
|
# thus if we have already made a copy, do the byteswap in
|
||
|
# place, else make a copy with the byte order swapped.
|
||
|
# Be explicit that we are swapping the byte order of the dtype
|
||
|
x = x.byteswap(copy).newbyteorder('S')
|
||
|
|
||
|
try:
|
||
|
xm = np.ma.masked_invalid(x, copy=False)
|
||
|
xm.shrink_mask()
|
||
|
except TypeError:
|
||
|
return x
|
||
|
return xm
|
||
|
|
||
|
|
||
|
def print_cycles(objects, outstream=sys.stdout, show_progress=False):
|
||
|
"""
|
||
|
Print loops of cyclic references in the given *objects*.
|
||
|
|
||
|
It is often useful to pass in ``gc.garbage`` to find the cycles that are
|
||
|
preventing some objects from being garbage collected.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
objects
|
||
|
A list of objects to find cycles in.
|
||
|
outstream
|
||
|
The stream for output.
|
||
|
show_progress : bool
|
||
|
If True, print the number of objects reached as they are found.
|
||
|
"""
|
||
|
import gc
|
||
|
|
||
|
def print_path(path):
|
||
|
for i, step in enumerate(path):
|
||
|
# next "wraps around"
|
||
|
next = path[(i + 1) % len(path)]
|
||
|
|
||
|
outstream.write(" %s -- " % type(step))
|
||
|
if isinstance(step, dict):
|
||
|
for key, val in step.items():
|
||
|
if val is next:
|
||
|
outstream.write("[{!r}]".format(key))
|
||
|
break
|
||
|
if key is next:
|
||
|
outstream.write("[key] = {!r}".format(val))
|
||
|
break
|
||
|
elif isinstance(step, list):
|
||
|
outstream.write("[%d]" % step.index(next))
|
||
|
elif isinstance(step, tuple):
|
||
|
outstream.write("( tuple )")
|
||
|
else:
|
||
|
outstream.write(repr(step))
|
||
|
outstream.write(" ->\n")
|
||
|
outstream.write("\n")
|
||
|
|
||
|
def recurse(obj, start, all, current_path):
|
||
|
if show_progress:
|
||
|
outstream.write("%d\r" % len(all))
|
||
|
|
||
|
all[id(obj)] = None
|
||
|
|
||
|
referents = gc.get_referents(obj)
|
||
|
for referent in referents:
|
||
|
# If we've found our way back to the start, this is
|
||
|
# a cycle, so print it out
|
||
|
if referent is start:
|
||
|
print_path(current_path)
|
||
|
|
||
|
# Don't go back through the original list of objects, or
|
||
|
# through temporary references to the object, since those
|
||
|
# are just an artifact of the cycle detector itself.
|
||
|
elif referent is objects or isinstance(referent, types.FrameType):
|
||
|
continue
|
||
|
|
||
|
# We haven't seen this object before, so recurse
|
||
|
elif id(referent) not in all:
|
||
|
recurse(referent, start, all, current_path + [obj])
|
||
|
|
||
|
for obj in objects:
|
||
|
outstream.write(f"Examining: {obj!r}\n")
|
||
|
recurse(obj, obj, {}, [])
|
||
|
|
||
|
|
||
|
class Grouper:
|
||
|
"""
|
||
|
This class provides a lightweight way to group arbitrary objects
|
||
|
together into disjoint sets when a full-blown graph data structure
|
||
|
would be overkill.
|
||
|
|
||
|
Objects can be joined using :meth:`join`, tested for connectedness
|
||
|
using :meth:`joined`, and all disjoint sets can be retrieved by
|
||
|
using the object as an iterator.
|
||
|
|
||
|
The objects being joined must be hashable and weak-referenceable.
|
||
|
|
||
|
For example:
|
||
|
|
||
|
>>> from matplotlib.cbook import Grouper
|
||
|
>>> class Foo:
|
||
|
... def __init__(self, s):
|
||
|
... self.s = s
|
||
|
... def __repr__(self):
|
||
|
... return self.s
|
||
|
...
|
||
|
>>> a, b, c, d, e, f = [Foo(x) for x in 'abcdef']
|
||
|
>>> grp = Grouper()
|
||
|
>>> grp.join(a, b)
|
||
|
>>> grp.join(b, c)
|
||
|
>>> grp.join(d, e)
|
||
|
>>> sorted(map(tuple, grp))
|
||
|
[(a, b, c), (d, e)]
|
||
|
>>> grp.joined(a, b)
|
||
|
True
|
||
|
>>> grp.joined(a, c)
|
||
|
True
|
||
|
>>> grp.joined(a, d)
|
||
|
False
|
||
|
|
||
|
"""
|
||
|
def __init__(self, init=()):
|
||
|
self._mapping = {weakref.ref(x): [weakref.ref(x)] for x in init}
|
||
|
|
||
|
def __contains__(self, item):
|
||
|
return weakref.ref(item) in self._mapping
|
||
|
|
||
|
def clean(self):
|
||
|
"""Clean dead weak references from the dictionary."""
|
||
|
mapping = self._mapping
|
||
|
to_drop = [key for key in mapping if key() is None]
|
||
|
for key in to_drop:
|
||
|
val = mapping.pop(key)
|
||
|
val.remove(key)
|
||
|
|
||
|
def join(self, a, *args):
|
||
|
"""
|
||
|
Join given arguments into the same set. Accepts one or more arguments.
|
||
|
"""
|
||
|
mapping = self._mapping
|
||
|
set_a = mapping.setdefault(weakref.ref(a), [weakref.ref(a)])
|
||
|
|
||
|
for arg in args:
|
||
|
set_b = mapping.get(weakref.ref(arg), [weakref.ref(arg)])
|
||
|
if set_b is not set_a:
|
||
|
if len(set_b) > len(set_a):
|
||
|
set_a, set_b = set_b, set_a
|
||
|
set_a.extend(set_b)
|
||
|
for elem in set_b:
|
||
|
mapping[elem] = set_a
|
||
|
|
||
|
self.clean()
|
||
|
|
||
|
def joined(self, a, b):
|
||
|
"""Return whether *a* and *b* are members of the same set."""
|
||
|
self.clean()
|
||
|
return (self._mapping.get(weakref.ref(a), object())
|
||
|
is self._mapping.get(weakref.ref(b)))
|
||
|
|
||
|
def remove(self, a):
|
||
|
self.clean()
|
||
|
set_a = self._mapping.pop(weakref.ref(a), None)
|
||
|
if set_a:
|
||
|
set_a.remove(weakref.ref(a))
|
||
|
|
||
|
def __iter__(self):
|
||
|
"""
|
||
|
Iterate over each of the disjoint sets as a list.
|
||
|
|
||
|
The iterator is invalid if interleaved with calls to join().
|
||
|
"""
|
||
|
self.clean()
|
||
|
unique_groups = {id(group): group for group in self._mapping.values()}
|
||
|
for group in unique_groups.values():
|
||
|
yield [x() for x in group]
|
||
|
|
||
|
def get_siblings(self, a):
|
||
|
"""Return all of the items joined with *a*, including itself."""
|
||
|
self.clean()
|
||
|
siblings = self._mapping.get(weakref.ref(a), [weakref.ref(a)])
|
||
|
return [x() for x in siblings]
|
||
|
|
||
|
|
||
|
def simple_linear_interpolation(a, steps):
|
||
|
"""
|
||
|
Resample an array with ``steps - 1`` points between original point pairs.
|
||
|
|
||
|
Along each column of *a*, ``(steps - 1)`` points are introduced between
|
||
|
each original values; the values are linearly interpolated.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
a : array, shape (n, ...)
|
||
|
steps : int
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
array
|
||
|
shape ``((n - 1) * steps + 1, ...)``
|
||
|
"""
|
||
|
fps = a.reshape((len(a), -1))
|
||
|
xp = np.arange(len(a)) * steps
|
||
|
x = np.arange((len(a) - 1) * steps + 1)
|
||
|
return (np.column_stack([np.interp(x, xp, fp) for fp in fps.T])
|
||
|
.reshape((len(x),) + a.shape[1:]))
|
||
|
|
||
|
|
||
|
def delete_masked_points(*args):
|
||
|
"""
|
||
|
Find all masked and/or non-finite points in a set of arguments,
|
||
|
and return the arguments with only the unmasked points remaining.
|
||
|
|
||
|
Arguments can be in any of 5 categories:
|
||
|
|
||
|
1) 1-D masked arrays
|
||
|
2) 1-D ndarrays
|
||
|
3) ndarrays with more than one dimension
|
||
|
4) other non-string iterables
|
||
|
5) anything else
|
||
|
|
||
|
The first argument must be in one of the first four categories;
|
||
|
any argument with a length differing from that of the first
|
||
|
argument (and hence anything in category 5) then will be
|
||
|
passed through unchanged.
|
||
|
|
||
|
Masks are obtained from all arguments of the correct length
|
||
|
in categories 1, 2, and 4; a point is bad if masked in a masked
|
||
|
array or if it is a nan or inf. No attempt is made to
|
||
|
extract a mask from categories 2, 3, and 4 if :meth:`np.isfinite`
|
||
|
does not yield a Boolean array.
|
||
|
|
||
|
All input arguments that are not passed unchanged are returned
|
||
|
as ndarrays after removing the points or rows corresponding to
|
||
|
masks in any of the arguments.
|
||
|
|
||
|
A vastly simpler version of this function was originally
|
||
|
written as a helper for Axes.scatter().
|
||
|
|
||
|
"""
|
||
|
if not len(args):
|
||
|
return ()
|
||
|
if is_scalar_or_string(args[0]):
|
||
|
raise ValueError("First argument must be a sequence")
|
||
|
nrecs = len(args[0])
|
||
|
margs = []
|
||
|
seqlist = [False] * len(args)
|
||
|
for i, x in enumerate(args):
|
||
|
if not isinstance(x, str) and np.iterable(x) and len(x) == nrecs:
|
||
|
seqlist[i] = True
|
||
|
if isinstance(x, np.ma.MaskedArray):
|
||
|
if x.ndim > 1:
|
||
|
raise ValueError("Masked arrays must be 1-D")
|
||
|
else:
|
||
|
x = np.asarray(x)
|
||
|
margs.append(x)
|
||
|
masks = [] # list of masks that are True where good
|
||
|
for i, x in enumerate(margs):
|
||
|
if seqlist[i]:
|
||
|
if x.ndim > 1:
|
||
|
continue # Don't try to get nan locations unless 1-D.
|
||
|
if isinstance(x, np.ma.MaskedArray):
|
||
|
masks.append(~np.ma.getmaskarray(x)) # invert the mask
|
||
|
xd = x.data
|
||
|
else:
|
||
|
xd = x
|
||
|
try:
|
||
|
mask = np.isfinite(xd)
|
||
|
if isinstance(mask, np.ndarray):
|
||
|
masks.append(mask)
|
||
|
except Exception: # Fixme: put in tuple of possible exceptions?
|
||
|
pass
|
||
|
if len(masks):
|
||
|
mask = np.logical_and.reduce(masks)
|
||
|
igood = mask.nonzero()[0]
|
||
|
if len(igood) < nrecs:
|
||
|
for i, x in enumerate(margs):
|
||
|
if seqlist[i]:
|
||
|
margs[i] = x[igood]
|
||
|
for i, x in enumerate(margs):
|
||
|
if seqlist[i] and isinstance(x, np.ma.MaskedArray):
|
||
|
margs[i] = x.filled()
|
||
|
return margs
|
||
|
|
||
|
|
||
|
def _combine_masks(*args):
|
||
|
"""
|
||
|
Find all masked and/or non-finite points in a set of arguments,
|
||
|
and return the arguments as masked arrays with a common mask.
|
||
|
|
||
|
Arguments can be in any of 5 categories:
|
||
|
|
||
|
1) 1-D masked arrays
|
||
|
2) 1-D ndarrays
|
||
|
3) ndarrays with more than one dimension
|
||
|
4) other non-string iterables
|
||
|
5) anything else
|
||
|
|
||
|
The first argument must be in one of the first four categories;
|
||
|
any argument with a length differing from that of the first
|
||
|
argument (and hence anything in category 5) then will be
|
||
|
passed through unchanged.
|
||
|
|
||
|
Masks are obtained from all arguments of the correct length
|
||
|
in categories 1, 2, and 4; a point is bad if masked in a masked
|
||
|
array or if it is a nan or inf. No attempt is made to
|
||
|
extract a mask from categories 2 and 4 if :meth:`np.isfinite`
|
||
|
does not yield a Boolean array. Category 3 is included to
|
||
|
support RGB or RGBA ndarrays, which are assumed to have only
|
||
|
valid values and which are passed through unchanged.
|
||
|
|
||
|
All input arguments that are not passed unchanged are returned
|
||
|
as masked arrays if any masked points are found, otherwise as
|
||
|
ndarrays.
|
||
|
|
||
|
"""
|
||
|
if not len(args):
|
||
|
return ()
|
||
|
if is_scalar_or_string(args[0]):
|
||
|
raise ValueError("First argument must be a sequence")
|
||
|
nrecs = len(args[0])
|
||
|
margs = [] # Output args; some may be modified.
|
||
|
seqlist = [False] * len(args) # Flags: True if output will be masked.
|
||
|
masks = [] # List of masks.
|
||
|
for i, x in enumerate(args):
|
||
|
if is_scalar_or_string(x) or len(x) != nrecs:
|
||
|
margs.append(x) # Leave it unmodified.
|
||
|
else:
|
||
|
if isinstance(x, np.ma.MaskedArray) and x.ndim > 1:
|
||
|
raise ValueError("Masked arrays must be 1-D")
|
||
|
x = np.asanyarray(x)
|
||
|
if x.ndim == 1:
|
||
|
x = safe_masked_invalid(x)
|
||
|
seqlist[i] = True
|
||
|
if np.ma.is_masked(x):
|
||
|
masks.append(np.ma.getmaskarray(x))
|
||
|
margs.append(x) # Possibly modified.
|
||
|
if len(masks):
|
||
|
mask = np.logical_or.reduce(masks)
|
||
|
for i, x in enumerate(margs):
|
||
|
if seqlist[i]:
|
||
|
margs[i] = np.ma.array(x, mask=mask)
|
||
|
return margs
|
||
|
|
||
|
|
||
|
def boxplot_stats(X, whis=1.5, bootstrap=None, labels=None,
|
||
|
autorange=False):
|
||
|
r"""
|
||
|
Returns list of dictionaries of statistics used to draw a series
|
||
|
of box and whisker plots. The `Returns` section enumerates the
|
||
|
required keys of the dictionary. Users can skip this function and
|
||
|
pass a user-defined set of dictionaries to the new `axes.bxp` method
|
||
|
instead of relying on Matplotlib to do the calculations.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
X : array-like
|
||
|
Data that will be represented in the boxplots. Should have 2 or
|
||
|
fewer dimensions.
|
||
|
|
||
|
whis : float or (float, float) (default = 1.5)
|
||
|
The position of the whiskers.
|
||
|
|
||
|
If a float, the lower whisker is at the lowest datum above
|
||
|
``Q1 - whis*(Q3-Q1)``, and the upper whisker at the highest datum below
|
||
|
``Q3 + whis*(Q3-Q1)``, where Q1 and Q3 are the first and third
|
||
|
quartiles. The default value of ``whis = 1.5`` corresponds to Tukey's
|
||
|
original definition of boxplots.
|
||
|
|
||
|
If a pair of floats, they indicate the percentiles at which to draw the
|
||
|
whiskers (e.g., (5, 95)). In particular, setting this to (0, 100)
|
||
|
results in whiskers covering the whole range of the data. "range" is
|
||
|
a deprecated synonym for (0, 100).
|
||
|
|
||
|
In the edge case where ``Q1 == Q3``, *whis* is automatically set to
|
||
|
(0, 100) (cover the whole range of the data) if *autorange* is True.
|
||
|
|
||
|
Beyond the whiskers, data are considered outliers and are plotted as
|
||
|
individual points.
|
||
|
|
||
|
bootstrap : int, optional
|
||
|
Number of times the confidence intervals around the median
|
||
|
should be bootstrapped (percentile method).
|
||
|
|
||
|
labels : array-like, optional
|
||
|
Labels for each dataset. Length must be compatible with
|
||
|
dimensions of *X*.
|
||
|
|
||
|
autorange : bool, optional (False)
|
||
|
When `True` and the data are distributed such that the 25th and 75th
|
||
|
percentiles are equal, ``whis`` is set to (0, 100) such that the
|
||
|
whisker ends are at the minimum and maximum of the data.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
bxpstats : list of dict
|
||
|
A list of dictionaries containing the results for each column
|
||
|
of data. Keys of each dictionary are the following:
|
||
|
|
||
|
======== ===================================
|
||
|
Key Value Description
|
||
|
======== ===================================
|
||
|
label tick label for the boxplot
|
||
|
mean arithmetic mean value
|
||
|
med 50th percentile
|
||
|
q1 first quartile (25th percentile)
|
||
|
q3 third quartile (75th percentile)
|
||
|
cilo lower notch around the median
|
||
|
cihi upper notch around the median
|
||
|
whislo end of the lower whisker
|
||
|
whishi end of the upper whisker
|
||
|
fliers outliers
|
||
|
======== ===================================
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
Non-bootstrapping approach to confidence interval uses Gaussian-
|
||
|
based asymptotic approximation:
|
||
|
|
||
|
.. math::
|
||
|
|
||
|
\mathrm{med} \pm 1.57 \times \frac{\mathrm{iqr}}{\sqrt{N}}
|
||
|
|
||
|
General approach from:
|
||
|
McGill, R., Tukey, J.W., and Larsen, W.A. (1978) "Variations of
|
||
|
Boxplots", The American Statistician, 32:12-16.
|
||
|
|
||
|
"""
|
||
|
|
||
|
def _bootstrap_median(data, N=5000):
|
||
|
# determine 95% confidence intervals of the median
|
||
|
M = len(data)
|
||
|
percentiles = [2.5, 97.5]
|
||
|
|
||
|
bs_index = np.random.randint(M, size=(N, M))
|
||
|
bsData = data[bs_index]
|
||
|
estimate = np.median(bsData, axis=1, overwrite_input=True)
|
||
|
|
||
|
CI = np.percentile(estimate, percentiles)
|
||
|
return CI
|
||
|
|
||
|
def _compute_conf_interval(data, med, iqr, bootstrap):
|
||
|
if bootstrap is not None:
|
||
|
# Do a bootstrap estimate of notch locations.
|
||
|
# get conf. intervals around median
|
||
|
CI = _bootstrap_median(data, N=bootstrap)
|
||
|
notch_min = CI[0]
|
||
|
notch_max = CI[1]
|
||
|
else:
|
||
|
|
||
|
N = len(data)
|
||
|
notch_min = med - 1.57 * iqr / np.sqrt(N)
|
||
|
notch_max = med + 1.57 * iqr / np.sqrt(N)
|
||
|
|
||
|
return notch_min, notch_max
|
||
|
|
||
|
# output is a list of dicts
|
||
|
bxpstats = []
|
||
|
|
||
|
# convert X to a list of lists
|
||
|
X = _reshape_2D(X, "X")
|
||
|
|
||
|
ncols = len(X)
|
||
|
if labels is None:
|
||
|
labels = itertools.repeat(None)
|
||
|
elif len(labels) != ncols:
|
||
|
raise ValueError("Dimensions of labels and X must be compatible")
|
||
|
|
||
|
input_whis = whis
|
||
|
for ii, (x, label) in enumerate(zip(X, labels)):
|
||
|
|
||
|
# empty dict
|
||
|
stats = {}
|
||
|
if label is not None:
|
||
|
stats['label'] = label
|
||
|
|
||
|
# restore whis to the input values in case it got changed in the loop
|
||
|
whis = input_whis
|
||
|
|
||
|
# note tricksiness, append up here and then mutate below
|
||
|
bxpstats.append(stats)
|
||
|
|
||
|
# if empty, bail
|
||
|
if len(x) == 0:
|
||
|
stats['fliers'] = np.array([])
|
||
|
stats['mean'] = np.nan
|
||
|
stats['med'] = np.nan
|
||
|
stats['q1'] = np.nan
|
||
|
stats['q3'] = np.nan
|
||
|
stats['cilo'] = np.nan
|
||
|
stats['cihi'] = np.nan
|
||
|
stats['whislo'] = np.nan
|
||
|
stats['whishi'] = np.nan
|
||
|
stats['med'] = np.nan
|
||
|
continue
|
||
|
|
||
|
# up-convert to an array, just to be safe
|
||
|
x = np.asarray(x)
|
||
|
|
||
|
# arithmetic mean
|
||
|
stats['mean'] = np.mean(x)
|
||
|
|
||
|
# medians and quartiles
|
||
|
q1, med, q3 = np.percentile(x, [25, 50, 75])
|
||
|
|
||
|
# interquartile range
|
||
|
stats['iqr'] = q3 - q1
|
||
|
if stats['iqr'] == 0 and autorange:
|
||
|
whis = (0, 100)
|
||
|
|
||
|
# conf. interval around median
|
||
|
stats['cilo'], stats['cihi'] = _compute_conf_interval(
|
||
|
x, med, stats['iqr'], bootstrap
|
||
|
)
|
||
|
|
||
|
# lowest/highest non-outliers
|
||
|
if np.isscalar(whis):
|
||
|
if np.isreal(whis):
|
||
|
loval = q1 - whis * stats['iqr']
|
||
|
hival = q3 + whis * stats['iqr']
|
||
|
elif whis in ['range', 'limit', 'limits', 'min/max']:
|
||
|
warn_deprecated(
|
||
|
"3.2", message=f"Setting whis to {whis!r} is deprecated "
|
||
|
"since %(since)s and support for it will be removed "
|
||
|
"%(removal)s; set it to [0, 100] to achieve the same "
|
||
|
"effect.")
|
||
|
loval = np.min(x)
|
||
|
hival = np.max(x)
|
||
|
else:
|
||
|
raise ValueError('whis must be a float or list of percentiles')
|
||
|
else:
|
||
|
loval, hival = np.percentile(x, whis)
|
||
|
|
||
|
# get high extreme
|
||
|
wiskhi = x[x <= hival]
|
||
|
if len(wiskhi) == 0 or np.max(wiskhi) < q3:
|
||
|
stats['whishi'] = q3
|
||
|
else:
|
||
|
stats['whishi'] = np.max(wiskhi)
|
||
|
|
||
|
# get low extreme
|
||
|
wisklo = x[x >= loval]
|
||
|
if len(wisklo) == 0 or np.min(wisklo) > q1:
|
||
|
stats['whislo'] = q1
|
||
|
else:
|
||
|
stats['whislo'] = np.min(wisklo)
|
||
|
|
||
|
# compute a single array of outliers
|
||
|
stats['fliers'] = np.hstack([
|
||
|
x[x < stats['whislo']],
|
||
|
x[x > stats['whishi']],
|
||
|
])
|
||
|
|
||
|
# add in the remaining stats
|
||
|
stats['q1'], stats['med'], stats['q3'] = q1, med, q3
|
||
|
|
||
|
return bxpstats
|
||
|
|
||
|
|
||
|
# The ls_mapper maps short codes for line style to their full name used by
|
||
|
# backends; the reverse mapper is for mapping full names to short ones.
|
||
|
ls_mapper = {'-': 'solid', '--': 'dashed', '-.': 'dashdot', ':': 'dotted'}
|
||
|
ls_mapper_r = {v: k for k, v in ls_mapper.items()}
|
||
|
|
||
|
|
||
|
def contiguous_regions(mask):
|
||
|
"""
|
||
|
Return a list of (ind0, ind1) such that ``mask[ind0:ind1].all()`` is
|
||
|
True and we cover all such regions.
|
||
|
"""
|
||
|
mask = np.asarray(mask, dtype=bool)
|
||
|
|
||
|
if not mask.size:
|
||
|
return []
|
||
|
|
||
|
# Find the indices of region changes, and correct offset
|
||
|
idx, = np.nonzero(mask[:-1] != mask[1:])
|
||
|
idx += 1
|
||
|
|
||
|
# List operations are faster for moderately sized arrays
|
||
|
idx = idx.tolist()
|
||
|
|
||
|
# Add first and/or last index if needed
|
||
|
if mask[0]:
|
||
|
idx = [0] + idx
|
||
|
if mask[-1]:
|
||
|
idx.append(len(mask))
|
||
|
|
||
|
return list(zip(idx[::2], idx[1::2]))
|
||
|
|
||
|
|
||
|
def is_math_text(s):
|
||
|
"""
|
||
|
Returns whether the string *s* contains math expressions.
|
||
|
|
||
|
This is done by checking whether *s* contains an even number of
|
||
|
non-escaped dollar signs.
|
||
|
"""
|
||
|
s = str(s)
|
||
|
dollar_count = s.count(r'$') - s.count(r'\$')
|
||
|
even_dollars = (dollar_count > 0 and dollar_count % 2 == 0)
|
||
|
return even_dollars
|
||
|
|
||
|
|
||
|
def _to_unmasked_float_array(x):
|
||
|
"""
|
||
|
Convert a sequence to a float array; if input was a masked array, masked
|
||
|
values are converted to nans.
|
||
|
"""
|
||
|
if hasattr(x, 'mask'):
|
||
|
return np.ma.asarray(x, float).filled(np.nan)
|
||
|
else:
|
||
|
return np.asarray(x, float)
|
||
|
|
||
|
|
||
|
def _check_1d(x):
|
||
|
'''
|
||
|
Converts a sequence of less than 1 dimension, to an array of 1
|
||
|
dimension; leaves everything else untouched.
|
||
|
'''
|
||
|
if not hasattr(x, 'shape') or len(x.shape) < 1:
|
||
|
return np.atleast_1d(x)
|
||
|
else:
|
||
|
try:
|
||
|
# work around
|
||
|
# https://github.com/pandas-dev/pandas/issues/27775 which
|
||
|
# means the shape of multi-dimensional slicing is not as
|
||
|
# expected. That this ever worked was an unintentional
|
||
|
# quirk of pandas and will raise an exception in the
|
||
|
# future. This slicing warns in pandas >= 1.0rc0 via
|
||
|
# https://github.com/pandas-dev/pandas/pull/30588
|
||
|
#
|
||
|
# < 1.0rc0 : x[:, None].ndim == 1, no warning, custom type
|
||
|
# >= 1.0rc1 : x[:, None].ndim == 2, warns, numpy array
|
||
|
# future : x[:, None] -> raises
|
||
|
#
|
||
|
# This code should correctly identify and coerce to a
|
||
|
# numpy array all pandas versions.
|
||
|
with warnings.catch_warnings(record=True) as w:
|
||
|
warnings.filterwarnings(
|
||
|
"always",
|
||
|
category=DeprecationWarning,
|
||
|
message='Support for multi-dimensional indexing')
|
||
|
|
||
|
ndim = x[:, None].ndim
|
||
|
# we have definitely hit a pandas index or series object
|
||
|
# cast to a numpy array.
|
||
|
if len(w) > 0:
|
||
|
return np.asanyarray(x)
|
||
|
# We have likely hit a pandas object, or at least
|
||
|
# something where 2D slicing does not result in a 2D
|
||
|
# object.
|
||
|
if ndim < 2:
|
||
|
return np.atleast_1d(x)
|
||
|
return x
|
||
|
except (IndexError, TypeError):
|
||
|
return np.atleast_1d(x)
|
||
|
|
||
|
|
||
|
def _reshape_2D(X, name):
|
||
|
"""
|
||
|
Use Fortran ordering to convert ndarrays and lists of iterables to lists of
|
||
|
1D arrays.
|
||
|
|
||
|
Lists of iterables are converted by applying `np.asarray` to each of their
|
||
|
elements. 1D ndarrays are returned in a singleton list containing them.
|
||
|
2D ndarrays are converted to the list of their *columns*.
|
||
|
|
||
|
*name* is used to generate the error message for invalid inputs.
|
||
|
"""
|
||
|
# Iterate over columns for ndarrays, over rows otherwise.
|
||
|
X = np.atleast_1d(X.T if isinstance(X, np.ndarray) else np.asarray(X))
|
||
|
if len(X) == 0:
|
||
|
return [[]]
|
||
|
elif X.ndim == 1 and np.ndim(X[0]) == 0:
|
||
|
# 1D array of scalars: directly return it.
|
||
|
return [X]
|
||
|
elif X.ndim in [1, 2]:
|
||
|
# 2D array, or 1D array of iterables: flatten them first.
|
||
|
return [np.reshape(x, -1) for x in X]
|
||
|
else:
|
||
|
raise ValueError("{} must have 2 or fewer dimensions".format(name))
|
||
|
|
||
|
|
||
|
def violin_stats(X, method, points=100, quantiles=None):
|
||
|
"""
|
||
|
Returns a list of dictionaries of data which can be used to draw a series
|
||
|
of violin plots.
|
||
|
|
||
|
See the Returns section below to view the required keys of the dictionary.
|
||
|
|
||
|
Users can skip this function and pass a user-defined set of dictionaries
|
||
|
with the same keys to `~.axes.Axes.violinplot` instead of using Matplotlib
|
||
|
to do the calculations. See the *Returns* section below for the keys
|
||
|
that must be present in the dictionaries.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
X : array-like
|
||
|
Sample data that will be used to produce the gaussian kernel density
|
||
|
estimates. Must have 2 or fewer dimensions.
|
||
|
|
||
|
method : callable
|
||
|
The method used to calculate the kernel density estimate for each
|
||
|
column of data. When called via `method(v, coords)`, it should
|
||
|
return a vector of the values of the KDE evaluated at the values
|
||
|
specified in coords.
|
||
|
|
||
|
points : int, default = 100
|
||
|
Defines the number of points to evaluate each of the gaussian kernel
|
||
|
density estimates at.
|
||
|
|
||
|
quantiles : array-like, default = None
|
||
|
Defines (if not None) a list of floats in interval [0, 1] for each
|
||
|
column of data, which represents the quantiles that will be rendered
|
||
|
for that column of data. Must have 2 or fewer dimensions. 1D array will
|
||
|
be treated as a singleton list containing them.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
vpstats : list of dict
|
||
|
A list of dictionaries containing the results for each column of data.
|
||
|
The dictionaries contain at least the following:
|
||
|
|
||
|
- coords: A list of scalars containing the coordinates this particular
|
||
|
kernel density estimate was evaluated at.
|
||
|
- vals: A list of scalars containing the values of the kernel density
|
||
|
estimate at each of the coordinates given in `coords`.
|
||
|
- mean: The mean value for this column of data.
|
||
|
- median: The median value for this column of data.
|
||
|
- min: The minimum value for this column of data.
|
||
|
- max: The maximum value for this column of data.
|
||
|
- quantiles: The quantile values for this column of data.
|
||
|
"""
|
||
|
|
||
|
# List of dictionaries describing each of the violins.
|
||
|
vpstats = []
|
||
|
|
||
|
# Want X to be a list of data sequences
|
||
|
X = _reshape_2D(X, "X")
|
||
|
|
||
|
# Want quantiles to be as the same shape as data sequences
|
||
|
if quantiles is not None and len(quantiles) != 0:
|
||
|
quantiles = _reshape_2D(quantiles, "quantiles")
|
||
|
# Else, mock quantiles if is none or empty
|
||
|
else:
|
||
|
quantiles = [[]] * np.shape(X)[0]
|
||
|
|
||
|
# quantiles should has the same size as dataset
|
||
|
if np.shape(X)[:1] != np.shape(quantiles)[:1]:
|
||
|
raise ValueError("List of violinplot statistics and quantiles values"
|
||
|
" must have the same length")
|
||
|
|
||
|
# Zip x and quantiles
|
||
|
for (x, q) in zip(X, quantiles):
|
||
|
# Dictionary of results for this distribution
|
||
|
stats = {}
|
||
|
|
||
|
# Calculate basic stats for the distribution
|
||
|
min_val = np.min(x)
|
||
|
max_val = np.max(x)
|
||
|
quantile_val = np.percentile(x, 100 * q)
|
||
|
|
||
|
# Evaluate the kernel density estimate
|
||
|
coords = np.linspace(min_val, max_val, points)
|
||
|
stats['vals'] = method(x, coords)
|
||
|
stats['coords'] = coords
|
||
|
|
||
|
# Store additional statistics for this distribution
|
||
|
stats['mean'] = np.mean(x)
|
||
|
stats['median'] = np.median(x)
|
||
|
stats['min'] = min_val
|
||
|
stats['max'] = max_val
|
||
|
stats['quantiles'] = np.atleast_1d(quantile_val)
|
||
|
|
||
|
# Append to output
|
||
|
vpstats.append(stats)
|
||
|
|
||
|
return vpstats
|
||
|
|
||
|
|
||
|
def pts_to_prestep(x, *args):
|
||
|
"""
|
||
|
Convert continuous line to pre-steps.
|
||
|
|
||
|
Given a set of ``N`` points, convert to ``2N - 1`` points, which when
|
||
|
connected linearly give a step function which changes values at the
|
||
|
beginning of the intervals.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
x : array
|
||
|
The x location of the steps. May be empty.
|
||
|
|
||
|
y1, ..., yp : array
|
||
|
y arrays to be turned into steps; all must be the same length as ``x``.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
out : array
|
||
|
The x and y values converted to steps in the same order as the input;
|
||
|
can be unpacked as ``x_out, y1_out, ..., yp_out``. If the input is
|
||
|
length ``N``, each of these arrays will be length ``2N + 1``. For
|
||
|
``N=0``, the length will be 0.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> x_s, y1_s, y2_s = pts_to_prestep(x, y1, y2)
|
||
|
"""
|
||
|
steps = np.zeros((1 + len(args), max(2 * len(x) - 1, 0)))
|
||
|
# In all `pts_to_*step` functions, only assign once using *x* and *args*,
|
||
|
# as converting to an array may be expensive.
|
||
|
steps[0, 0::2] = x
|
||
|
steps[0, 1::2] = steps[0, 0:-2:2]
|
||
|
steps[1:, 0::2] = args
|
||
|
steps[1:, 1::2] = steps[1:, 2::2]
|
||
|
return steps
|
||
|
|
||
|
|
||
|
def pts_to_poststep(x, *args):
|
||
|
"""
|
||
|
Convert continuous line to post-steps.
|
||
|
|
||
|
Given a set of ``N`` points convert to ``2N + 1`` points, which when
|
||
|
connected linearly give a step function which changes values at the end of
|
||
|
the intervals.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
x : array
|
||
|
The x location of the steps. May be empty.
|
||
|
|
||
|
y1, ..., yp : array
|
||
|
y arrays to be turned into steps; all must be the same length as ``x``.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
out : array
|
||
|
The x and y values converted to steps in the same order as the input;
|
||
|
can be unpacked as ``x_out, y1_out, ..., yp_out``. If the input is
|
||
|
length ``N``, each of these arrays will be length ``2N + 1``. For
|
||
|
``N=0``, the length will be 0.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> x_s, y1_s, y2_s = pts_to_poststep(x, y1, y2)
|
||
|
"""
|
||
|
steps = np.zeros((1 + len(args), max(2 * len(x) - 1, 0)))
|
||
|
steps[0, 0::2] = x
|
||
|
steps[0, 1::2] = steps[0, 2::2]
|
||
|
steps[1:, 0::2] = args
|
||
|
steps[1:, 1::2] = steps[1:, 0:-2:2]
|
||
|
return steps
|
||
|
|
||
|
|
||
|
def pts_to_midstep(x, *args):
|
||
|
"""
|
||
|
Convert continuous line to mid-steps.
|
||
|
|
||
|
Given a set of ``N`` points convert to ``2N`` points which when connected
|
||
|
linearly give a step function which changes values at the middle of the
|
||
|
intervals.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
x : array
|
||
|
The x location of the steps. May be empty.
|
||
|
|
||
|
y1, ..., yp : array
|
||
|
y arrays to be turned into steps; all must be the same length as
|
||
|
``x``.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
out : array
|
||
|
The x and y values converted to steps in the same order as the input;
|
||
|
can be unpacked as ``x_out, y1_out, ..., yp_out``. If the input is
|
||
|
length ``N``, each of these arrays will be length ``2N``.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> x_s, y1_s, y2_s = pts_to_midstep(x, y1, y2)
|
||
|
"""
|
||
|
steps = np.zeros((1 + len(args), 2 * len(x)))
|
||
|
x = np.asanyarray(x)
|
||
|
steps[0, 1:-1:2] = steps[0, 2::2] = (x[:-1] + x[1:]) / 2
|
||
|
steps[0, :1] = x[:1] # Also works for zero-sized input.
|
||
|
steps[0, -1:] = x[-1:]
|
||
|
steps[1:, 0::2] = args
|
||
|
steps[1:, 1::2] = steps[1:, 0::2]
|
||
|
return steps
|
||
|
|
||
|
|
||
|
STEP_LOOKUP_MAP = {'default': lambda x, y: (x, y),
|
||
|
'steps': pts_to_prestep,
|
||
|
'steps-pre': pts_to_prestep,
|
||
|
'steps-post': pts_to_poststep,
|
||
|
'steps-mid': pts_to_midstep}
|
||
|
|
||
|
|
||
|
def index_of(y):
|
||
|
"""
|
||
|
A helper function to create reasonable x values for the given *y*.
|
||
|
|
||
|
This is used for plotting (x, y) if x values are not explicitly given.
|
||
|
|
||
|
First try ``y.index`` (assuming *y* is a `pandas.Series`), if that
|
||
|
fails, use ``range(len(y))``.
|
||
|
|
||
|
This will be extended in the future to deal with more types of
|
||
|
labeled data.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
y : scalar or array-like
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
x, y : ndarray
|
||
|
The x and y values to plot.
|
||
|
"""
|
||
|
try:
|
||
|
return y.index.values, y.values
|
||
|
except AttributeError:
|
||
|
y = _check_1d(y)
|
||
|
return np.arange(y.shape[0], dtype=float), y
|
||
|
|
||
|
|
||
|
def safe_first_element(obj):
|
||
|
"""
|
||
|
Return the first element in *obj*.
|
||
|
|
||
|
This is an type-independent way of obtaining the first element, supporting
|
||
|
both index access and the iterator protocol.
|
||
|
"""
|
||
|
if isinstance(obj, collections.abc.Iterator):
|
||
|
# needed to accept `array.flat` as input.
|
||
|
# np.flatiter reports as an instance of collections.Iterator
|
||
|
# but can still be indexed via [].
|
||
|
# This has the side effect of re-setting the iterator, but
|
||
|
# that is acceptable.
|
||
|
try:
|
||
|
return obj[0]
|
||
|
except TypeError:
|
||
|
pass
|
||
|
raise RuntimeError("matplotlib does not support generators "
|
||
|
"as input")
|
||
|
return next(iter(obj))
|
||
|
|
||
|
|
||
|
def sanitize_sequence(data):
|
||
|
"""
|
||
|
Convert dictview objects to list. Other inputs are returned unchanged.
|
||
|
"""
|
||
|
return (list(data) if isinstance(data, collections.abc.MappingView)
|
||
|
else data)
|
||
|
|
||
|
|
||
|
def normalize_kwargs(kw, alias_mapping=None, required=(), forbidden=(),
|
||
|
allowed=None):
|
||
|
"""
|
||
|
Helper function to normalize kwarg inputs.
|
||
|
|
||
|
The order they are resolved are:
|
||
|
|
||
|
1. aliasing
|
||
|
2. required
|
||
|
3. forbidden
|
||
|
4. allowed
|
||
|
|
||
|
This order means that only the canonical names need appear in
|
||
|
*allowed*, *forbidden*, *required*.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
kw : dict
|
||
|
A dict of keyword arguments.
|
||
|
|
||
|
alias_mapping : dict or Artist subclass or Artist instance, optional
|
||
|
A mapping between a canonical name to a list of
|
||
|
aliases, in order of precedence from lowest to highest.
|
||
|
|
||
|
If the canonical value is not in the list it is assumed to have
|
||
|
the highest priority.
|
||
|
|
||
|
If an Artist subclass or instance is passed, use its properties alias
|
||
|
mapping.
|
||
|
|
||
|
required : list of str, optional
|
||
|
A list of keys that must be in *kws*.
|
||
|
|
||
|
forbidden : list of str, optional
|
||
|
A list of keys which may not be in *kw*.
|
||
|
|
||
|
allowed : list of str, optional
|
||
|
A list of allowed fields. If this not None, then raise if
|
||
|
*kw* contains any keys not in the union of *required*
|
||
|
and *allowed*. To allow only the required fields pass in
|
||
|
an empty tuple ``allowed=()``.
|
||
|
|
||
|
Raises
|
||
|
------
|
||
|
TypeError
|
||
|
To match what python raises if invalid args/kwargs are passed to
|
||
|
a callable.
|
||
|
"""
|
||
|
from matplotlib.artist import Artist
|
||
|
|
||
|
# deal with default value of alias_mapping
|
||
|
if alias_mapping is None:
|
||
|
alias_mapping = dict()
|
||
|
elif (isinstance(alias_mapping, type) and issubclass(alias_mapping, Artist)
|
||
|
or isinstance(alias_mapping, Artist)):
|
||
|
alias_mapping = getattr(alias_mapping, "_alias_map", {})
|
||
|
|
||
|
# make a local so we can pop
|
||
|
kw = dict(kw)
|
||
|
# output dictionary
|
||
|
ret = dict()
|
||
|
|
||
|
# hit all alias mappings
|
||
|
for canonical, alias_list in alias_mapping.items():
|
||
|
|
||
|
# the alias lists are ordered from lowest to highest priority
|
||
|
# so we know to use the last value in this list
|
||
|
tmp = []
|
||
|
seen = []
|
||
|
for a in alias_list:
|
||
|
try:
|
||
|
tmp.append(kw.pop(a))
|
||
|
seen.append(a)
|
||
|
except KeyError:
|
||
|
pass
|
||
|
# if canonical is not in the alias_list assume highest priority
|
||
|
if canonical not in alias_list:
|
||
|
try:
|
||
|
tmp.append(kw.pop(canonical))
|
||
|
seen.append(canonical)
|
||
|
except KeyError:
|
||
|
pass
|
||
|
# if we found anything in this set of aliases put it in the return
|
||
|
# dict
|
||
|
if tmp:
|
||
|
ret[canonical] = tmp[-1]
|
||
|
if len(tmp) > 1:
|
||
|
warn_deprecated(
|
||
|
"3.1", message=f"Saw kwargs {seen!r} which are all "
|
||
|
f"aliases for {canonical!r}. Kept value from "
|
||
|
f"{seen[-1]!r}. Passing multiple aliases for the same "
|
||
|
f"property will raise a TypeError %(removal)s.")
|
||
|
|
||
|
# at this point we know that all keys which are aliased are removed, update
|
||
|
# the return dictionary from the cleaned local copy of the input
|
||
|
ret.update(kw)
|
||
|
|
||
|
fail_keys = [k for k in required if k not in ret]
|
||
|
if fail_keys:
|
||
|
raise TypeError("The required keys {keys!r} "
|
||
|
"are not in kwargs".format(keys=fail_keys))
|
||
|
|
||
|
fail_keys = [k for k in forbidden if k in ret]
|
||
|
if fail_keys:
|
||
|
raise TypeError("The forbidden keys {keys!r} "
|
||
|
"are in kwargs".format(keys=fail_keys))
|
||
|
|
||
|
if allowed is not None:
|
||
|
allowed_set = {*required, *allowed}
|
||
|
fail_keys = [k for k in ret if k not in allowed_set]
|
||
|
if fail_keys:
|
||
|
raise TypeError(
|
||
|
"kwargs contains {keys!r} which are not in the required "
|
||
|
"{req!r} or allowed {allow!r} keys".format(
|
||
|
keys=fail_keys, req=required, allow=allowed))
|
||
|
|
||
|
return ret
|
||
|
|
||
|
|
||
|
@deprecated("3.1")
|
||
|
def get_label(y, default_name):
|
||
|
try:
|
||
|
return y.name
|
||
|
except AttributeError:
|
||
|
return default_name
|
||
|
|
||
|
|
||
|
_lockstr = """\
|
||
|
LOCKERROR: matplotlib is trying to acquire the lock
|
||
|
{!r}
|
||
|
and has failed. This maybe due to any other process holding this
|
||
|
lock. If you are sure no other matplotlib process is running try
|
||
|
removing these folders and trying again.
|
||
|
"""
|
||
|
|
||
|
|
||
|
@contextlib.contextmanager
|
||
|
def _lock_path(path):
|
||
|
"""
|
||
|
Context manager for locking a path.
|
||
|
|
||
|
Usage::
|
||
|
|
||
|
with _lock_path(path):
|
||
|
...
|
||
|
|
||
|
Another thread or process that attempts to lock the same path will wait
|
||
|
until this context manager is exited.
|
||
|
|
||
|
The lock is implemented by creating a temporary file in the parent
|
||
|
directory, so that directory must exist and be writable.
|
||
|
"""
|
||
|
path = Path(path)
|
||
|
lock_path = path.with_name(path.name + ".matplotlib-lock")
|
||
|
retries = 50
|
||
|
sleeptime = 0.1
|
||
|
for _ in range(retries):
|
||
|
try:
|
||
|
with lock_path.open("xb"):
|
||
|
break
|
||
|
except FileExistsError:
|
||
|
time.sleep(sleeptime)
|
||
|
else:
|
||
|
raise TimeoutError("""\
|
||
|
Lock error: Matplotlib failed to acquire the following lock file:
|
||
|
{}
|
||
|
This maybe due to another process holding this lock file. If you are sure no
|
||
|
other Matplotlib process is running, remove this file and try again.""".format(
|
||
|
lock_path))
|
||
|
try:
|
||
|
yield
|
||
|
finally:
|
||
|
lock_path.unlink()
|
||
|
|
||
|
|
||
|
def _topmost_artist(
|
||
|
artists,
|
||
|
_cached_max=functools.partial(max, key=operator.attrgetter("zorder"))):
|
||
|
"""Get the topmost artist of a list.
|
||
|
|
||
|
In case of a tie, return the *last* of the tied artists, as it will be
|
||
|
drawn on top of the others. `max` returns the first maximum in case of
|
||
|
ties, so we need to iterate over the list in reverse order.
|
||
|
"""
|
||
|
return _cached_max(reversed(artists))
|
||
|
|
||
|
|
||
|
def _str_equal(obj, s):
|
||
|
"""Return whether *obj* is a string equal to string *s*.
|
||
|
|
||
|
This helper solely exists to handle the case where *obj* is a numpy array,
|
||
|
because in such cases, a naive ``obj == s`` would yield an array, which
|
||
|
cannot be used in a boolean context.
|
||
|
"""
|
||
|
return isinstance(obj, str) and obj == s
|
||
|
|
||
|
|
||
|
def _str_lower_equal(obj, s):
|
||
|
"""Return whether *obj* is a string equal, when lowercased, to string *s*.
|
||
|
|
||
|
This helper solely exists to handle the case where *obj* is a numpy array,
|
||
|
because in such cases, a naive ``obj == s`` would yield an array, which
|
||
|
cannot be used in a boolean context.
|
||
|
"""
|
||
|
return isinstance(obj, str) and obj.lower() == s
|
||
|
|
||
|
|
||
|
def _define_aliases(alias_d, cls=None):
|
||
|
"""Class decorator for defining property aliases.
|
||
|
|
||
|
Use as ::
|
||
|
|
||
|
@cbook._define_aliases({"property": ["alias", ...], ...})
|
||
|
class C: ...
|
||
|
|
||
|
For each property, if the corresponding ``get_property`` is defined in the
|
||
|
class so far, an alias named ``get_alias`` will be defined; the same will
|
||
|
be done for setters. If neither the getter nor the setter exists, an
|
||
|
exception will be raised.
|
||
|
|
||
|
The alias map is stored as the ``_alias_map`` attribute on the class and
|
||
|
can be used by `~.normalize_kwargs` (which assumes that higher priority
|
||
|
aliases come last).
|
||
|
"""
|
||
|
if cls is None: # Return the actual class decorator.
|
||
|
return functools.partial(_define_aliases, alias_d)
|
||
|
|
||
|
def make_alias(name): # Enforce a closure over *name*.
|
||
|
@functools.wraps(getattr(cls, name))
|
||
|
def method(self, *args, **kwargs):
|
||
|
return getattr(self, name)(*args, **kwargs)
|
||
|
return method
|
||
|
|
||
|
for prop, aliases in alias_d.items():
|
||
|
exists = False
|
||
|
for prefix in ["get_", "set_"]:
|
||
|
if prefix + prop in vars(cls):
|
||
|
exists = True
|
||
|
for alias in aliases:
|
||
|
method = make_alias(prefix + prop)
|
||
|
method.__name__ = prefix + alias
|
||
|
method.__doc__ = "Alias for `{}`.".format(prefix + prop)
|
||
|
setattr(cls, prefix + alias, method)
|
||
|
if not exists:
|
||
|
raise ValueError(
|
||
|
"Neither getter nor setter exists for {!r}".format(prop))
|
||
|
|
||
|
if hasattr(cls, "_alias_map"):
|
||
|
# Need to decide on conflict resolution policy.
|
||
|
raise NotImplementedError("Parent class already defines aliases")
|
||
|
cls._alias_map = alias_d
|
||
|
return cls
|
||
|
|
||
|
|
||
|
def _array_perimeter(arr):
|
||
|
"""
|
||
|
Get the elements on the perimeter of ``arr``,
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
arr : ndarray, shape (M, N)
|
||
|
The input array
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
perimeter : ndarray, shape (2*(M - 1) + 2*(N - 1),)
|
||
|
The elements on the perimeter of the array::
|
||
|
|
||
|
[arr[0, 0], ..., arr[0, -1], ..., arr[-1, -1], ..., arr[-1, 0], ...]
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> i, j = np.ogrid[:3,:4]
|
||
|
>>> a = i*10 + j
|
||
|
>>> a
|
||
|
array([[ 0, 1, 2, 3],
|
||
|
[10, 11, 12, 13],
|
||
|
[20, 21, 22, 23]])
|
||
|
>>> _array_perimeter(a)
|
||
|
array([ 0, 1, 2, 3, 13, 23, 22, 21, 20, 10])
|
||
|
"""
|
||
|
# note we use Python's half-open ranges to avoid repeating
|
||
|
# the corners
|
||
|
forward = np.s_[0:-1] # [0 ... -1)
|
||
|
backward = np.s_[-1:0:-1] # [-1 ... 0)
|
||
|
return np.concatenate((
|
||
|
arr[0, forward],
|
||
|
arr[forward, -1],
|
||
|
arr[-1, backward],
|
||
|
arr[backward, 0],
|
||
|
))
|
||
|
|
||
|
|
||
|
@contextlib.contextmanager
|
||
|
def _setattr_cm(obj, **kwargs):
|
||
|
"""Temporarily set some attributes; restore original state at context exit.
|
||
|
"""
|
||
|
sentinel = object()
|
||
|
origs = [(attr, getattr(obj, attr, sentinel)) for attr in kwargs]
|
||
|
try:
|
||
|
for attr, val in kwargs.items():
|
||
|
setattr(obj, attr, val)
|
||
|
yield
|
||
|
finally:
|
||
|
for attr, orig in origs:
|
||
|
if orig is sentinel:
|
||
|
delattr(obj, attr)
|
||
|
else:
|
||
|
setattr(obj, attr, orig)
|
||
|
|
||
|
|
||
|
def _warn_external(message, category=None):
|
||
|
"""
|
||
|
`warnings.warn` wrapper that sets *stacklevel* to "outside Matplotlib".
|
||
|
|
||
|
The original emitter of the warning can be obtained by patching this
|
||
|
function back to `warnings.warn`, i.e. ``cbook._warn_external =
|
||
|
warnings.warn`` (or ``functools.partial(warnings.warn, stacklevel=2)``,
|
||
|
etc.).
|
||
|
"""
|
||
|
frame = sys._getframe()
|
||
|
for stacklevel in itertools.count(1): # lgtm[py/unused-loop-variable]
|
||
|
if frame is None:
|
||
|
# when called in embedded context may hit frame is None
|
||
|
break
|
||
|
if not re.match(r"\A(matplotlib|mpl_toolkits)(\Z|\.(?!tests\.))",
|
||
|
# Work around sphinx-gallery not setting __name__.
|
||
|
frame.f_globals.get("__name__", "")):
|
||
|
break
|
||
|
frame = frame.f_back
|
||
|
warnings.warn(message, category, stacklevel)
|
||
|
|
||
|
|
||
|
class _OrderedSet(collections.abc.MutableSet):
|
||
|
def __init__(self):
|
||
|
self._od = collections.OrderedDict()
|
||
|
|
||
|
def __contains__(self, key):
|
||
|
return key in self._od
|
||
|
|
||
|
def __iter__(self):
|
||
|
return iter(self._od)
|
||
|
|
||
|
def __len__(self):
|
||
|
return len(self._od)
|
||
|
|
||
|
def add(self, key):
|
||
|
self._od.pop(key, None)
|
||
|
self._od[key] = None
|
||
|
|
||
|
def discard(self, key):
|
||
|
self._od.pop(key, None)
|
||
|
|
||
|
|
||
|
# Agg's buffers are unmultiplied RGBA8888, which neither PyQt4 nor cairo
|
||
|
# support; however, both do support premultiplied ARGB32.
|
||
|
|
||
|
|
||
|
def _premultiplied_argb32_to_unmultiplied_rgba8888(buf):
|
||
|
"""
|
||
|
Convert a premultiplied ARGB32 buffer to an unmultiplied RGBA8888 buffer.
|
||
|
"""
|
||
|
rgba = np.take( # .take() ensures C-contiguity of the result.
|
||
|
buf,
|
||
|
[2, 1, 0, 3] if sys.byteorder == "little" else [1, 2, 3, 0], axis=2)
|
||
|
rgb = rgba[..., :-1]
|
||
|
alpha = rgba[..., -1]
|
||
|
# Un-premultiply alpha. The formula is the same as in cairo-png.c.
|
||
|
mask = alpha != 0
|
||
|
for channel in np.rollaxis(rgb, -1):
|
||
|
channel[mask] = (
|
||
|
(channel[mask].astype(int) * 255 + alpha[mask] // 2)
|
||
|
// alpha[mask])
|
||
|
return rgba
|
||
|
|
||
|
|
||
|
def _unmultiplied_rgba8888_to_premultiplied_argb32(rgba8888):
|
||
|
"""
|
||
|
Convert an unmultiplied RGBA8888 buffer to a premultiplied ARGB32 buffer.
|
||
|
"""
|
||
|
if sys.byteorder == "little":
|
||
|
argb32 = np.take(rgba8888, [2, 1, 0, 3], axis=2)
|
||
|
rgb24 = argb32[..., :-1]
|
||
|
alpha8 = argb32[..., -1:]
|
||
|
else:
|
||
|
argb32 = np.take(rgba8888, [3, 0, 1, 2], axis=2)
|
||
|
alpha8 = argb32[..., :1]
|
||
|
rgb24 = argb32[..., 1:]
|
||
|
# Only bother premultiplying when the alpha channel is not fully opaque,
|
||
|
# as the cost is not negligible. The unsafe cast is needed to do the
|
||
|
# multiplication in-place in an integer buffer.
|
||
|
if alpha8.min() != 0xff:
|
||
|
np.multiply(rgb24, alpha8 / 0xff, out=rgb24, casting="unsafe")
|
||
|
return argb32
|
||
|
|
||
|
|
||
|
def _pformat_subprocess(command):
|
||
|
"""Pretty-format a subprocess command for printing/logging purposes."""
|
||
|
return (command if isinstance(command, str)
|
||
|
else " ".join(shlex.quote(os.fspath(arg)) for arg in command))
|
||
|
|
||
|
|
||
|
def _check_and_log_subprocess(command, logger, **kwargs):
|
||
|
"""
|
||
|
Run *command*, returning its stdout output if it succeeds.
|
||
|
|
||
|
If it fails (exits with nonzero return code), raise an exception whose text
|
||
|
includes the failed command and captured stdout and stderr output.
|
||
|
|
||
|
Regardless of the return code, the command is logged at DEBUG level on
|
||
|
*logger*. In case of success, the output is likewise logged.
|
||
|
"""
|
||
|
logger.debug('%s', _pformat_subprocess(command))
|
||
|
proc = subprocess.run(
|
||
|
command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, **kwargs)
|
||
|
if proc.returncode:
|
||
|
raise RuntimeError(
|
||
|
f"The command\n"
|
||
|
f" {_pformat_subprocess(command)}\n"
|
||
|
f"failed and generated the following output:\n"
|
||
|
f"{proc.stdout.decode('utf-8')}\n"
|
||
|
f"and the following error:\n"
|
||
|
f"{proc.stderr.decode('utf-8')}")
|
||
|
logger.debug("stdout:\n%s", proc.stdout)
|
||
|
logger.debug("stderr:\n%s", proc.stderr)
|
||
|
return proc.stdout
|
||
|
|
||
|
|
||
|
# In the following _check_foo functions, the first parameter starts with an
|
||
|
# underscore because it is intended to be positional-only (e.g., so that
|
||
|
# `_check_isinstance([...], types=foo)` doesn't fail.
|
||
|
|
||
|
|
||
|
def _check_isinstance(_types, **kwargs):
|
||
|
"""
|
||
|
For each *key, value* pair in *kwargs*, check that *value* is an instance
|
||
|
of one of *_types*; if not, raise an appropriate TypeError.
|
||
|
|
||
|
As a special case, a ``None`` entry in *_types* is treated as NoneType.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> cbook._check_isinstance((SomeClass, None), arg=arg)
|
||
|
"""
|
||
|
types = _types
|
||
|
if isinstance(types, type) or types is None:
|
||
|
types = (types,)
|
||
|
none_allowed = None in types
|
||
|
types = tuple(tp for tp in types if tp is not None)
|
||
|
|
||
|
def type_name(tp):
|
||
|
return (tp.__qualname__ if tp.__module__ == "builtins"
|
||
|
else f"{tp.__module__}.{tp.__qualname__}")
|
||
|
|
||
|
names = [*map(type_name, types)]
|
||
|
if none_allowed:
|
||
|
types = (*types, type(None))
|
||
|
names.append("None")
|
||
|
for k, v in kwargs.items():
|
||
|
if not isinstance(v, types):
|
||
|
raise TypeError(
|
||
|
"{!r} must be an instance of {}, not a {}".format(
|
||
|
k,
|
||
|
", ".join(names[:-1]) + " or " + names[-1]
|
||
|
if len(names) > 1 else names[0],
|
||
|
type_name(type(v))))
|
||
|
|
||
|
|
||
|
def _check_in_list(_values, **kwargs):
|
||
|
"""
|
||
|
For each *key, value* pair in *kwargs*, check that *value* is in *_values*;
|
||
|
if not, raise an appropriate ValueError.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> cbook._check_in_list(["foo", "bar"], arg=arg, other_arg=other_arg)
|
||
|
"""
|
||
|
values = _values
|
||
|
for k, v in kwargs.items():
|
||
|
if v not in values:
|
||
|
raise ValueError(
|
||
|
"{!r} is not a valid value for {}; supported values are {}"
|
||
|
.format(v, k, ', '.join(map(repr, values))))
|
||
|
|
||
|
|
||
|
def _check_getitem(_mapping, **kwargs):
|
||
|
"""
|
||
|
*kwargs* must consist of a single *key, value* pair. If *key* is in
|
||
|
*_mapping*, return ``_mapping[value]``; else, raise an appropriate
|
||
|
ValueError.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> cbook._check_getitem({"foo": "bar"}, arg=arg)
|
||
|
"""
|
||
|
mapping = _mapping
|
||
|
if len(kwargs) != 1:
|
||
|
raise ValueError("_check_getitem takes a single keyword argument")
|
||
|
(k, v), = kwargs.items()
|
||
|
try:
|
||
|
return mapping[v]
|
||
|
except KeyError:
|
||
|
raise ValueError(
|
||
|
"{!r} is not a valid value for {}; supported values are {}"
|
||
|
.format(v, k, ', '.join(map(repr, mapping)))) from None
|
||
|
|
||
|
|
||
|
class _classproperty:
|
||
|
"""
|
||
|
Like `property`, but also triggers on access via the class, and it is the
|
||
|
*class* that's passed as argument.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
::
|
||
|
|
||
|
class C:
|
||
|
@classproperty
|
||
|
def foo(cls):
|
||
|
return cls.__name__
|
||
|
|
||
|
assert C.foo == "C"
|
||
|
"""
|
||
|
|
||
|
def __init__(self, fget):
|
||
|
self._fget = fget
|
||
|
|
||
|
def __get__(self, instance, owner):
|
||
|
return self._fget(owner)
|