You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
8099 lines
305 KiB
Python
8099 lines
305 KiB
Python
5 years ago
|
import collections.abc
|
||
|
import functools
|
||
|
import itertools
|
||
|
import logging
|
||
|
import math
|
||
|
from numbers import Number
|
||
|
|
||
|
import numpy as np
|
||
|
from numpy import ma
|
||
|
|
||
|
import matplotlib.category as _ # <-registers a category unit converter
|
||
|
import matplotlib.cbook as cbook
|
||
|
import matplotlib.collections as mcoll
|
||
|
import matplotlib.colors as mcolors
|
||
|
import matplotlib.contour as mcontour
|
||
|
import matplotlib.dates as _ # <-registers a date unit converter
|
||
|
import matplotlib.docstring as docstring
|
||
|
import matplotlib.image as mimage
|
||
|
import matplotlib.legend as mlegend
|
||
|
import matplotlib.lines as mlines
|
||
|
import matplotlib.markers as mmarkers
|
||
|
import matplotlib.mlab as mlab
|
||
|
import matplotlib.patches as mpatches
|
||
|
import matplotlib.path as mpath
|
||
|
import matplotlib.quiver as mquiver
|
||
|
import matplotlib.stackplot as mstack
|
||
|
import matplotlib.streamplot as mstream
|
||
|
import matplotlib.table as mtable
|
||
|
import matplotlib.text as mtext
|
||
|
import matplotlib.ticker as mticker
|
||
|
import matplotlib.transforms as mtransforms
|
||
|
import matplotlib.tri as mtri
|
||
|
from matplotlib import _preprocess_data, rcParams
|
||
|
from matplotlib.axes._base import _AxesBase, _process_plot_format
|
||
|
from matplotlib.axes._secondary_axes import SecondaryAxis
|
||
|
from matplotlib.container import BarContainer, ErrorbarContainer, StemContainer
|
||
|
|
||
|
try:
|
||
|
from numpy.lib.histograms import (
|
||
|
histogram_bin_edges as _histogram_bin_edges)
|
||
|
except ImportError:
|
||
|
# this function is new in np 1.15
|
||
|
def _histogram_bin_edges(arr, bins, range=None, weights=None):
|
||
|
# this in True for 1D arrays, and False for None and str
|
||
|
if np.ndim(bins) == 1:
|
||
|
return bins
|
||
|
|
||
|
if isinstance(bins, str):
|
||
|
# rather than backporting the internals, just do the full
|
||
|
# computation. If this is too slow for users, they can
|
||
|
# update numpy, or pick a manual number of bins
|
||
|
return np.histogram(arr, bins, range, weights)[1]
|
||
|
else:
|
||
|
if bins is None:
|
||
|
# hard-code numpy's default
|
||
|
bins = 10
|
||
|
if range is None:
|
||
|
range = np.min(arr), np.max(arr)
|
||
|
|
||
|
return np.linspace(*range, bins + 1)
|
||
|
|
||
|
|
||
|
_log = logging.getLogger(__name__)
|
||
|
|
||
|
|
||
|
def _make_inset_locator(bounds, trans, parent):
|
||
|
"""
|
||
|
Helper function to locate inset axes, used in
|
||
|
`.Axes.inset_axes`.
|
||
|
|
||
|
A locator gets used in `Axes.set_aspect` to override the default
|
||
|
locations... It is a function that takes an axes object and
|
||
|
a renderer and tells `set_aspect` where it is to be placed.
|
||
|
|
||
|
Here *rect* is a rectangle [l, b, w, h] that specifies the
|
||
|
location for the axes in the transform given by *trans* on the
|
||
|
*parent*.
|
||
|
"""
|
||
|
_bounds = mtransforms.Bbox.from_bounds(*bounds)
|
||
|
_trans = trans
|
||
|
_parent = parent
|
||
|
|
||
|
def inset_locator(ax, renderer):
|
||
|
bbox = _bounds
|
||
|
bb = mtransforms.TransformedBbox(bbox, _trans)
|
||
|
tr = _parent.figure.transFigure.inverted()
|
||
|
bb = mtransforms.TransformedBbox(bb, tr)
|
||
|
return bb
|
||
|
|
||
|
return inset_locator
|
||
|
|
||
|
|
||
|
# The axes module contains all the wrappers to plotting functions.
|
||
|
# All the other methods should go in the _AxesBase class.
|
||
|
|
||
|
|
||
|
class Axes(_AxesBase):
|
||
|
"""
|
||
|
The `Axes` contains most of the figure elements: `~.axis.Axis`,
|
||
|
`~.axis.Tick`, `~.lines.Line2D`, `~.text.Text`, `~.patches.Polygon`, etc.,
|
||
|
and sets the coordinate system.
|
||
|
|
||
|
The `Axes` instance supports callbacks through a callbacks attribute which
|
||
|
is a `~.cbook.CallbackRegistry` instance. The events you can connect to
|
||
|
are 'xlim_changed' and 'ylim_changed' and the callback will be called with
|
||
|
func(*ax*) where *ax* is the `Axes` instance.
|
||
|
|
||
|
Attributes
|
||
|
----------
|
||
|
dataLim : `.Bbox`
|
||
|
The bounding box enclosing all data displayed in the Axes.
|
||
|
viewLim : `.Bbox`
|
||
|
The view limits in data coordinates.
|
||
|
|
||
|
"""
|
||
|
### Labelling, legend and texts
|
||
|
|
||
|
@cbook.deprecated("3.1")
|
||
|
@property
|
||
|
def aname(self):
|
||
|
return 'Axes'
|
||
|
|
||
|
def get_title(self, loc="center"):
|
||
|
"""
|
||
|
Get an axes title.
|
||
|
|
||
|
Get one of the three available axes titles. The available titles
|
||
|
are positioned above the axes in the center, flush with the left
|
||
|
edge, and flush with the right edge.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
loc : {'center', 'left', 'right'}, str, optional
|
||
|
Which title to get, defaults to 'center'.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
title : str
|
||
|
The title text string.
|
||
|
|
||
|
"""
|
||
|
titles = {'left': self._left_title,
|
||
|
'center': self.title,
|
||
|
'right': self._right_title}
|
||
|
title = cbook._check_getitem(titles, loc=loc.lower())
|
||
|
return title.get_text()
|
||
|
|
||
|
def set_title(self, label, fontdict=None, loc=None, pad=None,
|
||
|
**kwargs):
|
||
|
"""
|
||
|
Set a title for the axes.
|
||
|
|
||
|
Set one of the three available axes titles. The available titles
|
||
|
are positioned above the axes in the center, flush with the left
|
||
|
edge, and flush with the right edge.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
label : str
|
||
|
Text to use for the title
|
||
|
|
||
|
fontdict : dict
|
||
|
A dictionary controlling the appearance of the title text,
|
||
|
the default *fontdict* is::
|
||
|
|
||
|
{'fontsize': rcParams['axes.titlesize'],
|
||
|
'fontweight' : rcParams['axes.titleweight'],
|
||
|
'color' : rcParams['axes.titlecolor'],
|
||
|
'verticalalignment': 'baseline',
|
||
|
'horizontalalignment': loc}
|
||
|
|
||
|
loc : {'center', 'left', 'right'}, str, optional
|
||
|
Which title to set.
|
||
|
If *None*, defaults to :rc:`axes.titlelocation`.
|
||
|
|
||
|
pad : float
|
||
|
The offset of the title from the top of the axes, in points.
|
||
|
If *None*, defaults to :rc:`axes.titlepad`.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
text : :class:`~matplotlib.text.Text`
|
||
|
The matplotlib text instance representing the title
|
||
|
|
||
|
Other Parameters
|
||
|
----------------
|
||
|
**kwargs : `~matplotlib.text.Text` properties
|
||
|
Other keyword arguments are text properties, see
|
||
|
:class:`~matplotlib.text.Text` for a list of valid text
|
||
|
properties.
|
||
|
"""
|
||
|
if loc is None:
|
||
|
loc = rcParams['axes.titlelocation']
|
||
|
|
||
|
titles = {'left': self._left_title,
|
||
|
'center': self.title,
|
||
|
'right': self._right_title}
|
||
|
title = cbook._check_getitem(titles, loc=loc.lower())
|
||
|
default = {
|
||
|
'fontsize': rcParams['axes.titlesize'],
|
||
|
'fontweight': rcParams['axes.titleweight'],
|
||
|
'verticalalignment': 'baseline',
|
||
|
'horizontalalignment': loc.lower()}
|
||
|
titlecolor = rcParams['axes.titlecolor']
|
||
|
if not cbook._str_lower_equal(titlecolor, 'auto'):
|
||
|
default["color"] = titlecolor
|
||
|
if pad is None:
|
||
|
pad = rcParams['axes.titlepad']
|
||
|
self._set_title_offset_trans(float(pad))
|
||
|
title.set_text(label)
|
||
|
title.update(default)
|
||
|
if fontdict is not None:
|
||
|
title.update(fontdict)
|
||
|
title.update(kwargs)
|
||
|
return title
|
||
|
|
||
|
def get_xlabel(self):
|
||
|
"""
|
||
|
Get the xlabel text string.
|
||
|
"""
|
||
|
label = self.xaxis.get_label()
|
||
|
return label.get_text()
|
||
|
|
||
|
def set_xlabel(self, xlabel, fontdict=None, labelpad=None, **kwargs):
|
||
|
"""
|
||
|
Set the label for the x-axis.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
xlabel : str
|
||
|
The label text.
|
||
|
|
||
|
labelpad : scalar, optional, default: None
|
||
|
Spacing in points from the axes bounding box including ticks
|
||
|
and tick labels.
|
||
|
|
||
|
Other Parameters
|
||
|
----------------
|
||
|
**kwargs : `.Text` properties
|
||
|
`.Text` properties control the appearance of the label.
|
||
|
|
||
|
See also
|
||
|
--------
|
||
|
text : for information on how override and the optional args work
|
||
|
"""
|
||
|
if labelpad is not None:
|
||
|
self.xaxis.labelpad = labelpad
|
||
|
return self.xaxis.set_label_text(xlabel, fontdict, **kwargs)
|
||
|
|
||
|
def get_ylabel(self):
|
||
|
"""
|
||
|
Get the ylabel text string.
|
||
|
"""
|
||
|
label = self.yaxis.get_label()
|
||
|
return label.get_text()
|
||
|
|
||
|
def set_ylabel(self, ylabel, fontdict=None, labelpad=None, **kwargs):
|
||
|
"""
|
||
|
Set the label for the y-axis.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
ylabel : str
|
||
|
The label text.
|
||
|
|
||
|
labelpad : scalar, optional, default: None
|
||
|
Spacing in points from the axes bounding box including ticks
|
||
|
and tick labels.
|
||
|
|
||
|
Other Parameters
|
||
|
----------------
|
||
|
**kwargs : `.Text` properties
|
||
|
`.Text` properties control the appearance of the label.
|
||
|
|
||
|
See also
|
||
|
--------
|
||
|
text : for information on how override and the optional args work
|
||
|
|
||
|
"""
|
||
|
if labelpad is not None:
|
||
|
self.yaxis.labelpad = labelpad
|
||
|
return self.yaxis.set_label_text(ylabel, fontdict, **kwargs)
|
||
|
|
||
|
def get_legend_handles_labels(self, legend_handler_map=None):
|
||
|
"""
|
||
|
Return handles and labels for legend
|
||
|
|
||
|
``ax.legend()`` is equivalent to ::
|
||
|
|
||
|
h, l = ax.get_legend_handles_labels()
|
||
|
ax.legend(h, l)
|
||
|
|
||
|
"""
|
||
|
|
||
|
# pass through to legend.
|
||
|
handles, labels = mlegend._get_legend_handles_labels([self],
|
||
|
legend_handler_map)
|
||
|
return handles, labels
|
||
|
|
||
|
@docstring.dedent_interpd
|
||
|
def legend(self, *args, **kwargs):
|
||
|
"""
|
||
|
Place a legend on the axes.
|
||
|
|
||
|
Call signatures::
|
||
|
|
||
|
legend()
|
||
|
legend(labels)
|
||
|
legend(handles, labels)
|
||
|
|
||
|
The call signatures correspond to three different ways how to use
|
||
|
this method.
|
||
|
|
||
|
**1. Automatic detection of elements to be shown in the legend**
|
||
|
|
||
|
The elements to be added to the legend are automatically determined,
|
||
|
when you do not pass in any extra arguments.
|
||
|
|
||
|
In this case, the labels are taken from the artist. You can specify
|
||
|
them either at artist creation or by calling the
|
||
|
:meth:`~.Artist.set_label` method on the artist::
|
||
|
|
||
|
line, = ax.plot([1, 2, 3], label='Inline label')
|
||
|
ax.legend()
|
||
|
|
||
|
or::
|
||
|
|
||
|
line, = ax.plot([1, 2, 3])
|
||
|
line.set_label('Label via method')
|
||
|
ax.legend()
|
||
|
|
||
|
Specific lines can be excluded from the automatic legend element
|
||
|
selection by defining a label starting with an underscore.
|
||
|
This is default for all artists, so calling `Axes.legend` without
|
||
|
any arguments and without setting the labels manually will result in
|
||
|
no legend being drawn.
|
||
|
|
||
|
|
||
|
**2. Labeling existing plot elements**
|
||
|
|
||
|
To make a legend for lines which already exist on the axes
|
||
|
(via plot for instance), simply call this function with an iterable
|
||
|
of strings, one for each legend item. For example::
|
||
|
|
||
|
ax.plot([1, 2, 3])
|
||
|
ax.legend(['A simple line'])
|
||
|
|
||
|
Note: This way of using is discouraged, because the relation between
|
||
|
plot elements and labels is only implicit by their order and can
|
||
|
easily be mixed up.
|
||
|
|
||
|
|
||
|
**3. Explicitly defining the elements in the legend**
|
||
|
|
||
|
For full control of which artists have a legend entry, it is possible
|
||
|
to pass an iterable of legend artists followed by an iterable of
|
||
|
legend labels respectively::
|
||
|
|
||
|
legend((line1, line2, line3), ('label1', 'label2', 'label3'))
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
handles : sequence of `.Artist`, optional
|
||
|
A list of Artists (lines, patches) to be added to the legend.
|
||
|
Use this together with *labels*, if you need full control on what
|
||
|
is shown in the legend and the automatic mechanism described above
|
||
|
is not sufficient.
|
||
|
|
||
|
The length of handles and labels should be the same in this
|
||
|
case. If they are not, they are truncated to the smaller length.
|
||
|
|
||
|
labels : list of str, optional
|
||
|
A list of labels to show next to the artists.
|
||
|
Use this together with *handles*, if you need full control on what
|
||
|
is shown in the legend and the automatic mechanism described above
|
||
|
is not sufficient.
|
||
|
|
||
|
Other Parameters
|
||
|
----------------
|
||
|
%(_legend_kw_doc)s
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
legend : `~matplotlib.legend.Legend`
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
Not all kinds of artist are supported by the legend command. See
|
||
|
:doc:`/tutorials/intermediate/legend_guide` for details.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
.. plot:: gallery/text_labels_and_annotations/legend.py
|
||
|
"""
|
||
|
handles, labels, extra_args, kwargs = mlegend._parse_legend_args(
|
||
|
[self],
|
||
|
*args,
|
||
|
**kwargs)
|
||
|
if len(extra_args):
|
||
|
raise TypeError('legend only accepts two non-keyword arguments')
|
||
|
self.legend_ = mlegend.Legend(self, handles, labels, **kwargs)
|
||
|
self.legend_._remove_method = self._remove_legend
|
||
|
return self.legend_
|
||
|
|
||
|
def _remove_legend(self, legend):
|
||
|
self.legend_ = None
|
||
|
|
||
|
def inset_axes(self, bounds, *, transform=None, zorder=5,
|
||
|
**kwargs):
|
||
|
"""
|
||
|
Add a child inset axes to this existing axes.
|
||
|
|
||
|
Warnings
|
||
|
--------
|
||
|
This method is experimental as of 3.0, and the API may change.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
bounds : [x0, y0, width, height]
|
||
|
Lower-left corner of inset axes, and its width and height.
|
||
|
|
||
|
transform : `.Transform`
|
||
|
Defaults to `ax.transAxes`, i.e. the units of *rect* are in
|
||
|
axes-relative coordinates.
|
||
|
|
||
|
zorder : number
|
||
|
Defaults to 5 (same as `.Axes.legend`). Adjust higher or lower
|
||
|
to change whether it is above or below data plotted on the
|
||
|
parent axes.
|
||
|
|
||
|
**kwargs
|
||
|
Other keyword arguments are passed on to the `.Axes` child axes.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
ax
|
||
|
The created `~.axes.Axes` instance.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
This example makes two inset axes, the first is in axes-relative
|
||
|
coordinates, and the second in data-coordinates::
|
||
|
|
||
|
fig, ax = plt.subplots()
|
||
|
ax.plot(range(10))
|
||
|
axin1 = ax.inset_axes([0.8, 0.1, 0.15, 0.15])
|
||
|
axin2 = ax.inset_axes(
|
||
|
[5, 7, 2.3, 2.3], transform=ax.transData)
|
||
|
|
||
|
"""
|
||
|
if transform is None:
|
||
|
transform = self.transAxes
|
||
|
label = kwargs.pop('label', 'inset_axes')
|
||
|
|
||
|
# This puts the rectangle into figure-relative coordinates.
|
||
|
inset_locator = _make_inset_locator(bounds, transform, self)
|
||
|
bb = inset_locator(None, None)
|
||
|
|
||
|
inset_ax = Axes(self.figure, bb.bounds, zorder=zorder,
|
||
|
label=label, **kwargs)
|
||
|
|
||
|
# this locator lets the axes move if in data coordinates.
|
||
|
# it gets called in `ax.apply_aspect() (of all places)
|
||
|
inset_ax.set_axes_locator(inset_locator)
|
||
|
|
||
|
self.add_child_axes(inset_ax)
|
||
|
|
||
|
return inset_ax
|
||
|
|
||
|
def indicate_inset(self, bounds, inset_ax=None, *, transform=None,
|
||
|
facecolor='none', edgecolor='0.5', alpha=0.5,
|
||
|
zorder=4.99, **kwargs):
|
||
|
"""
|
||
|
Add an inset indicator to the axes. This is a rectangle on the plot
|
||
|
at the position indicated by *bounds* that optionally has lines that
|
||
|
connect the rectangle to an inset axes (`.Axes.inset_axes`).
|
||
|
|
||
|
Warnings
|
||
|
--------
|
||
|
This method is experimental as of 3.0, and the API may change.
|
||
|
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
bounds : [x0, y0, width, height]
|
||
|
Lower-left corner of rectangle to be marked, and its width
|
||
|
and height.
|
||
|
|
||
|
inset_ax : `.Axes`
|
||
|
An optional inset axes to draw connecting lines to. Two lines are
|
||
|
drawn connecting the indicator box to the inset axes on corners
|
||
|
chosen so as to not overlap with the indicator box.
|
||
|
|
||
|
transform : `.Transform`
|
||
|
Transform for the rectangle co-ordinates. Defaults to
|
||
|
`ax.transAxes`, i.e. the units of *rect* are in axes-relative
|
||
|
coordinates.
|
||
|
|
||
|
facecolor : Matplotlib color
|
||
|
Facecolor of the rectangle (default 'none').
|
||
|
|
||
|
edgecolor : Matplotlib color
|
||
|
Color of the rectangle and color of the connecting lines. Default
|
||
|
is '0.5'.
|
||
|
|
||
|
alpha : float
|
||
|
Transparency of the rectangle and connector lines. Default is 0.5.
|
||
|
|
||
|
zorder : float
|
||
|
Drawing order of the rectangle and connector lines. Default is 4.99
|
||
|
(just below the default level of inset axes).
|
||
|
|
||
|
**kwargs
|
||
|
Other keyword arguments are passed on to the rectangle patch.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
rectangle_patch : `.patches.Rectangle`
|
||
|
The indicator frame.
|
||
|
|
||
|
connector_lines : 4-tuple of `.patches.ConnectionPatch`
|
||
|
The four connector lines connecting to (lower_left, upper_left,
|
||
|
lower_right upper_right) corners of *inset_ax*. Two lines are
|
||
|
set with visibility to *False*, but the user can set the
|
||
|
visibility to True if the automatic choice is not deemed correct.
|
||
|
|
||
|
"""
|
||
|
# to make the axes connectors work, we need to apply the aspect to
|
||
|
# the parent axes.
|
||
|
self.apply_aspect()
|
||
|
|
||
|
if transform is None:
|
||
|
transform = self.transData
|
||
|
label = kwargs.pop('label', 'indicate_inset')
|
||
|
|
||
|
x, y, width, height = bounds
|
||
|
rectangle_patch = mpatches.Rectangle(
|
||
|
(x, y), width, height,
|
||
|
facecolor=facecolor, edgecolor=edgecolor, alpha=alpha,
|
||
|
zorder=zorder, label=label, transform=transform, **kwargs)
|
||
|
self.add_patch(rectangle_patch)
|
||
|
|
||
|
connects = []
|
||
|
|
||
|
if inset_ax is not None:
|
||
|
# connect the inset_axes to the rectangle
|
||
|
for xy_inset_ax in [(0, 0), (0, 1), (1, 0), (1, 1)]:
|
||
|
# inset_ax positions are in axes coordinates
|
||
|
# The 0, 1 values define the four edges if the inset_ax
|
||
|
# lower_left, upper_left, lower_right upper_right.
|
||
|
ex, ey = xy_inset_ax
|
||
|
if self.xaxis.get_inverted():
|
||
|
ex = 1 - ex
|
||
|
if self.yaxis.get_inverted():
|
||
|
ey = 1 - ey
|
||
|
xy_data = x + ex * width, y + ey * height
|
||
|
p = mpatches.ConnectionPatch(
|
||
|
xyA=xy_inset_ax, coordsA=inset_ax.transAxes,
|
||
|
xyB=xy_data, coordsB=self.transData,
|
||
|
arrowstyle="-", zorder=zorder,
|
||
|
edgecolor=edgecolor, alpha=alpha)
|
||
|
connects.append(p)
|
||
|
self.add_patch(p)
|
||
|
|
||
|
# decide which two of the lines to keep visible....
|
||
|
pos = inset_ax.get_position()
|
||
|
bboxins = pos.transformed(self.figure.transFigure)
|
||
|
rectbbox = mtransforms.Bbox.from_bounds(
|
||
|
*bounds
|
||
|
).transformed(transform)
|
||
|
x0 = rectbbox.x0 < bboxins.x0
|
||
|
x1 = rectbbox.x1 < bboxins.x1
|
||
|
y0 = rectbbox.y0 < bboxins.y0
|
||
|
y1 = rectbbox.y1 < bboxins.y1
|
||
|
connects[0].set_visible(x0 ^ y0)
|
||
|
connects[1].set_visible(x0 == y1)
|
||
|
connects[2].set_visible(x1 == y0)
|
||
|
connects[3].set_visible(x1 ^ y1)
|
||
|
|
||
|
return rectangle_patch, tuple(connects) if connects else None
|
||
|
|
||
|
def indicate_inset_zoom(self, inset_ax, **kwargs):
|
||
|
"""
|
||
|
Add an inset indicator rectangle to the axes based on the axis
|
||
|
limits for an *inset_ax* and draw connectors between *inset_ax*
|
||
|
and the rectangle.
|
||
|
|
||
|
Warnings
|
||
|
--------
|
||
|
This method is experimental as of 3.0, and the API may change.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
inset_ax : `.Axes`
|
||
|
Inset axes to draw connecting lines to. Two lines are
|
||
|
drawn connecting the indicator box to the inset axes on corners
|
||
|
chosen so as to not overlap with the indicator box.
|
||
|
|
||
|
**kwargs
|
||
|
Other keyword arguments are passed on to `.Axes.indicate_inset`
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
rectangle_patch : `.Patches.Rectangle`
|
||
|
Rectangle artist.
|
||
|
|
||
|
connector_lines : 4-tuple of `.Patches.ConnectionPatch`
|
||
|
Each of four connector lines coming from the rectangle drawn on
|
||
|
this axis, in the order lower left, upper left, lower right,
|
||
|
upper right.
|
||
|
Two are set with visibility to *False*, but the user can
|
||
|
set the visibility to *True* if the automatic choice is not deemed
|
||
|
correct.
|
||
|
"""
|
||
|
|
||
|
xlim = inset_ax.get_xlim()
|
||
|
ylim = inset_ax.get_ylim()
|
||
|
rect = (xlim[0], ylim[0], xlim[1] - xlim[0], ylim[1] - ylim[0])
|
||
|
return self.indicate_inset(rect, inset_ax, **kwargs)
|
||
|
|
||
|
@docstring.dedent_interpd
|
||
|
def secondary_xaxis(self, location, *, functions=None, **kwargs):
|
||
|
"""
|
||
|
Add a second x-axis to this axes.
|
||
|
|
||
|
For example if we want to have a second scale for the data plotted on
|
||
|
the xaxis.
|
||
|
|
||
|
%(_secax_docstring)s
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
The main axis shows frequency, and the secondary axis shows period.
|
||
|
|
||
|
.. plot::
|
||
|
|
||
|
fig, ax = plt.subplots()
|
||
|
ax.loglog(range(1, 360, 5), range(1, 360, 5))
|
||
|
ax.set_xlabel('frequency [Hz]')
|
||
|
|
||
|
def invert(x):
|
||
|
return 1 / x
|
||
|
|
||
|
secax = ax.secondary_xaxis('top', functions=(invert, invert))
|
||
|
secax.set_xlabel('Period [s]')
|
||
|
plt.show()
|
||
|
"""
|
||
|
if (location in ['top', 'bottom'] or isinstance(location, Number)):
|
||
|
secondary_ax = SecondaryAxis(self, 'x', location, functions,
|
||
|
**kwargs)
|
||
|
self.add_child_axes(secondary_ax)
|
||
|
return secondary_ax
|
||
|
else:
|
||
|
raise ValueError('secondary_xaxis location must be either '
|
||
|
'a float or "top"/"bottom"')
|
||
|
|
||
|
def secondary_yaxis(self, location, *, functions=None, **kwargs):
|
||
|
"""
|
||
|
Add a second y-axis to this axes.
|
||
|
|
||
|
For example if we want to have a second scale for the data plotted on
|
||
|
the yaxis.
|
||
|
|
||
|
%(_secax_docstring)s
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
Add a secondary axes that converts from radians to degrees
|
||
|
|
||
|
.. plot::
|
||
|
|
||
|
fig, ax = plt.subplots()
|
||
|
ax.plot(range(1, 360, 5), range(1, 360, 5))
|
||
|
ax.set_ylabel('degrees')
|
||
|
secax = ax.secondary_yaxis('right', functions=(np.deg2rad,
|
||
|
np.rad2deg))
|
||
|
secax.set_ylabel('radians')
|
||
|
"""
|
||
|
if location in ['left', 'right'] or isinstance(location, Number):
|
||
|
secondary_ax = SecondaryAxis(self, 'y', location,
|
||
|
functions, **kwargs)
|
||
|
self.add_child_axes(secondary_ax)
|
||
|
return secondary_ax
|
||
|
else:
|
||
|
raise ValueError('secondary_yaxis location must be either '
|
||
|
'a float or "left"/"right"')
|
||
|
|
||
|
@cbook._delete_parameter("3.1", "withdash")
|
||
|
def text(self, x, y, s, fontdict=None, withdash=False, **kwargs):
|
||
|
"""
|
||
|
Add text to the axes.
|
||
|
|
||
|
Add the text *s* to the axes at location *x*, *y* in data coordinates.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
x, y : scalars
|
||
|
The position to place the text. By default, this is in data
|
||
|
coordinates. The coordinate system can be changed using the
|
||
|
*transform* parameter.
|
||
|
|
||
|
s : str
|
||
|
The text.
|
||
|
|
||
|
fontdict : dictionary, optional, default: None
|
||
|
A dictionary to override the default text properties. If fontdict
|
||
|
is None, the defaults are determined by your rc parameters.
|
||
|
|
||
|
withdash : boolean, optional, default: False
|
||
|
Creates a `~matplotlib.text.TextWithDash` instance instead of a
|
||
|
`~matplotlib.text.Text` instance.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
text : `.Text`
|
||
|
The created `.Text` instance.
|
||
|
|
||
|
Other Parameters
|
||
|
----------------
|
||
|
**kwargs : `~matplotlib.text.Text` properties.
|
||
|
Other miscellaneous text parameters.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
Individual keyword arguments can be used to override any given
|
||
|
parameter::
|
||
|
|
||
|
>>> text(x, y, s, fontsize=12)
|
||
|
|
||
|
The default transform specifies that text is in data coords,
|
||
|
alternatively, you can specify text in axis coords ((0, 0) is
|
||
|
lower-left and (1, 1) is upper-right). The example below places
|
||
|
text in the center of the axes::
|
||
|
|
||
|
>>> text(0.5, 0.5, 'matplotlib', horizontalalignment='center',
|
||
|
... verticalalignment='center', transform=ax.transAxes)
|
||
|
|
||
|
You can put a rectangular box around the text instance (e.g., to
|
||
|
set a background color) by using the keyword *bbox*. *bbox* is
|
||
|
a dictionary of `~matplotlib.patches.Rectangle`
|
||
|
properties. For example::
|
||
|
|
||
|
>>> text(x, y, s, bbox=dict(facecolor='red', alpha=0.5))
|
||
|
"""
|
||
|
if fontdict is None:
|
||
|
fontdict = {}
|
||
|
|
||
|
effective_kwargs = {
|
||
|
'verticalalignment': 'baseline',
|
||
|
'horizontalalignment': 'left',
|
||
|
'transform': self.transData,
|
||
|
'clip_on': False,
|
||
|
**fontdict,
|
||
|
**kwargs,
|
||
|
}
|
||
|
|
||
|
# At some point if we feel confident that TextWithDash
|
||
|
# is robust as a drop-in replacement for Text and that
|
||
|
# the performance impact of the heavier-weight class
|
||
|
# isn't too significant, it may make sense to eliminate
|
||
|
# the withdash kwarg and simply delegate whether there's
|
||
|
# a dash to TextWithDash and dashlength.
|
||
|
|
||
|
if (withdash
|
||
|
and withdash is not cbook.deprecation._deprecated_parameter):
|
||
|
t = mtext.TextWithDash(x, y, text=s)
|
||
|
else:
|
||
|
t = mtext.Text(x, y, text=s)
|
||
|
t.update(effective_kwargs)
|
||
|
|
||
|
t.set_clip_path(self.patch)
|
||
|
self._add_text(t)
|
||
|
return t
|
||
|
|
||
|
@docstring.dedent_interpd
|
||
|
def annotate(self, s, xy, *args, **kwargs):
|
||
|
a = mtext.Annotation(s, xy, *args, **kwargs)
|
||
|
a.set_transform(mtransforms.IdentityTransform())
|
||
|
if 'clip_on' in kwargs:
|
||
|
a.set_clip_path(self.patch)
|
||
|
self._add_text(a)
|
||
|
return a
|
||
|
annotate.__doc__ = mtext.Annotation.__init__.__doc__
|
||
|
#### Lines and spans
|
||
|
|
||
|
@docstring.dedent_interpd
|
||
|
def axhline(self, y=0, xmin=0, xmax=1, **kwargs):
|
||
|
"""
|
||
|
Add a horizontal line across the axis.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
y : scalar, optional, default: 0
|
||
|
y position in data coordinates of the horizontal line.
|
||
|
|
||
|
xmin : scalar, optional, default: 0
|
||
|
Should be between 0 and 1, 0 being the far left of the plot, 1 the
|
||
|
far right of the plot.
|
||
|
|
||
|
xmax : scalar, optional, default: 1
|
||
|
Should be between 0 and 1, 0 being the far left of the plot, 1 the
|
||
|
far right of the plot.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
line : `~matplotlib.lines.Line2D`
|
||
|
|
||
|
Other Parameters
|
||
|
----------------
|
||
|
**kwargs
|
||
|
Valid keyword arguments are `.Line2D` properties, with the
|
||
|
exception of 'transform':
|
||
|
|
||
|
%(_Line2D_docstr)s
|
||
|
|
||
|
See also
|
||
|
--------
|
||
|
hlines : Add horizontal lines in data coordinates.
|
||
|
axhspan : Add a horizontal span (rectangle) across the axis.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
* draw a thick red hline at 'y' = 0 that spans the xrange::
|
||
|
|
||
|
>>> axhline(linewidth=4, color='r')
|
||
|
|
||
|
* draw a default hline at 'y' = 1 that spans the xrange::
|
||
|
|
||
|
>>> axhline(y=1)
|
||
|
|
||
|
* draw a default hline at 'y' = .5 that spans the middle half of
|
||
|
the xrange::
|
||
|
|
||
|
>>> axhline(y=.5, xmin=0.25, xmax=0.75)
|
||
|
"""
|
||
|
if "transform" in kwargs:
|
||
|
raise ValueError(
|
||
|
"'transform' is not allowed as a kwarg;"
|
||
|
+ "axhline generates its own transform.")
|
||
|
ymin, ymax = self.get_ybound()
|
||
|
|
||
|
# We need to strip away the units for comparison with
|
||
|
# non-unitized bounds
|
||
|
self._process_unit_info(ydata=y, kwargs=kwargs)
|
||
|
yy = self.convert_yunits(y)
|
||
|
scaley = (yy < ymin) or (yy > ymax)
|
||
|
|
||
|
trans = self.get_yaxis_transform(which='grid')
|
||
|
l = mlines.Line2D([xmin, xmax], [y, y], transform=trans, **kwargs)
|
||
|
self.add_line(l)
|
||
|
self._request_autoscale_view(scalex=False, scaley=scaley)
|
||
|
return l
|
||
|
|
||
|
@docstring.dedent_interpd
|
||
|
def axvline(self, x=0, ymin=0, ymax=1, **kwargs):
|
||
|
"""
|
||
|
Add a vertical line across the axes.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
x : scalar, optional, default: 0
|
||
|
x position in data coordinates of the vertical line.
|
||
|
|
||
|
ymin : scalar, optional, default: 0
|
||
|
Should be between 0 and 1, 0 being the bottom of the plot, 1 the
|
||
|
top of the plot.
|
||
|
|
||
|
ymax : scalar, optional, default: 1
|
||
|
Should be between 0 and 1, 0 being the bottom of the plot, 1 the
|
||
|
top of the plot.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
line : `~matplotlib.lines.Line2D`
|
||
|
|
||
|
Other Parameters
|
||
|
----------------
|
||
|
**kwargs
|
||
|
Valid keyword arguments are `.Line2D` properties, with the
|
||
|
exception of 'transform':
|
||
|
|
||
|
%(_Line2D_docstr)s
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
* draw a thick red vline at *x* = 0 that spans the yrange::
|
||
|
|
||
|
>>> axvline(linewidth=4, color='r')
|
||
|
|
||
|
* draw a default vline at *x* = 1 that spans the yrange::
|
||
|
|
||
|
>>> axvline(x=1)
|
||
|
|
||
|
* draw a default vline at *x* = .5 that spans the middle half of
|
||
|
the yrange::
|
||
|
|
||
|
>>> axvline(x=.5, ymin=0.25, ymax=0.75)
|
||
|
|
||
|
See also
|
||
|
--------
|
||
|
vlines : Add vertical lines in data coordinates.
|
||
|
axvspan : Add a vertical span (rectangle) across the axis.
|
||
|
"""
|
||
|
|
||
|
if "transform" in kwargs:
|
||
|
raise ValueError(
|
||
|
"'transform' is not allowed as a kwarg;"
|
||
|
+ "axvline generates its own transform.")
|
||
|
xmin, xmax = self.get_xbound()
|
||
|
|
||
|
# We need to strip away the units for comparison with
|
||
|
# non-unitized bounds
|
||
|
self._process_unit_info(xdata=x, kwargs=kwargs)
|
||
|
xx = self.convert_xunits(x)
|
||
|
scalex = (xx < xmin) or (xx > xmax)
|
||
|
|
||
|
trans = self.get_xaxis_transform(which='grid')
|
||
|
l = mlines.Line2D([x, x], [ymin, ymax], transform=trans, **kwargs)
|
||
|
self.add_line(l)
|
||
|
self._request_autoscale_view(scalex=scalex, scaley=False)
|
||
|
return l
|
||
|
|
||
|
@docstring.dedent_interpd
|
||
|
def axhspan(self, ymin, ymax, xmin=0, xmax=1, **kwargs):
|
||
|
"""
|
||
|
Add a horizontal span (rectangle) across the axis.
|
||
|
|
||
|
Draw a horizontal span (rectangle) from *ymin* to *ymax*.
|
||
|
With the default values of *xmin* = 0 and *xmax* = 1, this
|
||
|
always spans the xrange, regardless of the xlim settings, even
|
||
|
if you change them, e.g., with the :meth:`set_xlim` command.
|
||
|
That is, the horizontal extent is in axes coords: 0=left,
|
||
|
0.5=middle, 1.0=right but the *y* location is in data
|
||
|
coordinates.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
ymin : float
|
||
|
Lower limit of the horizontal span in data units.
|
||
|
ymax : float
|
||
|
Upper limit of the horizontal span in data units.
|
||
|
xmin : float, optional, default: 0
|
||
|
Lower limit of the vertical span in axes (relative
|
||
|
0-1) units.
|
||
|
xmax : float, optional, default: 1
|
||
|
Upper limit of the vertical span in axes (relative
|
||
|
0-1) units.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
Polygon : `~matplotlib.patches.Polygon`
|
||
|
|
||
|
Other Parameters
|
||
|
----------------
|
||
|
**kwargs : `~matplotlib.patches.Polygon` properties.
|
||
|
|
||
|
%(Polygon)s
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
axvspan : Add a vertical span across the axes.
|
||
|
"""
|
||
|
trans = self.get_yaxis_transform(which='grid')
|
||
|
|
||
|
# process the unit information
|
||
|
self._process_unit_info([xmin, xmax], [ymin, ymax], kwargs=kwargs)
|
||
|
|
||
|
# first we need to strip away the units
|
||
|
xmin, xmax = self.convert_xunits([xmin, xmax])
|
||
|
ymin, ymax = self.convert_yunits([ymin, ymax])
|
||
|
|
||
|
verts = (xmin, ymin), (xmin, ymax), (xmax, ymax), (xmax, ymin)
|
||
|
p = mpatches.Polygon(verts, **kwargs)
|
||
|
p.set_transform(trans)
|
||
|
self.add_patch(p)
|
||
|
self._request_autoscale_view(scalex=False)
|
||
|
return p
|
||
|
|
||
|
def axvspan(self, xmin, xmax, ymin=0, ymax=1, **kwargs):
|
||
|
"""
|
||
|
Add a vertical span (rectangle) across the axes.
|
||
|
|
||
|
Draw a vertical span (rectangle) from *xmin* to *xmax*. With
|
||
|
the default values of *ymin* = 0 and *ymax* = 1. This always
|
||
|
spans the yrange, regardless of the ylim settings, even if you
|
||
|
change them, e.g., with the :meth:`set_ylim` command. That is,
|
||
|
the vertical extent is in axes coords: 0=bottom, 0.5=middle,
|
||
|
1.0=top but the x location is in data coordinates.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
xmin : scalar
|
||
|
Number indicating the first X-axis coordinate of the vertical
|
||
|
span rectangle in data units.
|
||
|
xmax : scalar
|
||
|
Number indicating the second X-axis coordinate of the vertical
|
||
|
span rectangle in data units.
|
||
|
ymin : scalar, optional
|
||
|
Number indicating the first Y-axis coordinate of the vertical
|
||
|
span rectangle in relative Y-axis units (0-1). Default to 0.
|
||
|
ymax : scalar, optional
|
||
|
Number indicating the second Y-axis coordinate of the vertical
|
||
|
span rectangle in relative Y-axis units (0-1). Default to 1.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
rectangle : `~matplotlib.patches.Polygon`
|
||
|
Vertical span (rectangle) from (xmin, ymin) to (xmax, ymax).
|
||
|
|
||
|
Other Parameters
|
||
|
----------------
|
||
|
**kwargs
|
||
|
Optional parameters are properties of the class `.Polygon`.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
axhspan : Add a horizontal span across the axes.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
Draw a vertical, green, translucent rectangle from x = 1.25 to
|
||
|
x = 1.55 that spans the yrange of the axes.
|
||
|
|
||
|
>>> axvspan(1.25, 1.55, facecolor='g', alpha=0.5)
|
||
|
|
||
|
"""
|
||
|
trans = self.get_xaxis_transform(which='grid')
|
||
|
|
||
|
# process the unit information
|
||
|
self._process_unit_info([xmin, xmax], [ymin, ymax], kwargs=kwargs)
|
||
|
|
||
|
# first we need to strip away the units
|
||
|
xmin, xmax = self.convert_xunits([xmin, xmax])
|
||
|
ymin, ymax = self.convert_yunits([ymin, ymax])
|
||
|
|
||
|
verts = [(xmin, ymin), (xmin, ymax), (xmax, ymax), (xmax, ymin)]
|
||
|
p = mpatches.Polygon(verts, **kwargs)
|
||
|
p.set_transform(trans)
|
||
|
self.add_patch(p)
|
||
|
self._request_autoscale_view(scaley=False)
|
||
|
return p
|
||
|
|
||
|
@_preprocess_data(replace_names=["y", "xmin", "xmax", "colors"],
|
||
|
label_namer="y")
|
||
|
def hlines(self, y, xmin, xmax, colors='k', linestyles='solid',
|
||
|
label='', **kwargs):
|
||
|
"""
|
||
|
Plot horizontal lines at each *y* from *xmin* to *xmax*.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
y : scalar or sequence of scalar
|
||
|
y-indexes where to plot the lines.
|
||
|
|
||
|
xmin, xmax : scalar or 1D array-like
|
||
|
Respective beginning and end of each line. If scalars are
|
||
|
provided, all lines will have same length.
|
||
|
|
||
|
colors : array-like of colors, optional, default: 'k'
|
||
|
|
||
|
linestyles : {'solid', 'dashed', 'dashdot', 'dotted'}, optional
|
||
|
|
||
|
label : str, optional, default: ''
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
lines : `~matplotlib.collections.LineCollection`
|
||
|
|
||
|
Other Parameters
|
||
|
----------------
|
||
|
**kwargs : `~matplotlib.collections.LineCollection` properties.
|
||
|
|
||
|
See also
|
||
|
--------
|
||
|
vlines : vertical lines
|
||
|
axhline: horizontal line across the axes
|
||
|
"""
|
||
|
|
||
|
# We do the conversion first since not all unitized data is uniform
|
||
|
# process the unit information
|
||
|
self._process_unit_info([xmin, xmax], y, kwargs=kwargs)
|
||
|
y = self.convert_yunits(y)
|
||
|
xmin = self.convert_xunits(xmin)
|
||
|
xmax = self.convert_xunits(xmax)
|
||
|
|
||
|
if not np.iterable(y):
|
||
|
y = [y]
|
||
|
if not np.iterable(xmin):
|
||
|
xmin = [xmin]
|
||
|
if not np.iterable(xmax):
|
||
|
xmax = [xmax]
|
||
|
|
||
|
y, xmin, xmax = cbook.delete_masked_points(y, xmin, xmax)
|
||
|
|
||
|
y = np.ravel(y)
|
||
|
xmin = np.resize(xmin, y.shape)
|
||
|
xmax = np.resize(xmax, y.shape)
|
||
|
|
||
|
verts = [((thisxmin, thisy), (thisxmax, thisy))
|
||
|
for thisxmin, thisxmax, thisy in zip(xmin, xmax, y)]
|
||
|
lines = mcoll.LineCollection(verts, colors=colors,
|
||
|
linestyles=linestyles, label=label)
|
||
|
self.add_collection(lines, autolim=False)
|
||
|
lines.update(kwargs)
|
||
|
|
||
|
if len(y) > 0:
|
||
|
minx = min(xmin.min(), xmax.min())
|
||
|
maxx = max(xmin.max(), xmax.max())
|
||
|
miny = y.min()
|
||
|
maxy = y.max()
|
||
|
|
||
|
corners = (minx, miny), (maxx, maxy)
|
||
|
|
||
|
self.update_datalim(corners)
|
||
|
self._request_autoscale_view()
|
||
|
|
||
|
return lines
|
||
|
|
||
|
@_preprocess_data(replace_names=["x", "ymin", "ymax", "colors"],
|
||
|
label_namer="x")
|
||
|
def vlines(self, x, ymin, ymax, colors='k', linestyles='solid',
|
||
|
label='', **kwargs):
|
||
|
"""
|
||
|
Plot vertical lines.
|
||
|
|
||
|
Plot vertical lines at each *x* from *ymin* to *ymax*.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
x : scalar or 1D array-like
|
||
|
x-indexes where to plot the lines.
|
||
|
|
||
|
ymin, ymax : scalar or 1D array-like
|
||
|
Respective beginning and end of each line. If scalars are
|
||
|
provided, all lines will have same length.
|
||
|
|
||
|
colors : array-like of colors, optional, default: 'k'
|
||
|
|
||
|
linestyles : {'solid', 'dashed', 'dashdot', 'dotted'}, optional
|
||
|
|
||
|
label : str, optional, default: ''
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
lines : `~matplotlib.collections.LineCollection`
|
||
|
|
||
|
Other Parameters
|
||
|
----------------
|
||
|
**kwargs : `~matplotlib.collections.LineCollection` properties.
|
||
|
|
||
|
See also
|
||
|
--------
|
||
|
hlines : horizontal lines
|
||
|
axvline: vertical line across the axes
|
||
|
"""
|
||
|
|
||
|
self._process_unit_info(xdata=x, ydata=[ymin, ymax], kwargs=kwargs)
|
||
|
|
||
|
# We do the conversion first since not all unitized data is uniform
|
||
|
x = self.convert_xunits(x)
|
||
|
ymin = self.convert_yunits(ymin)
|
||
|
ymax = self.convert_yunits(ymax)
|
||
|
|
||
|
if not np.iterable(x):
|
||
|
x = [x]
|
||
|
if not np.iterable(ymin):
|
||
|
ymin = [ymin]
|
||
|
if not np.iterable(ymax):
|
||
|
ymax = [ymax]
|
||
|
|
||
|
x, ymin, ymax = cbook.delete_masked_points(x, ymin, ymax)
|
||
|
|
||
|
x = np.ravel(x)
|
||
|
ymin = np.resize(ymin, x.shape)
|
||
|
ymax = np.resize(ymax, x.shape)
|
||
|
|
||
|
verts = [((thisx, thisymin), (thisx, thisymax))
|
||
|
for thisx, thisymin, thisymax in zip(x, ymin, ymax)]
|
||
|
lines = mcoll.LineCollection(verts, colors=colors,
|
||
|
linestyles=linestyles, label=label)
|
||
|
self.add_collection(lines, autolim=False)
|
||
|
lines.update(kwargs)
|
||
|
|
||
|
if len(x) > 0:
|
||
|
minx = x.min()
|
||
|
maxx = x.max()
|
||
|
miny = min(ymin.min(), ymax.min())
|
||
|
maxy = max(ymin.max(), ymax.max())
|
||
|
|
||
|
corners = (minx, miny), (maxx, maxy)
|
||
|
self.update_datalim(corners)
|
||
|
self._request_autoscale_view()
|
||
|
|
||
|
return lines
|
||
|
|
||
|
@_preprocess_data(replace_names=["positions", "lineoffsets",
|
||
|
"linelengths", "linewidths",
|
||
|
"colors", "linestyles"])
|
||
|
@docstring.dedent_interpd
|
||
|
def eventplot(self, positions, orientation='horizontal', lineoffsets=1,
|
||
|
linelengths=1, linewidths=None, colors=None,
|
||
|
linestyles='solid', **kwargs):
|
||
|
"""
|
||
|
Plot identical parallel lines at the given positions.
|
||
|
|
||
|
*positions* should be a 1D or 2D array-like object, with each row
|
||
|
corresponding to a row or column of lines.
|
||
|
|
||
|
This type of plot is commonly used in neuroscience for representing
|
||
|
neural events, where it is usually called a spike raster, dot raster,
|
||
|
or raster plot.
|
||
|
|
||
|
However, it is useful in any situation where you wish to show the
|
||
|
timing or position of multiple sets of discrete events, such as the
|
||
|
arrival times of people to a business on each day of the month or the
|
||
|
date of hurricanes each year of the last century.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
positions : 1D or 2D array-like object
|
||
|
Each value is an event. If *positions* is a 2D array-like, each
|
||
|
row corresponds to a row or a column of lines (depending on the
|
||
|
*orientation* parameter).
|
||
|
|
||
|
orientation : {'horizontal', 'vertical'}, optional
|
||
|
Controls the direction of the event collections:
|
||
|
|
||
|
- 'horizontal' : the lines are arranged horizontally in rows,
|
||
|
and are vertical.
|
||
|
- 'vertical' : the lines are arranged vertically in columns,
|
||
|
and are horizontal.
|
||
|
|
||
|
lineoffsets : scalar or sequence of scalars, optional, default: 1
|
||
|
The offset of the center of the lines from the origin, in the
|
||
|
direction orthogonal to *orientation*.
|
||
|
|
||
|
linelengths : scalar or sequence of scalars, optional, default: 1
|
||
|
The total height of the lines (i.e. the lines stretches from
|
||
|
``lineoffset - linelength/2`` to ``lineoffset + linelength/2``).
|
||
|
|
||
|
linewidths : scalar, scalar sequence or None, optional, default: None
|
||
|
The line width(s) of the event lines, in points. If it is None,
|
||
|
defaults to its rcParams setting.
|
||
|
|
||
|
colors : color, sequence of colors or None, optional, default: None
|
||
|
The color(s) of the event lines. If it is None, defaults to its
|
||
|
rcParams setting.
|
||
|
|
||
|
linestyles : str or tuple or a sequence of such values, optional
|
||
|
Default is 'solid'. Valid strings are ['solid', 'dashed',
|
||
|
'dashdot', 'dotted', '-', '--', '-.', ':']. Dash tuples
|
||
|
should be of the form::
|
||
|
|
||
|
(offset, onoffseq),
|
||
|
|
||
|
where *onoffseq* is an even length tuple of on and off ink
|
||
|
in points.
|
||
|
|
||
|
**kwargs : optional
|
||
|
Other keyword arguments are line collection properties. See
|
||
|
:class:`~matplotlib.collections.LineCollection` for a list of
|
||
|
the valid properties.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
list : A list of :class:`~.collections.EventCollection` objects.
|
||
|
Contains the :class:`~.collections.EventCollection` that
|
||
|
were added.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
For *linelengths*, *linewidths*, *colors*, and *linestyles*, if only
|
||
|
a single value is given, that value is applied to all lines. If an
|
||
|
array-like is given, it must have the same length as *positions*, and
|
||
|
each value will be applied to the corresponding row of the array.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
.. plot:: gallery/lines_bars_and_markers/eventplot_demo.py
|
||
|
"""
|
||
|
self._process_unit_info(xdata=positions,
|
||
|
ydata=[lineoffsets, linelengths],
|
||
|
kwargs=kwargs)
|
||
|
|
||
|
# We do the conversion first since not all unitized data is uniform
|
||
|
positions = self.convert_xunits(positions)
|
||
|
lineoffsets = self.convert_yunits(lineoffsets)
|
||
|
linelengths = self.convert_yunits(linelengths)
|
||
|
|
||
|
if not np.iterable(positions):
|
||
|
positions = [positions]
|
||
|
elif any(np.iterable(position) for position in positions):
|
||
|
positions = [np.asanyarray(position) for position in positions]
|
||
|
else:
|
||
|
positions = [np.asanyarray(positions)]
|
||
|
|
||
|
if len(positions) == 0:
|
||
|
return []
|
||
|
|
||
|
# prevent 'singular' keys from **kwargs dict from overriding the effect
|
||
|
# of 'plural' keyword arguments (e.g. 'color' overriding 'colors')
|
||
|
colors = cbook.local_over_kwdict(colors, kwargs, 'color')
|
||
|
linewidths = cbook.local_over_kwdict(linewidths, kwargs, 'linewidth')
|
||
|
linestyles = cbook.local_over_kwdict(linestyles, kwargs, 'linestyle')
|
||
|
|
||
|
if not np.iterable(lineoffsets):
|
||
|
lineoffsets = [lineoffsets]
|
||
|
if not np.iterable(linelengths):
|
||
|
linelengths = [linelengths]
|
||
|
if not np.iterable(linewidths):
|
||
|
linewidths = [linewidths]
|
||
|
if not np.iterable(colors):
|
||
|
colors = [colors]
|
||
|
if hasattr(linestyles, 'lower') or not np.iterable(linestyles):
|
||
|
linestyles = [linestyles]
|
||
|
|
||
|
lineoffsets = np.asarray(lineoffsets)
|
||
|
linelengths = np.asarray(linelengths)
|
||
|
linewidths = np.asarray(linewidths)
|
||
|
|
||
|
if len(lineoffsets) == 0:
|
||
|
lineoffsets = [None]
|
||
|
if len(linelengths) == 0:
|
||
|
linelengths = [None]
|
||
|
if len(linewidths) == 0:
|
||
|
lineoffsets = [None]
|
||
|
if len(linewidths) == 0:
|
||
|
lineoffsets = [None]
|
||
|
if len(colors) == 0:
|
||
|
colors = [None]
|
||
|
try:
|
||
|
# Early conversion of the colors into RGBA values to take care
|
||
|
# of cases like colors='0.5' or colors='C1'. (Issue #8193)
|
||
|
colors = mcolors.to_rgba_array(colors)
|
||
|
except ValueError:
|
||
|
# Will fail if any element of *colors* is None. But as long
|
||
|
# as len(colors) == 1 or len(positions), the rest of the
|
||
|
# code should process *colors* properly.
|
||
|
pass
|
||
|
|
||
|
if len(lineoffsets) == 1 and len(positions) != 1:
|
||
|
lineoffsets = np.tile(lineoffsets, len(positions))
|
||
|
lineoffsets[0] = 0
|
||
|
lineoffsets = np.cumsum(lineoffsets)
|
||
|
if len(linelengths) == 1:
|
||
|
linelengths = np.tile(linelengths, len(positions))
|
||
|
if len(linewidths) == 1:
|
||
|
linewidths = np.tile(linewidths, len(positions))
|
||
|
if len(colors) == 1:
|
||
|
colors = list(colors)
|
||
|
colors = colors * len(positions)
|
||
|
if len(linestyles) == 1:
|
||
|
linestyles = [linestyles] * len(positions)
|
||
|
|
||
|
if len(lineoffsets) != len(positions):
|
||
|
raise ValueError('lineoffsets and positions are unequal sized '
|
||
|
'sequences')
|
||
|
if len(linelengths) != len(positions):
|
||
|
raise ValueError('linelengths and positions are unequal sized '
|
||
|
'sequences')
|
||
|
if len(linewidths) != len(positions):
|
||
|
raise ValueError('linewidths and positions are unequal sized '
|
||
|
'sequences')
|
||
|
if len(colors) != len(positions):
|
||
|
raise ValueError('colors and positions are unequal sized '
|
||
|
'sequences')
|
||
|
if len(linestyles) != len(positions):
|
||
|
raise ValueError('linestyles and positions are unequal sized '
|
||
|
'sequences')
|
||
|
|
||
|
colls = []
|
||
|
for position, lineoffset, linelength, linewidth, color, linestyle in \
|
||
|
zip(positions, lineoffsets, linelengths, linewidths,
|
||
|
colors, linestyles):
|
||
|
coll = mcoll.EventCollection(position,
|
||
|
orientation=orientation,
|
||
|
lineoffset=lineoffset,
|
||
|
linelength=linelength,
|
||
|
linewidth=linewidth,
|
||
|
color=color,
|
||
|
linestyle=linestyle)
|
||
|
self.add_collection(coll, autolim=False)
|
||
|
coll.update(kwargs)
|
||
|
colls.append(coll)
|
||
|
|
||
|
if len(positions) > 0:
|
||
|
# try to get min/max
|
||
|
min_max = [(np.min(_p), np.max(_p)) for _p in positions
|
||
|
if len(_p) > 0]
|
||
|
# if we have any non-empty positions, try to autoscale
|
||
|
if len(min_max) > 0:
|
||
|
mins, maxes = zip(*min_max)
|
||
|
minpos = np.min(mins)
|
||
|
maxpos = np.max(maxes)
|
||
|
|
||
|
minline = (lineoffsets - linelengths).min()
|
||
|
maxline = (lineoffsets + linelengths).max()
|
||
|
|
||
|
if (orientation is not None and
|
||
|
orientation.lower() == "vertical"):
|
||
|
corners = (minline, minpos), (maxline, maxpos)
|
||
|
else: # "horizontal", None or "none" (see EventCollection)
|
||
|
corners = (minpos, minline), (maxpos, maxline)
|
||
|
self.update_datalim(corners)
|
||
|
self._request_autoscale_view()
|
||
|
|
||
|
return colls
|
||
|
|
||
|
#### Basic plotting
|
||
|
|
||
|
# Uses a custom implementation of data-kwarg handling in
|
||
|
# _process_plot_var_args.
|
||
|
@docstring.dedent_interpd
|
||
|
def plot(self, *args, scalex=True, scaley=True, data=None, **kwargs):
|
||
|
"""
|
||
|
Plot y versus x as lines and/or markers.
|
||
|
|
||
|
Call signatures::
|
||
|
|
||
|
plot([x], y, [fmt], *, data=None, **kwargs)
|
||
|
plot([x], y, [fmt], [x2], y2, [fmt2], ..., **kwargs)
|
||
|
|
||
|
The coordinates of the points or line nodes are given by *x*, *y*.
|
||
|
|
||
|
The optional parameter *fmt* is a convenient way for defining basic
|
||
|
formatting like color, marker and linestyle. It's a shortcut string
|
||
|
notation described in the *Notes* section below.
|
||
|
|
||
|
>>> plot(x, y) # plot x and y using default line style and color
|
||
|
>>> plot(x, y, 'bo') # plot x and y using blue circle markers
|
||
|
>>> plot(y) # plot y using x as index array 0..N-1
|
||
|
>>> plot(y, 'r+') # ditto, but with red plusses
|
||
|
|
||
|
You can use `.Line2D` properties as keyword arguments for more
|
||
|
control on the appearance. Line properties and *fmt* can be mixed.
|
||
|
The following two calls yield identical results:
|
||
|
|
||
|
>>> plot(x, y, 'go--', linewidth=2, markersize=12)
|
||
|
>>> plot(x, y, color='green', marker='o', linestyle='dashed',
|
||
|
... linewidth=2, markersize=12)
|
||
|
|
||
|
When conflicting with *fmt*, keyword arguments take precedence.
|
||
|
|
||
|
|
||
|
**Plotting labelled data**
|
||
|
|
||
|
There's a convenient way for plotting objects with labelled data (i.e.
|
||
|
data that can be accessed by index ``obj['y']``). Instead of giving
|
||
|
the data in *x* and *y*, you can provide the object in the *data*
|
||
|
parameter and just give the labels for *x* and *y*::
|
||
|
|
||
|
>>> plot('xlabel', 'ylabel', data=obj)
|
||
|
|
||
|
All indexable objects are supported. This could e.g. be a `dict`, a
|
||
|
`pandas.DataFame` or a structured numpy array.
|
||
|
|
||
|
|
||
|
**Plotting multiple sets of data**
|
||
|
|
||
|
There are various ways to plot multiple sets of data.
|
||
|
|
||
|
- The most straight forward way is just to call `plot` multiple times.
|
||
|
Example:
|
||
|
|
||
|
>>> plot(x1, y1, 'bo')
|
||
|
>>> plot(x2, y2, 'go')
|
||
|
|
||
|
- Alternatively, if your data is already a 2d array, you can pass it
|
||
|
directly to *x*, *y*. A separate data set will be drawn for every
|
||
|
column.
|
||
|
|
||
|
Example: an array ``a`` where the first column represents the *x*
|
||
|
values and the other columns are the *y* columns::
|
||
|
|
||
|
>>> plot(a[0], a[1:])
|
||
|
|
||
|
- The third way is to specify multiple sets of *[x]*, *y*, *[fmt]*
|
||
|
groups::
|
||
|
|
||
|
>>> plot(x1, y1, 'g^', x2, y2, 'g-')
|
||
|
|
||
|
In this case, any additional keyword argument applies to all
|
||
|
datasets. Also this syntax cannot be combined with the *data*
|
||
|
parameter.
|
||
|
|
||
|
By default, each line is assigned a different style specified by a
|
||
|
'style cycle'. The *fmt* and line property parameters are only
|
||
|
necessary if you want explicit deviations from these defaults.
|
||
|
Alternatively, you can also change the style cycle using
|
||
|
:rc:`axes.prop_cycle`.
|
||
|
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
x, y : array-like or scalar
|
||
|
The horizontal / vertical coordinates of the data points.
|
||
|
*x* values are optional and default to `range(len(y))`.
|
||
|
|
||
|
Commonly, these parameters are 1D arrays.
|
||
|
|
||
|
They can also be scalars, or two-dimensional (in that case, the
|
||
|
columns represent separate data sets).
|
||
|
|
||
|
These arguments cannot be passed as keywords.
|
||
|
|
||
|
fmt : str, optional
|
||
|
A format string, e.g. 'ro' for red circles. See the *Notes*
|
||
|
section for a full description of the format strings.
|
||
|
|
||
|
Format strings are just an abbreviation for quickly setting
|
||
|
basic line properties. All of these and more can also be
|
||
|
controlled by keyword arguments.
|
||
|
|
||
|
This argument cannot be passed as keyword.
|
||
|
|
||
|
data : indexable object, optional
|
||
|
An object with labelled data. If given, provide the label names to
|
||
|
plot in *x* and *y*.
|
||
|
|
||
|
.. note::
|
||
|
Technically there's a slight ambiguity in calls where the
|
||
|
second label is a valid *fmt*. `plot('n', 'o', data=obj)`
|
||
|
could be `plt(x, y)` or `plt(y, fmt)`. In such cases,
|
||
|
the former interpretation is chosen, but a warning is issued.
|
||
|
You may suppress the warning by adding an empty format string
|
||
|
`plot('n', 'o', '', data=obj)`.
|
||
|
|
||
|
Other Parameters
|
||
|
----------------
|
||
|
scalex, scaley : bool, optional, default: True
|
||
|
These parameters determined if the view limits are adapted to
|
||
|
the data limits. The values are passed on to `autoscale_view`.
|
||
|
|
||
|
**kwargs : `.Line2D` properties, optional
|
||
|
*kwargs* are used to specify properties like a line label (for
|
||
|
auto legends), linewidth, antialiasing, marker face color.
|
||
|
Example::
|
||
|
|
||
|
>>> plot([1, 2, 3], [1, 2, 3], 'go-', label='line 1', linewidth=2)
|
||
|
>>> plot([1, 2, 3], [1, 4, 9], 'rs', label='line 2')
|
||
|
|
||
|
If you make multiple lines with one plot command, the kwargs
|
||
|
apply to all those lines.
|
||
|
|
||
|
Here is a list of available `.Line2D` properties:
|
||
|
|
||
|
%(_Line2D_docstr)s
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
lines
|
||
|
A list of `.Line2D` objects representing the plotted data.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
scatter : XY scatter plot with markers of varying size and/or color (
|
||
|
sometimes also called bubble chart).
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
**Format Strings**
|
||
|
|
||
|
A format string consists of a part for color, marker and line::
|
||
|
|
||
|
fmt = '[marker][line][color]'
|
||
|
|
||
|
Each of them is optional. If not provided, the value from the style
|
||
|
cycle is used. Exception: If ``line`` is given, but no ``marker``,
|
||
|
the data will be a line without markers.
|
||
|
|
||
|
Other combinations such as ``[color][marker][line]`` are also
|
||
|
supported, but note that their parsing may be ambiguous.
|
||
|
|
||
|
**Markers**
|
||
|
|
||
|
============= ===============================
|
||
|
character description
|
||
|
============= ===============================
|
||
|
``'.'`` point marker
|
||
|
``','`` pixel marker
|
||
|
``'o'`` circle marker
|
||
|
``'v'`` triangle_down marker
|
||
|
``'^'`` triangle_up marker
|
||
|
``'<'`` triangle_left marker
|
||
|
``'>'`` triangle_right marker
|
||
|
``'1'`` tri_down marker
|
||
|
``'2'`` tri_up marker
|
||
|
``'3'`` tri_left marker
|
||
|
``'4'`` tri_right marker
|
||
|
``'s'`` square marker
|
||
|
``'p'`` pentagon marker
|
||
|
``'*'`` star marker
|
||
|
``'h'`` hexagon1 marker
|
||
|
``'H'`` hexagon2 marker
|
||
|
``'+'`` plus marker
|
||
|
``'x'`` x marker
|
||
|
``'D'`` diamond marker
|
||
|
``'d'`` thin_diamond marker
|
||
|
``'|'`` vline marker
|
||
|
``'_'`` hline marker
|
||
|
============= ===============================
|
||
|
|
||
|
**Line Styles**
|
||
|
|
||
|
============= ===============================
|
||
|
character description
|
||
|
============= ===============================
|
||
|
``'-'`` solid line style
|
||
|
``'--'`` dashed line style
|
||
|
``'-.'`` dash-dot line style
|
||
|
``':'`` dotted line style
|
||
|
============= ===============================
|
||
|
|
||
|
Example format strings::
|
||
|
|
||
|
'b' # blue markers with default shape
|
||
|
'or' # red circles
|
||
|
'-g' # green solid line
|
||
|
'--' # dashed line with default color
|
||
|
'^k:' # black triangle_up markers connected by a dotted line
|
||
|
|
||
|
**Colors**
|
||
|
|
||
|
The supported color abbreviations are the single letter codes
|
||
|
|
||
|
============= ===============================
|
||
|
character color
|
||
|
============= ===============================
|
||
|
``'b'`` blue
|
||
|
``'g'`` green
|
||
|
``'r'`` red
|
||
|
``'c'`` cyan
|
||
|
``'m'`` magenta
|
||
|
``'y'`` yellow
|
||
|
``'k'`` black
|
||
|
``'w'`` white
|
||
|
============= ===============================
|
||
|
|
||
|
and the ``'CN'`` colors that index into the default property cycle.
|
||
|
|
||
|
If the color is the only part of the format string, you can
|
||
|
additionally use any `matplotlib.colors` spec, e.g. full names
|
||
|
(``'green'``) or hex strings (``'#008000'``).
|
||
|
"""
|
||
|
kwargs = cbook.normalize_kwargs(kwargs, mlines.Line2D)
|
||
|
lines = [*self._get_lines(*args, data=data, **kwargs)]
|
||
|
for line in lines:
|
||
|
self.add_line(line)
|
||
|
self._request_autoscale_view(scalex=scalex, scaley=scaley)
|
||
|
return lines
|
||
|
|
||
|
@_preprocess_data(replace_names=["x", "y"], label_namer="y")
|
||
|
@docstring.dedent_interpd
|
||
|
def plot_date(self, x, y, fmt='o', tz=None, xdate=True, ydate=False,
|
||
|
**kwargs):
|
||
|
"""
|
||
|
Plot data that contains dates.
|
||
|
|
||
|
Similar to `.plot`, this plots *y* vs. *x* as lines or markers.
|
||
|
However, the axis labels are formatted as dates depending on *xdate*
|
||
|
and *ydate*.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
x, y : array-like
|
||
|
The coordinates of the data points. If *xdate* or *ydate* is
|
||
|
*True*, the respective values *x* or *y* are interpreted as
|
||
|
:ref:`Matplotlib dates <date-format>`.
|
||
|
|
||
|
fmt : str, optional
|
||
|
The plot format string. For details, see the corresponding
|
||
|
parameter in `.plot`.
|
||
|
|
||
|
tz : timezone string or `tzinfo` or None
|
||
|
The time zone to use in labeling dates. If *None*, defaults to
|
||
|
:rc:`timezone`.
|
||
|
|
||
|
xdate : bool, optional, default: True
|
||
|
If *True*, the *x*-axis will be interpreted as Matplotlib dates.
|
||
|
|
||
|
ydate : bool, optional, default: False
|
||
|
If *True*, the *y*-axis will be interpreted as Matplotlib dates.
|
||
|
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
lines
|
||
|
A list of `.Line2D` objects representing the plotted data.
|
||
|
|
||
|
|
||
|
Other Parameters
|
||
|
----------------
|
||
|
**kwargs
|
||
|
Keyword arguments control the `.Line2D` properties:
|
||
|
|
||
|
%(_Line2D_docstr)s
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
matplotlib.dates : Helper functions on dates.
|
||
|
matplotlib.dates.date2num : Convert dates to num.
|
||
|
matplotlib.dates.num2date : Convert num to dates.
|
||
|
matplotlib.dates.drange : Create an equally spaced sequence of dates.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
If you are using custom date tickers and formatters, it may be
|
||
|
necessary to set the formatters/locators after the call to
|
||
|
`.plot_date`. `.plot_date` will set the default tick locator to
|
||
|
`.AutoDateLocator` (if the tick locator is not already set to a
|
||
|
`.DateLocator` instance) and the default tick formatter to
|
||
|
`.AutoDateFormatter` (if the tick formatter is not already set to a
|
||
|
`.DateFormatter` instance).
|
||
|
"""
|
||
|
if xdate:
|
||
|
self.xaxis_date(tz)
|
||
|
if ydate:
|
||
|
self.yaxis_date(tz)
|
||
|
|
||
|
ret = self.plot(x, y, fmt, **kwargs)
|
||
|
|
||
|
self._request_autoscale_view()
|
||
|
|
||
|
return ret
|
||
|
|
||
|
# @_preprocess_data() # let 'plot' do the unpacking..
|
||
|
@docstring.dedent_interpd
|
||
|
def loglog(self, *args, **kwargs):
|
||
|
"""
|
||
|
Make a plot with log scaling on both the x and y axis.
|
||
|
|
||
|
Call signatures::
|
||
|
|
||
|
loglog([x], y, [fmt], data=None, **kwargs)
|
||
|
loglog([x], y, [fmt], [x2], y2, [fmt2], ..., **kwargs)
|
||
|
|
||
|
This is just a thin wrapper around `.plot` which additionally changes
|
||
|
both the x-axis and the y-axis to log scaling. All of the concepts and
|
||
|
parameters of plot can be used here as well.
|
||
|
|
||
|
The additional parameters *basex/y*, *subsx/y* and *nonposx/y* control
|
||
|
the x/y-axis properties. They are just forwarded to `.Axes.set_xscale`
|
||
|
and `.Axes.set_yscale`.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
basex, basey : scalar, optional, default 10
|
||
|
Base of the x/y logarithm.
|
||
|
|
||
|
subsx, subsy : sequence, optional
|
||
|
The location of the minor x/y ticks. If *None*, reasonable
|
||
|
locations are automatically chosen depending on the number of
|
||
|
decades in the plot.
|
||
|
See `.Axes.set_xscale` / `.Axes.set_yscale` for details.
|
||
|
|
||
|
nonposx, nonposy : {'mask', 'clip'}, optional, default 'mask'
|
||
|
Non-positive values in x or y can be masked as invalid, or clipped
|
||
|
to a very small positive number.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
lines
|
||
|
A list of `.Line2D` objects representing the plotted data.
|
||
|
|
||
|
Other Parameters
|
||
|
----------------
|
||
|
**kwargs
|
||
|
All parameters supported by `.plot`.
|
||
|
"""
|
||
|
dx = {k: kwargs.pop(k) for k in ['basex', 'subsx', 'nonposx']
|
||
|
if k in kwargs}
|
||
|
dy = {k: kwargs.pop(k) for k in ['basey', 'subsy', 'nonposy']
|
||
|
if k in kwargs}
|
||
|
|
||
|
self.set_xscale('log', **dx)
|
||
|
self.set_yscale('log', **dy)
|
||
|
|
||
|
l = self.plot(*args, **kwargs)
|
||
|
return l
|
||
|
|
||
|
# @_preprocess_data() # let 'plot' do the unpacking..
|
||
|
@docstring.dedent_interpd
|
||
|
def semilogx(self, *args, **kwargs):
|
||
|
"""
|
||
|
Make a plot with log scaling on the x axis.
|
||
|
|
||
|
Call signatures::
|
||
|
|
||
|
semilogx([x], y, [fmt], data=None, **kwargs)
|
||
|
semilogx([x], y, [fmt], [x2], y2, [fmt2], ..., **kwargs)
|
||
|
|
||
|
This is just a thin wrapper around `.plot` which additionally changes
|
||
|
the x-axis to log scaling. All of the concepts and parameters of plot
|
||
|
can be used here as well.
|
||
|
|
||
|
The additional parameters *basex*, *subsx* and *nonposx* control the
|
||
|
x-axis properties. They are just forwarded to `.Axes.set_xscale`.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
basex : scalar, optional, default 10
|
||
|
Base of the x logarithm.
|
||
|
|
||
|
subsx : array-like, optional
|
||
|
The location of the minor xticks. If *None*, reasonable locations
|
||
|
are automatically chosen depending on the number of decades in the
|
||
|
plot. See `.Axes.set_xscale` for details.
|
||
|
|
||
|
nonposx : {'mask', 'clip'}, optional, default 'mask'
|
||
|
Non-positive values in x can be masked as invalid, or clipped to a
|
||
|
very small positive number.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
lines
|
||
|
A list of `.Line2D` objects representing the plotted data.
|
||
|
|
||
|
Other Parameters
|
||
|
----------------
|
||
|
**kwargs
|
||
|
All parameters supported by `.plot`.
|
||
|
"""
|
||
|
d = {k: kwargs.pop(k) for k in ['basex', 'subsx', 'nonposx']
|
||
|
if k in kwargs}
|
||
|
|
||
|
self.set_xscale('log', **d)
|
||
|
l = self.plot(*args, **kwargs)
|
||
|
return l
|
||
|
|
||
|
# @_preprocess_data() # let 'plot' do the unpacking..
|
||
|
@docstring.dedent_interpd
|
||
|
def semilogy(self, *args, **kwargs):
|
||
|
"""
|
||
|
Make a plot with log scaling on the y axis.
|
||
|
|
||
|
Call signatures::
|
||
|
|
||
|
semilogy([x], y, [fmt], data=None, **kwargs)
|
||
|
semilogy([x], y, [fmt], [x2], y2, [fmt2], ..., **kwargs)
|
||
|
|
||
|
This is just a thin wrapper around `.plot` which additionally changes
|
||
|
the y-axis to log scaling. All of the concepts and parameters of plot
|
||
|
can be used here as well.
|
||
|
|
||
|
The additional parameters *basey*, *subsy* and *nonposy* control the
|
||
|
y-axis properties. They are just forwarded to `.Axes.set_yscale`.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
basey : scalar, optional, default 10
|
||
|
Base of the y logarithm.
|
||
|
|
||
|
subsy : array-like, optional
|
||
|
The location of the minor yticks. If *None*, reasonable locations
|
||
|
are automatically chosen depending on the number of decades in the
|
||
|
plot. See `.Axes.set_yscale` for details.
|
||
|
|
||
|
nonposy : {'mask', 'clip'}, optional, default 'mask'
|
||
|
Non-positive values in y can be masked as invalid, or clipped to a
|
||
|
very small positive number.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
lines
|
||
|
A list of `.Line2D` objects representing the plotted data.
|
||
|
|
||
|
Other Parameters
|
||
|
----------------
|
||
|
**kwargs
|
||
|
All parameters supported by `.plot`.
|
||
|
"""
|
||
|
d = {k: kwargs.pop(k) for k in ['basey', 'subsy', 'nonposy']
|
||
|
if k in kwargs}
|
||
|
self.set_yscale('log', **d)
|
||
|
l = self.plot(*args, **kwargs)
|
||
|
|
||
|
return l
|
||
|
|
||
|
@_preprocess_data(replace_names=["x"], label_namer="x")
|
||
|
def acorr(self, x, **kwargs):
|
||
|
"""
|
||
|
Plot the autocorrelation of *x*.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
x : array-like
|
||
|
|
||
|
detrend : callable, optional, default: `mlab.detrend_none`
|
||
|
*x* is detrended by the *detrend* callable. This must be a
|
||
|
function ``x = detrend(x)`` accepting and returning an
|
||
|
`numpy.array`. Default is no normalization.
|
||
|
|
||
|
normed : bool, optional, default: True
|
||
|
If ``True``, input vectors are normalised to unit length.
|
||
|
|
||
|
usevlines : bool, optional, default: True
|
||
|
Determines the plot style.
|
||
|
|
||
|
If ``True``, vertical lines are plotted from 0 to the acorr value
|
||
|
using `Axes.vlines`. Additionally, a horizontal line is plotted
|
||
|
at y=0 using `Axes.axhline`.
|
||
|
|
||
|
If ``False``, markers are plotted at the acorr values using
|
||
|
`Axes.plot`.
|
||
|
|
||
|
maxlags : int, optional, default: 10
|
||
|
Number of lags to show. If ``None``, will return all
|
||
|
``2 * len(x) - 1`` lags.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
lags : array (length ``2*maxlags+1``)
|
||
|
The lag vector.
|
||
|
c : array (length ``2*maxlags+1``)
|
||
|
The auto correlation vector.
|
||
|
line : `.LineCollection` or `.Line2D`
|
||
|
`.Artist` added to the axes of the correlation:
|
||
|
|
||
|
- `.LineCollection` if *usevlines* is True.
|
||
|
- `.Line2D` if *usevlines* is False.
|
||
|
b : `.Line2D` or None
|
||
|
Horizontal line at 0 if *usevlines* is True
|
||
|
None *usevlines* is False.
|
||
|
|
||
|
Other Parameters
|
||
|
----------------
|
||
|
linestyle : `.Line2D` property, optional
|
||
|
The linestyle for plotting the data points.
|
||
|
Only used if *usevlines* is ``False``.
|
||
|
|
||
|
marker : str, optional, default: 'o'
|
||
|
The marker for plotting the data points.
|
||
|
Only used if *usevlines* is ``False``.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
The cross correlation is performed with :func:`numpy.correlate` with
|
||
|
``mode = "full"``.
|
||
|
"""
|
||
|
return self.xcorr(x, x, **kwargs)
|
||
|
|
||
|
@_preprocess_data(replace_names=["x", "y"], label_namer="y")
|
||
|
def xcorr(self, x, y, normed=True, detrend=mlab.detrend_none,
|
||
|
usevlines=True, maxlags=10, **kwargs):
|
||
|
r"""
|
||
|
Plot the cross correlation between *x* and *y*.
|
||
|
|
||
|
The correlation with lag k is defined as
|
||
|
:math:`\sum_n x[n+k] \cdot y^*[n]`, where :math:`y^*` is the complex
|
||
|
conjugate of :math:`y`.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
x : array-like of length n
|
||
|
|
||
|
y : array-like of length n
|
||
|
|
||
|
detrend : callable, optional, default: `mlab.detrend_none`
|
||
|
*x* and *y* are detrended by the *detrend* callable. This must be a
|
||
|
function ``x = detrend(x)`` accepting and returning an
|
||
|
`numpy.array`. Default is no normalization.
|
||
|
|
||
|
normed : bool, optional, default: True
|
||
|
If ``True``, input vectors are normalised to unit length.
|
||
|
|
||
|
usevlines : bool, optional, default: True
|
||
|
Determines the plot style.
|
||
|
|
||
|
If ``True``, vertical lines are plotted from 0 to the xcorr value
|
||
|
using `Axes.vlines`. Additionally, a horizontal line is plotted
|
||
|
at y=0 using `Axes.axhline`.
|
||
|
|
||
|
If ``False``, markers are plotted at the xcorr values using
|
||
|
`Axes.plot`.
|
||
|
|
||
|
maxlags : int, optional, default: 10
|
||
|
Number of lags to show. If None, will return all ``2 * len(x) - 1``
|
||
|
lags.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
lags : array (length ``2*maxlags+1``)
|
||
|
The lag vector.
|
||
|
c : array (length ``2*maxlags+1``)
|
||
|
The auto correlation vector.
|
||
|
line : `.LineCollection` or `.Line2D`
|
||
|
`.Artist` added to the axes of the correlation:
|
||
|
|
||
|
- `.LineCollection` if *usevlines* is True.
|
||
|
- `.Line2D` if *usevlines* is False.
|
||
|
b : `.Line2D` or None
|
||
|
Horizontal line at 0 if *usevlines* is True
|
||
|
None *usevlines* is False.
|
||
|
|
||
|
Other Parameters
|
||
|
----------------
|
||
|
linestyle : `.Line2D` property, optional
|
||
|
The linestyle for plotting the data points.
|
||
|
Only used if *usevlines* is ``False``.
|
||
|
|
||
|
marker : str, optional, default: 'o'
|
||
|
The marker for plotting the data points.
|
||
|
Only used if *usevlines* is ``False``.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
The cross correlation is performed with :func:`numpy.correlate` with
|
||
|
``mode = "full"``.
|
||
|
"""
|
||
|
Nx = len(x)
|
||
|
if Nx != len(y):
|
||
|
raise ValueError('x and y must be equal length')
|
||
|
|
||
|
x = detrend(np.asarray(x))
|
||
|
y = detrend(np.asarray(y))
|
||
|
|
||
|
correls = np.correlate(x, y, mode="full")
|
||
|
|
||
|
if normed:
|
||
|
correls /= np.sqrt(np.dot(x, x) * np.dot(y, y))
|
||
|
|
||
|
if maxlags is None:
|
||
|
maxlags = Nx - 1
|
||
|
|
||
|
if maxlags >= Nx or maxlags < 1:
|
||
|
raise ValueError('maxlags must be None or strictly '
|
||
|
'positive < %d' % Nx)
|
||
|
|
||
|
lags = np.arange(-maxlags, maxlags + 1)
|
||
|
correls = correls[Nx - 1 - maxlags:Nx + maxlags]
|
||
|
|
||
|
if usevlines:
|
||
|
a = self.vlines(lags, [0], correls, **kwargs)
|
||
|
# Make label empty so only vertical lines get a legend entry
|
||
|
kwargs.pop('label', '')
|
||
|
b = self.axhline(**kwargs)
|
||
|
else:
|
||
|
kwargs.setdefault('marker', 'o')
|
||
|
kwargs.setdefault('linestyle', 'None')
|
||
|
a, = self.plot(lags, correls, **kwargs)
|
||
|
b = None
|
||
|
return lags, correls, a, b
|
||
|
|
||
|
#### Specialized plotting
|
||
|
|
||
|
# @_preprocess_data() # let 'plot' do the unpacking..
|
||
|
def step(self, x, y, *args, where='pre', data=None, **kwargs):
|
||
|
"""
|
||
|
Make a step plot.
|
||
|
|
||
|
Call signatures::
|
||
|
|
||
|
step(x, y, [fmt], *, data=None, where='pre', **kwargs)
|
||
|
step(x, y, [fmt], x2, y2, [fmt2], ..., *, where='pre', **kwargs)
|
||
|
|
||
|
This is just a thin wrapper around `.plot` which changes some
|
||
|
formatting options. Most of the concepts and parameters of plot can be
|
||
|
used here as well.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
x : array-like
|
||
|
1-D sequence of x positions. It is assumed, but not checked, that
|
||
|
it is uniformly increasing.
|
||
|
|
||
|
y : array-like
|
||
|
1-D sequence of y levels.
|
||
|
|
||
|
fmt : str, optional
|
||
|
A format string, e.g. 'g' for a green line. See `.plot` for a more
|
||
|
detailed description.
|
||
|
|
||
|
Note: While full format strings are accepted, it is recommended to
|
||
|
only specify the color. Line styles are currently ignored (use
|
||
|
the keyword argument *linestyle* instead). Markers are accepted
|
||
|
and plotted on the given positions, however, this is a rarely
|
||
|
needed feature for step plots.
|
||
|
|
||
|
data : indexable object, optional
|
||
|
An object with labelled data. If given, provide the label names to
|
||
|
plot in *x* and *y*.
|
||
|
|
||
|
where : {'pre', 'post', 'mid'}, optional, default 'pre'
|
||
|
Define where the steps should be placed:
|
||
|
|
||
|
- 'pre': The y value is continued constantly to the left from
|
||
|
every *x* position, i.e. the interval ``(x[i-1], x[i]]`` has the
|
||
|
value ``y[i]``.
|
||
|
- 'post': The y value is continued constantly to the right from
|
||
|
every *x* position, i.e. the interval ``[x[i], x[i+1])`` has the
|
||
|
value ``y[i]``.
|
||
|
- 'mid': Steps occur half-way between the *x* positions.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
lines
|
||
|
A list of `.Line2D` objects representing the plotted data.
|
||
|
|
||
|
Other Parameters
|
||
|
----------------
|
||
|
**kwargs
|
||
|
Additional parameters are the same as those for `.plot`.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
.. [notes section required to get data note injection right]
|
||
|
"""
|
||
|
cbook._check_in_list(('pre', 'post', 'mid'), where=where)
|
||
|
kwargs['drawstyle'] = 'steps-' + where
|
||
|
return self.plot(x, y, *args, data=data, **kwargs)
|
||
|
|
||
|
@staticmethod
|
||
|
def _convert_dx(dx, x0, xconv, convert):
|
||
|
"""
|
||
|
Small helper to do logic of width conversion flexibly.
|
||
|
|
||
|
*dx* and *x0* have units, but *xconv* has already been converted
|
||
|
to unitless (and is an ndarray). This allows the *dx* to have units
|
||
|
that are different from *x0*, but are still accepted by the
|
||
|
``__add__`` operator of *x0*.
|
||
|
"""
|
||
|
|
||
|
# x should be an array...
|
||
|
assert type(xconv) is np.ndarray
|
||
|
|
||
|
if xconv.size == 0:
|
||
|
# xconv has already been converted, but maybe empty...
|
||
|
return convert(dx)
|
||
|
|
||
|
try:
|
||
|
# attempt to add the width to x0; this works for
|
||
|
# datetime+timedelta, for instance
|
||
|
|
||
|
# only use the first element of x and x0. This saves
|
||
|
# having to be sure addition works across the whole
|
||
|
# vector. This is particularly an issue if
|
||
|
# x0 and dx are lists so x0 + dx just concatenates the lists.
|
||
|
# We can't just cast x0 and dx to numpy arrays because that
|
||
|
# removes the units from unit packages like `pint` that
|
||
|
# wrap numpy arrays.
|
||
|
try:
|
||
|
x0 = cbook.safe_first_element(x0)
|
||
|
except (TypeError, IndexError, KeyError):
|
||
|
x0 = x0
|
||
|
|
||
|
try:
|
||
|
x = cbook.safe_first_element(xconv)
|
||
|
except (TypeError, IndexError, KeyError):
|
||
|
x = xconv
|
||
|
|
||
|
delist = False
|
||
|
if not np.iterable(dx):
|
||
|
dx = [dx]
|
||
|
delist = True
|
||
|
dx = [convert(x0 + ddx) - x for ddx in dx]
|
||
|
if delist:
|
||
|
dx = dx[0]
|
||
|
except (ValueError, TypeError, AttributeError):
|
||
|
# if the above fails (for any reason) just fallback to what
|
||
|
# we do by default and convert dx by itself.
|
||
|
dx = convert(dx)
|
||
|
return dx
|
||
|
|
||
|
@_preprocess_data()
|
||
|
@docstring.dedent_interpd
|
||
|
def bar(self, x, height, width=0.8, bottom=None, *, align="center",
|
||
|
**kwargs):
|
||
|
r"""
|
||
|
Make a bar plot.
|
||
|
|
||
|
The bars are positioned at *x* with the given *align*\ment. Their
|
||
|
dimensions are given by *width* and *height*. The vertical baseline
|
||
|
is *bottom* (default 0).
|
||
|
|
||
|
Each of *x*, *height*, *width*, and *bottom* may either be a scalar
|
||
|
applying to all bars, or it may be a sequence of length N providing a
|
||
|
separate value for each bar.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
x : sequence of scalars
|
||
|
The x coordinates of the bars. See also *align* for the
|
||
|
alignment of the bars to the coordinates.
|
||
|
|
||
|
height : scalar or sequence of scalars
|
||
|
The height(s) of the bars.
|
||
|
|
||
|
width : scalar or array-like, optional
|
||
|
The width(s) of the bars (default: 0.8).
|
||
|
|
||
|
bottom : scalar or array-like, optional
|
||
|
The y coordinate(s) of the bars bases (default: 0).
|
||
|
|
||
|
align : {'center', 'edge'}, optional, default: 'center'
|
||
|
Alignment of the bars to the *x* coordinates:
|
||
|
|
||
|
- 'center': Center the base on the *x* positions.
|
||
|
- 'edge': Align the left edges of the bars with the *x* positions.
|
||
|
|
||
|
To align the bars on the right edge pass a negative *width* and
|
||
|
``align='edge'``.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
container : `.BarContainer`
|
||
|
Container with all the bars and optionally errorbars.
|
||
|
|
||
|
Other Parameters
|
||
|
----------------
|
||
|
color : scalar or array-like, optional
|
||
|
The colors of the bar faces.
|
||
|
|
||
|
edgecolor : scalar or array-like, optional
|
||
|
The colors of the bar edges.
|
||
|
|
||
|
linewidth : scalar or array-like, optional
|
||
|
Width of the bar edge(s). If 0, don't draw edges.
|
||
|
|
||
|
tick_label : str or array-like, optional
|
||
|
The tick labels of the bars.
|
||
|
Default: None (Use default numeric labels.)
|
||
|
|
||
|
xerr, yerr : scalar or array-like of shape(N,) or shape(2, N), optional
|
||
|
If not *None*, add horizontal / vertical errorbars to the bar tips.
|
||
|
The values are +/- sizes relative to the data:
|
||
|
|
||
|
- scalar: symmetric +/- values for all bars
|
||
|
- shape(N,): symmetric +/- values for each bar
|
||
|
- shape(2, N): Separate - and + values for each bar. First row
|
||
|
contains the lower errors, the second row contains the upper
|
||
|
errors.
|
||
|
- *None*: No errorbar. (Default)
|
||
|
|
||
|
See :doc:`/gallery/statistics/errorbar_features`
|
||
|
for an example on the usage of ``xerr`` and ``yerr``.
|
||
|
|
||
|
ecolor : scalar or array-like, optional, default: 'black'
|
||
|
The line color of the errorbars.
|
||
|
|
||
|
capsize : scalar, optional
|
||
|
The length of the error bar caps in points.
|
||
|
Default: None, which will take the value from
|
||
|
:rc:`errorbar.capsize`.
|
||
|
|
||
|
error_kw : dict, optional
|
||
|
Dictionary of kwargs to be passed to the `~.Axes.errorbar`
|
||
|
method. Values of *ecolor* or *capsize* defined here take
|
||
|
precedence over the independent kwargs.
|
||
|
|
||
|
log : bool, optional, default: False
|
||
|
If *True*, set the y-axis to be log scale.
|
||
|
|
||
|
orientation : {'vertical', 'horizontal'}, optional
|
||
|
*This is for internal use only.* Please use `barh` for
|
||
|
horizontal bar plots. Default: 'vertical'.
|
||
|
|
||
|
See also
|
||
|
--------
|
||
|
barh: Plot a horizontal bar plot.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
The optional arguments *color*, *edgecolor*, *linewidth*,
|
||
|
*xerr*, and *yerr* can be either scalars or sequences of
|
||
|
length equal to the number of bars. This enables you to use
|
||
|
bar as the basis for stacked bar charts, or candlestick plots.
|
||
|
Detail: *xerr* and *yerr* are passed directly to
|
||
|
:meth:`errorbar`, so they can also have shape 2xN for
|
||
|
independent specification of lower and upper errors.
|
||
|
|
||
|
Other optional kwargs:
|
||
|
|
||
|
%(Rectangle)s
|
||
|
"""
|
||
|
kwargs = cbook.normalize_kwargs(kwargs, mpatches.Patch)
|
||
|
color = kwargs.pop('color', None)
|
||
|
if color is None:
|
||
|
color = self._get_patches_for_fill.get_next_color()
|
||
|
edgecolor = kwargs.pop('edgecolor', None)
|
||
|
linewidth = kwargs.pop('linewidth', None)
|
||
|
|
||
|
# Because xerr and yerr will be passed to errorbar, most dimension
|
||
|
# checking and processing will be left to the errorbar method.
|
||
|
xerr = kwargs.pop('xerr', None)
|
||
|
yerr = kwargs.pop('yerr', None)
|
||
|
error_kw = kwargs.pop('error_kw', {})
|
||
|
ezorder = error_kw.pop('zorder', None)
|
||
|
if ezorder is None:
|
||
|
ezorder = kwargs.get('zorder', None)
|
||
|
if ezorder is not None:
|
||
|
# If using the bar zorder, increment slightly to make sure
|
||
|
# errorbars are drawn on top of bars
|
||
|
ezorder += 0.01
|
||
|
error_kw.setdefault('zorder', ezorder)
|
||
|
ecolor = kwargs.pop('ecolor', 'k')
|
||
|
capsize = kwargs.pop('capsize', rcParams["errorbar.capsize"])
|
||
|
error_kw.setdefault('ecolor', ecolor)
|
||
|
error_kw.setdefault('capsize', capsize)
|
||
|
|
||
|
orientation = kwargs.pop('orientation', 'vertical')
|
||
|
cbook._check_in_list(['vertical', 'horizontal'],
|
||
|
orientation=orientation)
|
||
|
log = kwargs.pop('log', False)
|
||
|
label = kwargs.pop('label', '')
|
||
|
tick_labels = kwargs.pop('tick_label', None)
|
||
|
|
||
|
y = bottom # Matches barh call signature.
|
||
|
if orientation == 'vertical':
|
||
|
if y is None:
|
||
|
y = 0
|
||
|
elif orientation == 'horizontal':
|
||
|
if x is None:
|
||
|
x = 0
|
||
|
|
||
|
if orientation == 'vertical':
|
||
|
self._process_unit_info(xdata=x, ydata=height, kwargs=kwargs)
|
||
|
if log:
|
||
|
self.set_yscale('log', nonposy='clip')
|
||
|
elif orientation == 'horizontal':
|
||
|
self._process_unit_info(xdata=width, ydata=y, kwargs=kwargs)
|
||
|
if log:
|
||
|
self.set_xscale('log', nonposx='clip')
|
||
|
|
||
|
# lets do some conversions now since some types cannot be
|
||
|
# subtracted uniformly
|
||
|
if self.xaxis is not None:
|
||
|
x0 = x
|
||
|
x = np.asarray(self.convert_xunits(x))
|
||
|
width = self._convert_dx(width, x0, x, self.convert_xunits)
|
||
|
if xerr is not None:
|
||
|
xerr = self._convert_dx(xerr, x0, x, self.convert_xunits)
|
||
|
if self.yaxis is not None:
|
||
|
y0 = y
|
||
|
y = np.asarray(self.convert_yunits(y))
|
||
|
height = self._convert_dx(height, y0, y, self.convert_yunits)
|
||
|
if yerr is not None:
|
||
|
yerr = self._convert_dx(yerr, y0, y, self.convert_yunits)
|
||
|
|
||
|
x, height, width, y, linewidth = np.broadcast_arrays(
|
||
|
# Make args iterable too.
|
||
|
np.atleast_1d(x), height, width, y, linewidth)
|
||
|
|
||
|
# Now that units have been converted, set the tick locations.
|
||
|
if orientation == 'vertical':
|
||
|
tick_label_axis = self.xaxis
|
||
|
tick_label_position = x
|
||
|
elif orientation == 'horizontal':
|
||
|
tick_label_axis = self.yaxis
|
||
|
tick_label_position = y
|
||
|
|
||
|
linewidth = itertools.cycle(np.atleast_1d(linewidth))
|
||
|
color = itertools.chain(itertools.cycle(mcolors.to_rgba_array(color)),
|
||
|
# Fallback if color == "none".
|
||
|
itertools.repeat('none'))
|
||
|
if edgecolor is None:
|
||
|
edgecolor = itertools.repeat(None)
|
||
|
else:
|
||
|
edgecolor = itertools.chain(
|
||
|
itertools.cycle(mcolors.to_rgba_array(edgecolor)),
|
||
|
# Fallback if edgecolor == "none".
|
||
|
itertools.repeat('none'))
|
||
|
|
||
|
# We will now resolve the alignment and really have
|
||
|
# left, bottom, width, height vectors
|
||
|
cbook._check_in_list(['center', 'edge'], align=align)
|
||
|
if align == 'center':
|
||
|
if orientation == 'vertical':
|
||
|
try:
|
||
|
left = x - width / 2
|
||
|
except TypeError as e:
|
||
|
raise TypeError(f'the dtypes of parameters x ({x.dtype}) '
|
||
|
f'and width ({width.dtype}) '
|
||
|
f'are incompatible') from e
|
||
|
bottom = y
|
||
|
elif orientation == 'horizontal':
|
||
|
try:
|
||
|
bottom = y - height / 2
|
||
|
except TypeError as e:
|
||
|
raise TypeError(f'the dtypes of parameters y ({y.dtype}) '
|
||
|
f'and height ({height.dtype}) '
|
||
|
f'are incompatible') from e
|
||
|
left = x
|
||
|
elif align == 'edge':
|
||
|
left = x
|
||
|
bottom = y
|
||
|
|
||
|
patches = []
|
||
|
args = zip(left, bottom, width, height, color, edgecolor, linewidth)
|
||
|
for l, b, w, h, c, e, lw in args:
|
||
|
r = mpatches.Rectangle(
|
||
|
xy=(l, b), width=w, height=h,
|
||
|
facecolor=c,
|
||
|
edgecolor=e,
|
||
|
linewidth=lw,
|
||
|
label='_nolegend_',
|
||
|
)
|
||
|
r.update(kwargs)
|
||
|
r.get_path()._interpolation_steps = 100
|
||
|
if orientation == 'vertical':
|
||
|
r.sticky_edges.y.append(b)
|
||
|
elif orientation == 'horizontal':
|
||
|
r.sticky_edges.x.append(l)
|
||
|
self.add_patch(r)
|
||
|
patches.append(r)
|
||
|
|
||
|
if xerr is not None or yerr is not None:
|
||
|
if orientation == 'vertical':
|
||
|
# using list comps rather than arrays to preserve unit info
|
||
|
ex = [l + 0.5 * w for l, w in zip(left, width)]
|
||
|
ey = [b + h for b, h in zip(bottom, height)]
|
||
|
|
||
|
elif orientation == 'horizontal':
|
||
|
# using list comps rather than arrays to preserve unit info
|
||
|
ex = [l + w for l, w in zip(left, width)]
|
||
|
ey = [b + 0.5 * h for b, h in zip(bottom, height)]
|
||
|
|
||
|
error_kw.setdefault("label", '_nolegend_')
|
||
|
|
||
|
errorbar = self.errorbar(ex, ey,
|
||
|
yerr=yerr, xerr=xerr,
|
||
|
fmt='none', **error_kw)
|
||
|
else:
|
||
|
errorbar = None
|
||
|
|
||
|
self._request_autoscale_view()
|
||
|
|
||
|
bar_container = BarContainer(patches, errorbar, label=label)
|
||
|
self.add_container(bar_container)
|
||
|
|
||
|
if tick_labels is not None:
|
||
|
tick_labels = np.broadcast_to(tick_labels, len(patches))
|
||
|
tick_label_axis.set_ticks(tick_label_position)
|
||
|
tick_label_axis.set_ticklabels(tick_labels)
|
||
|
|
||
|
return bar_container
|
||
|
|
||
|
@docstring.dedent_interpd
|
||
|
def barh(self, y, width, height=0.8, left=None, *, align="center",
|
||
|
**kwargs):
|
||
|
r"""
|
||
|
Make a horizontal bar plot.
|
||
|
|
||
|
The bars are positioned at *y* with the given *align*\ment. Their
|
||
|
dimensions are given by *width* and *height*. The horizontal baseline
|
||
|
is *left* (default 0).
|
||
|
|
||
|
Each of *y*, *width*, *height*, and *left* may either be a scalar
|
||
|
applying to all bars, or it may be a sequence of length N providing a
|
||
|
separate value for each bar.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
y : scalar or array-like
|
||
|
The y coordinates of the bars. See also *align* for the
|
||
|
alignment of the bars to the coordinates.
|
||
|
|
||
|
width : scalar or array-like
|
||
|
The width(s) of the bars.
|
||
|
|
||
|
height : sequence of scalars, optional, default: 0.8
|
||
|
The heights of the bars.
|
||
|
|
||
|
left : sequence of scalars
|
||
|
The x coordinates of the left sides of the bars (default: 0).
|
||
|
|
||
|
align : {'center', 'edge'}, optional, default: 'center'
|
||
|
Alignment of the base to the *y* coordinates*:
|
||
|
|
||
|
- 'center': Center the bars on the *y* positions.
|
||
|
- 'edge': Align the bottom edges of the bars with the *y*
|
||
|
positions.
|
||
|
|
||
|
To align the bars on the top edge pass a negative *height* and
|
||
|
``align='edge'``.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
container : `.BarContainer`
|
||
|
Container with all the bars and optionally errorbars.
|
||
|
|
||
|
Other Parameters
|
||
|
----------------
|
||
|
color : scalar or array-like, optional
|
||
|
The colors of the bar faces.
|
||
|
|
||
|
edgecolor : scalar or array-like, optional
|
||
|
The colors of the bar edges.
|
||
|
|
||
|
linewidth : scalar or array-like, optional
|
||
|
Width of the bar edge(s). If 0, don't draw edges.
|
||
|
|
||
|
tick_label : str or array-like, optional
|
||
|
The tick labels of the bars.
|
||
|
Default: None (Use default numeric labels.)
|
||
|
|
||
|
xerr, yerr : scalar or array-like of shape(N,) or shape(2, N), optional
|
||
|
If not ``None``, add horizontal / vertical errorbars to the
|
||
|
bar tips. The values are +/- sizes relative to the data:
|
||
|
|
||
|
- scalar: symmetric +/- values for all bars
|
||
|
- shape(N,): symmetric +/- values for each bar
|
||
|
- shape(2, N): Separate - and + values for each bar. First row
|
||
|
contains the lower errors, the second row contains the upper
|
||
|
errors.
|
||
|
- *None*: No errorbar. (default)
|
||
|
|
||
|
See :doc:`/gallery/statistics/errorbar_features`
|
||
|
for an example on the usage of ``xerr`` and ``yerr``.
|
||
|
|
||
|
ecolor : scalar or array-like, optional, default: 'black'
|
||
|
The line color of the errorbars.
|
||
|
|
||
|
capsize : scalar, optional
|
||
|
The length of the error bar caps in points.
|
||
|
Default: None, which will take the value from
|
||
|
:rc:`errorbar.capsize`.
|
||
|
|
||
|
error_kw : dict, optional
|
||
|
Dictionary of kwargs to be passed to the `~.Axes.errorbar`
|
||
|
method. Values of *ecolor* or *capsize* defined here take
|
||
|
precedence over the independent kwargs.
|
||
|
|
||
|
log : bool, optional, default: False
|
||
|
If ``True``, set the x-axis to be log scale.
|
||
|
|
||
|
See also
|
||
|
--------
|
||
|
bar: Plot a vertical bar plot.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
The optional arguments *color*, *edgecolor*, *linewidth*,
|
||
|
*xerr*, and *yerr* can be either scalars or sequences of
|
||
|
length equal to the number of bars. This enables you to use
|
||
|
bar as the basis for stacked bar charts, or candlestick plots.
|
||
|
Detail: *xerr* and *yerr* are passed directly to
|
||
|
:meth:`errorbar`, so they can also have shape 2xN for
|
||
|
independent specification of lower and upper errors.
|
||
|
|
||
|
Other optional kwargs:
|
||
|
|
||
|
%(Rectangle)s
|
||
|
"""
|
||
|
kwargs.setdefault('orientation', 'horizontal')
|
||
|
patches = self.bar(x=left, height=height, width=width, bottom=y,
|
||
|
align=align, **kwargs)
|
||
|
return patches
|
||
|
|
||
|
@_preprocess_data()
|
||
|
@docstring.dedent_interpd
|
||
|
def broken_barh(self, xranges, yrange, **kwargs):
|
||
|
"""
|
||
|
Plot a horizontal sequence of rectangles.
|
||
|
|
||
|
A rectangle is drawn for each element of *xranges*. All rectangles
|
||
|
have the same vertical position and size defined by *yrange*.
|
||
|
|
||
|
This is a convenience function for instantiating a
|
||
|
`.BrokenBarHCollection`, adding it to the axes and autoscaling the
|
||
|
view.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
xranges : sequence of tuples (*xmin*, *xwidth*)
|
||
|
The x-positions and extends of the rectangles. For each tuple
|
||
|
(*xmin*, *xwidth*) a rectangle is drawn from *xmin* to *xmin* +
|
||
|
*xwidth*.
|
||
|
yrange : (*ymin*, *yheight*)
|
||
|
The y-position and extend for all the rectangles.
|
||
|
|
||
|
Other Parameters
|
||
|
----------------
|
||
|
**kwargs : :class:`.BrokenBarHCollection` properties
|
||
|
|
||
|
Each *kwarg* can be either a single argument applying to all
|
||
|
rectangles, e.g.::
|
||
|
|
||
|
facecolors='black'
|
||
|
|
||
|
or a sequence of arguments over which is cycled, e.g.::
|
||
|
|
||
|
facecolors=('black', 'blue')
|
||
|
|
||
|
would create interleaving black and blue rectangles.
|
||
|
|
||
|
Supported keywords:
|
||
|
|
||
|
%(BrokenBarHCollection)s
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
collection : A :class:`~.collections.BrokenBarHCollection`
|
||
|
"""
|
||
|
# process the unit information
|
||
|
if len(xranges):
|
||
|
xdata = cbook.safe_first_element(xranges)
|
||
|
else:
|
||
|
xdata = None
|
||
|
if len(yrange):
|
||
|
ydata = cbook.safe_first_element(yrange)
|
||
|
else:
|
||
|
ydata = None
|
||
|
self._process_unit_info(xdata=xdata,
|
||
|
ydata=ydata,
|
||
|
kwargs=kwargs)
|
||
|
xranges_conv = []
|
||
|
for xr in xranges:
|
||
|
if len(xr) != 2:
|
||
|
raise ValueError('each range in xrange must be a sequence '
|
||
|
'with two elements (i.e. an Nx2 array)')
|
||
|
# convert the absolute values, not the x and dx...
|
||
|
x_conv = np.asarray(self.convert_xunits(xr[0]))
|
||
|
x1 = self._convert_dx(xr[1], xr[0], x_conv, self.convert_xunits)
|
||
|
xranges_conv.append((x_conv, x1))
|
||
|
|
||
|
yrange_conv = self.convert_yunits(yrange)
|
||
|
|
||
|
col = mcoll.BrokenBarHCollection(xranges_conv, yrange_conv, **kwargs)
|
||
|
self.add_collection(col, autolim=True)
|
||
|
self._request_autoscale_view()
|
||
|
|
||
|
return col
|
||
|
|
||
|
@_preprocess_data()
|
||
|
def stem(self, *args, linefmt=None, markerfmt=None, basefmt=None, bottom=0,
|
||
|
label=None, use_line_collection=False):
|
||
|
"""
|
||
|
Create a stem plot.
|
||
|
|
||
|
A stem plot plots vertical lines at each *x* location from the baseline
|
||
|
to *y*, and places a marker there.
|
||
|
|
||
|
Call signature::
|
||
|
|
||
|
stem([x,] y, linefmt=None, markerfmt=None, basefmt=None)
|
||
|
|
||
|
The x-positions are optional. The formats may be provided either as
|
||
|
positional or as keyword-arguments.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
x : array-like, optional
|
||
|
The x-positions of the stems. Default: (0, 1, ..., len(y) - 1).
|
||
|
|
||
|
y : array-like
|
||
|
The y-values of the stem heads.
|
||
|
|
||
|
linefmt : str, optional
|
||
|
A string defining the properties of the vertical lines. Usually,
|
||
|
this will be a color or a color and a linestyle:
|
||
|
|
||
|
========= =============
|
||
|
Character Line Style
|
||
|
========= =============
|
||
|
``'-'`` solid line
|
||
|
``'--'`` dashed line
|
||
|
``'-.'`` dash-dot line
|
||
|
``':'`` dotted line
|
||
|
========= =============
|
||
|
|
||
|
Default: 'C0-', i.e. solid line with the first color of the color
|
||
|
cycle.
|
||
|
|
||
|
Note: While it is technically possible to specify valid formats
|
||
|
other than color or color and linestyle (e.g. 'rx' or '-.'), this
|
||
|
is beyond the intention of the method and will most likely not
|
||
|
result in a reasonable reasonable plot.
|
||
|
|
||
|
markerfmt : str, optional
|
||
|
A string defining the properties of the markers at the stem heads.
|
||
|
Default: 'C0o', i.e. filled circles with the first color of the
|
||
|
color cycle.
|
||
|
|
||
|
basefmt : str, optional
|
||
|
A format string defining the properties of the baseline.
|
||
|
|
||
|
Default: 'C3-' ('C2-' in classic mode).
|
||
|
|
||
|
bottom : float, optional, default: 0
|
||
|
The y-position of the baseline.
|
||
|
|
||
|
label : str, optional, default: None
|
||
|
The label to use for the stems in legends.
|
||
|
|
||
|
use_line_collection : bool, optional, default: False
|
||
|
If ``True``, store and plot the stem lines as a
|
||
|
`~.collections.LineCollection` instead of individual lines. This
|
||
|
significantly increases performance, and will become the default
|
||
|
option in Matplotlib 3.3. If ``False``, defaults to the old
|
||
|
behavior of using a list of `.Line2D` objects.
|
||
|
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
container : :class:`~matplotlib.container.StemContainer`
|
||
|
The container may be treated like a tuple
|
||
|
(*markerline*, *stemlines*, *baseline*)
|
||
|
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
.. seealso::
|
||
|
The MATLAB function
|
||
|
`stem <http://www.mathworks.com/help/techdoc/ref/stem.html>`_
|
||
|
which inspired this method.
|
||
|
|
||
|
"""
|
||
|
if not 1 <= len(args) <= 5:
|
||
|
raise TypeError('stem expected between 1 and 5 positional '
|
||
|
'arguments, got {}'.format(args))
|
||
|
|
||
|
if len(args) == 1:
|
||
|
y, = args
|
||
|
x = np.arange(len(y))
|
||
|
args = ()
|
||
|
else:
|
||
|
x, y, *args = args
|
||
|
|
||
|
self._process_unit_info(xdata=x, ydata=y)
|
||
|
x = self.convert_xunits(x)
|
||
|
y = self.convert_yunits(y)
|
||
|
|
||
|
# defaults for formats
|
||
|
if linefmt is None:
|
||
|
try:
|
||
|
# fallback to positional argument
|
||
|
linefmt = args[0]
|
||
|
except IndexError:
|
||
|
linecolor = 'C0'
|
||
|
linemarker = 'None'
|
||
|
linestyle = '-'
|
||
|
else:
|
||
|
linestyle, linemarker, linecolor = \
|
||
|
_process_plot_format(linefmt)
|
||
|
else:
|
||
|
linestyle, linemarker, linecolor = _process_plot_format(linefmt)
|
||
|
|
||
|
if markerfmt is None:
|
||
|
try:
|
||
|
# fallback to positional argument
|
||
|
markerfmt = args[1]
|
||
|
except IndexError:
|
||
|
markercolor = 'C0'
|
||
|
markermarker = 'o'
|
||
|
markerstyle = 'None'
|
||
|
else:
|
||
|
markerstyle, markermarker, markercolor = \
|
||
|
_process_plot_format(markerfmt)
|
||
|
else:
|
||
|
markerstyle, markermarker, markercolor = \
|
||
|
_process_plot_format(markerfmt)
|
||
|
|
||
|
if basefmt is None:
|
||
|
try:
|
||
|
# fallback to positional argument
|
||
|
basefmt = args[2]
|
||
|
except IndexError:
|
||
|
if rcParams['_internal.classic_mode']:
|
||
|
basecolor = 'C2'
|
||
|
else:
|
||
|
basecolor = 'C3'
|
||
|
basemarker = 'None'
|
||
|
basestyle = '-'
|
||
|
else:
|
||
|
basestyle, basemarker, basecolor = \
|
||
|
_process_plot_format(basefmt)
|
||
|
else:
|
||
|
basestyle, basemarker, basecolor = _process_plot_format(basefmt)
|
||
|
|
||
|
# New behaviour in 3.1 is to use a LineCollection for the stemlines
|
||
|
if use_line_collection:
|
||
|
stemlines = [((xi, bottom), (xi, yi)) for xi, yi in zip(x, y)]
|
||
|
if linestyle is None:
|
||
|
linestyle = rcParams['lines.linestyle']
|
||
|
stemlines = mcoll.LineCollection(stemlines, linestyles=linestyle,
|
||
|
colors=linecolor,
|
||
|
label='_nolegend_')
|
||
|
self.add_collection(stemlines)
|
||
|
# Old behaviour is to plot each of the lines individually
|
||
|
else:
|
||
|
cbook._warn_external(
|
||
|
'In Matplotlib 3.3 individual lines on a stem plot will be '
|
||
|
'added as a LineCollection instead of individual lines. '
|
||
|
'This significantly improves the performance of a stem plot. '
|
||
|
'To remove this warning and switch to the new behaviour, '
|
||
|
'set the "use_line_collection" keyword argument to True.')
|
||
|
stemlines = []
|
||
|
for xi, yi in zip(x, y):
|
||
|
l, = self.plot([xi, xi], [bottom, yi],
|
||
|
color=linecolor, linestyle=linestyle,
|
||
|
marker=linemarker, label="_nolegend_")
|
||
|
stemlines.append(l)
|
||
|
|
||
|
markerline, = self.plot(x, y, color=markercolor, linestyle=markerstyle,
|
||
|
marker=markermarker, label="_nolegend_")
|
||
|
|
||
|
baseline, = self.plot([np.min(x), np.max(x)], [bottom, bottom],
|
||
|
color=basecolor, linestyle=basestyle,
|
||
|
marker=basemarker, label="_nolegend_")
|
||
|
|
||
|
stem_container = StemContainer((markerline, stemlines, baseline),
|
||
|
label=label)
|
||
|
self.add_container(stem_container)
|
||
|
return stem_container
|
||
|
|
||
|
@_preprocess_data(replace_names=["x", "explode", "labels", "colors"])
|
||
|
def pie(self, x, explode=None, labels=None, colors=None,
|
||
|
autopct=None, pctdistance=0.6, shadow=False, labeldistance=1.1,
|
||
|
startangle=None, radius=None, counterclock=True,
|
||
|
wedgeprops=None, textprops=None, center=(0, 0),
|
||
|
frame=False, rotatelabels=False):
|
||
|
"""
|
||
|
Plot a pie chart.
|
||
|
|
||
|
Make a pie chart of array *x*. The fractional area of each wedge is
|
||
|
given by ``x/sum(x)``. If ``sum(x) < 1``, then the values of *x* give
|
||
|
the fractional area directly and the array will not be normalized. The
|
||
|
resulting pie will have an empty wedge of size ``1 - sum(x)``.
|
||
|
|
||
|
The wedges are plotted counterclockwise, by default starting from the
|
||
|
x-axis.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
x : array-like
|
||
|
The wedge sizes.
|
||
|
|
||
|
explode : array-like, optional, default: None
|
||
|
If not *None*, is a ``len(x)`` array which specifies the fraction
|
||
|
of the radius with which to offset each wedge.
|
||
|
|
||
|
labels : list, optional, default: None
|
||
|
A sequence of strings providing the labels for each wedge
|
||
|
|
||
|
colors : array-like, optional, default: None
|
||
|
A sequence of matplotlib color args through which the pie chart
|
||
|
will cycle. If *None*, will use the colors in the currently
|
||
|
active cycle.
|
||
|
|
||
|
autopct : None (default), str, or function, optional
|
||
|
If not *None*, is a string or function used to label the wedges
|
||
|
with their numeric value. The label will be placed inside the
|
||
|
wedge. If it is a format string, the label will be ``fmt%pct``.
|
||
|
If it is a function, it will be called.
|
||
|
|
||
|
pctdistance : float, optional, default: 0.6
|
||
|
The ratio between the center of each pie slice and the start of
|
||
|
the text generated by *autopct*. Ignored if *autopct* is *None*.
|
||
|
|
||
|
shadow : bool, optional, default: False
|
||
|
Draw a shadow beneath the pie.
|
||
|
|
||
|
labeldistance : float or None, optional, default: 1.1
|
||
|
The radial distance at which the pie labels are drawn.
|
||
|
If set to ``None``, label are not drawn, but are stored for use in
|
||
|
``legend()``
|
||
|
|
||
|
startangle : float, optional, default: None
|
||
|
If not *None*, rotates the start of the pie chart by *angle*
|
||
|
degrees counterclockwise from the x-axis.
|
||
|
|
||
|
radius : float, optional, default: None
|
||
|
The radius of the pie, if *radius* is *None* it will be set to 1.
|
||
|
|
||
|
counterclock : bool, optional, default: True
|
||
|
Specify fractions direction, clockwise or counterclockwise.
|
||
|
|
||
|
wedgeprops : dict, optional, default: None
|
||
|
Dict of arguments passed to the wedge objects making the pie.
|
||
|
For example, you can pass in ``wedgeprops = {'linewidth': 3}``
|
||
|
to set the width of the wedge border lines equal to 3.
|
||
|
For more details, look at the doc/arguments of the wedge object.
|
||
|
By default ``clip_on=False``.
|
||
|
|
||
|
textprops : dict, optional, default: None
|
||
|
Dict of arguments to pass to the text objects.
|
||
|
|
||
|
center : list of float, optional, default: (0, 0)
|
||
|
Center position of the chart. Takes value (0, 0) or is a sequence
|
||
|
of 2 scalars.
|
||
|
|
||
|
frame : bool, optional, default: False
|
||
|
Plot axes frame with the chart if true.
|
||
|
|
||
|
rotatelabels : bool, optional, default: False
|
||
|
Rotate each label to the angle of the corresponding slice if true.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
patches : list
|
||
|
A sequence of :class:`matplotlib.patches.Wedge` instances
|
||
|
|
||
|
texts : list
|
||
|
A list of the label :class:`matplotlib.text.Text` instances.
|
||
|
|
||
|
autotexts : list
|
||
|
A list of :class:`~matplotlib.text.Text` instances for the numeric
|
||
|
labels. This will only be returned if the parameter *autopct* is
|
||
|
not *None*.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
The pie chart will probably look best if the figure and axes are
|
||
|
square, or the Axes aspect is equal.
|
||
|
This method sets the aspect ratio of the axis to "equal".
|
||
|
The axes aspect ratio can be controlled with `Axes.set_aspect`.
|
||
|
"""
|
||
|
self.set_aspect('equal')
|
||
|
# The use of float32 is "historical", but can't be changed without
|
||
|
# regenerating the test baselines.
|
||
|
x = np.asarray(x, np.float32)
|
||
|
if x.ndim != 1 and x.squeeze().ndim <= 1:
|
||
|
cbook.warn_deprecated(
|
||
|
"3.1", message="Non-1D inputs to pie() are currently "
|
||
|
"squeeze()d, but this behavior is deprecated since %(since)s "
|
||
|
"and will be removed %(removal)s; pass a 1D array instead.")
|
||
|
x = np.atleast_1d(x.squeeze())
|
||
|
|
||
|
sx = x.sum()
|
||
|
if sx > 1:
|
||
|
x = x / sx
|
||
|
|
||
|
if labels is None:
|
||
|
labels = [''] * len(x)
|
||
|
if explode is None:
|
||
|
explode = [0] * len(x)
|
||
|
if len(x) != len(labels):
|
||
|
raise ValueError("'label' must be of length 'x'")
|
||
|
if len(x) != len(explode):
|
||
|
raise ValueError("'explode' must be of length 'x'")
|
||
|
if colors is None:
|
||
|
get_next_color = self._get_patches_for_fill.get_next_color
|
||
|
else:
|
||
|
color_cycle = itertools.cycle(colors)
|
||
|
|
||
|
def get_next_color():
|
||
|
return next(color_cycle)
|
||
|
|
||
|
if radius is None:
|
||
|
radius = 1
|
||
|
|
||
|
# Starting theta1 is the start fraction of the circle
|
||
|
if startangle is None:
|
||
|
theta1 = 0
|
||
|
else:
|
||
|
theta1 = startangle / 360.0
|
||
|
|
||
|
# set default values in wedge_prop
|
||
|
if wedgeprops is None:
|
||
|
wedgeprops = {}
|
||
|
wedgeprops.setdefault('clip_on', False)
|
||
|
|
||
|
if textprops is None:
|
||
|
textprops = {}
|
||
|
textprops.setdefault('clip_on', False)
|
||
|
|
||
|
texts = []
|
||
|
slices = []
|
||
|
autotexts = []
|
||
|
|
||
|
for frac, label, expl in zip(x, labels, explode):
|
||
|
x, y = center
|
||
|
theta2 = (theta1 + frac) if counterclock else (theta1 - frac)
|
||
|
thetam = 2 * np.pi * 0.5 * (theta1 + theta2)
|
||
|
x += expl * math.cos(thetam)
|
||
|
y += expl * math.sin(thetam)
|
||
|
|
||
|
w = mpatches.Wedge((x, y), radius, 360. * min(theta1, theta2),
|
||
|
360. * max(theta1, theta2),
|
||
|
facecolor=get_next_color(),
|
||
|
**wedgeprops)
|
||
|
slices.append(w)
|
||
|
self.add_patch(w)
|
||
|
w.set_label(label)
|
||
|
|
||
|
if shadow:
|
||
|
# make sure to add a shadow after the call to
|
||
|
# add_patch so the figure and transform props will be
|
||
|
# set
|
||
|
shad = mpatches.Shadow(w, -0.02, -0.02)
|
||
|
shad.set_zorder(0.9 * w.get_zorder())
|
||
|
shad.set_label('_nolegend_')
|
||
|
self.add_patch(shad)
|
||
|
|
||
|
if labeldistance is not None:
|
||
|
xt = x + labeldistance * radius * math.cos(thetam)
|
||
|
yt = y + labeldistance * radius * math.sin(thetam)
|
||
|
label_alignment_h = 'left' if xt > 0 else 'right'
|
||
|
label_alignment_v = 'center'
|
||
|
label_rotation = 'horizontal'
|
||
|
if rotatelabels:
|
||
|
label_alignment_v = 'bottom' if yt > 0 else 'top'
|
||
|
label_rotation = (np.rad2deg(thetam)
|
||
|
+ (0 if xt > 0 else 180))
|
||
|
props = dict(horizontalalignment=label_alignment_h,
|
||
|
verticalalignment=label_alignment_v,
|
||
|
rotation=label_rotation,
|
||
|
size=rcParams['xtick.labelsize'])
|
||
|
props.update(textprops)
|
||
|
|
||
|
t = self.text(xt, yt, label, **props)
|
||
|
|
||
|
texts.append(t)
|
||
|
|
||
|
if autopct is not None:
|
||
|
xt = x + pctdistance * radius * math.cos(thetam)
|
||
|
yt = y + pctdistance * radius * math.sin(thetam)
|
||
|
if isinstance(autopct, str):
|
||
|
s = autopct % (100. * frac)
|
||
|
elif callable(autopct):
|
||
|
s = autopct(100. * frac)
|
||
|
else:
|
||
|
raise TypeError(
|
||
|
'autopct must be callable or a format string')
|
||
|
|
||
|
props = dict(horizontalalignment='center',
|
||
|
verticalalignment='center')
|
||
|
props.update(textprops)
|
||
|
t = self.text(xt, yt, s, **props)
|
||
|
|
||
|
autotexts.append(t)
|
||
|
|
||
|
theta1 = theta2
|
||
|
|
||
|
if not frame:
|
||
|
self.set_frame_on(False)
|
||
|
|
||
|
self.set_xlim((-1.25 + center[0],
|
||
|
1.25 + center[0]))
|
||
|
self.set_ylim((-1.25 + center[1],
|
||
|
1.25 + center[1]))
|
||
|
self.set_xticks([])
|
||
|
self.set_yticks([])
|
||
|
|
||
|
if autopct is None:
|
||
|
return slices, texts
|
||
|
else:
|
||
|
return slices, texts, autotexts
|
||
|
|
||
|
@_preprocess_data(replace_names=["x", "y", "xerr", "yerr"],
|
||
|
label_namer="y")
|
||
|
@docstring.dedent_interpd
|
||
|
def errorbar(self, x, y, yerr=None, xerr=None,
|
||
|
fmt='', ecolor=None, elinewidth=None, capsize=None,
|
||
|
barsabove=False, lolims=False, uplims=False,
|
||
|
xlolims=False, xuplims=False, errorevery=1, capthick=None,
|
||
|
**kwargs):
|
||
|
"""
|
||
|
Plot y versus x as lines and/or markers with attached errorbars.
|
||
|
|
||
|
*x*, *y* define the data locations, *xerr*, *yerr* define the errorbar
|
||
|
sizes. By default, this draws the data markers/lines as well the
|
||
|
errorbars. Use fmt='none' to draw errorbars without any data markers.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
x, y : scalar or array-like
|
||
|
The data positions.
|
||
|
|
||
|
xerr, yerr : scalar or array-like, shape(N,) or shape(2, N), optional
|
||
|
The errorbar sizes:
|
||
|
|
||
|
- scalar: Symmetric +/- values for all data points.
|
||
|
- shape(N,): Symmetric +/-values for each data point.
|
||
|
- shape(2, N): Separate - and + values for each bar. First row
|
||
|
contains the lower errors, the second row contains the upper
|
||
|
errors.
|
||
|
- *None*: No errorbar.
|
||
|
|
||
|
Note that all error arrays should have *positive* values.
|
||
|
|
||
|
See :doc:`/gallery/statistics/errorbar_features`
|
||
|
for an example on the usage of ``xerr`` and ``yerr``.
|
||
|
|
||
|
fmt : str, optional, default: ''
|
||
|
The format for the data points / data lines. See `.plot` for
|
||
|
details.
|
||
|
|
||
|
Use 'none' (case insensitive) to plot errorbars without any data
|
||
|
markers.
|
||
|
|
||
|
ecolor : color, optional, default: None
|
||
|
The color of the errorbar lines. If None, use the color of the
|
||
|
line connecting the markers.
|
||
|
|
||
|
elinewidth : scalar, optional, default: None
|
||
|
The linewidth of the errorbar lines. If None, the linewidth of
|
||
|
the current style is used.
|
||
|
|
||
|
capsize : scalar, optional, default: None
|
||
|
The length of the error bar caps in points. If None, it will take
|
||
|
the value from :rc:`errorbar.capsize`.
|
||
|
|
||
|
capthick : scalar, optional, default: None
|
||
|
An alias to the keyword argument *markeredgewidth* (a.k.a. *mew*).
|
||
|
This setting is a more sensible name for the property that
|
||
|
controls the thickness of the error bar cap in points. For
|
||
|
backwards compatibility, if *mew* or *markeredgewidth* are given,
|
||
|
then they will over-ride *capthick*. This may change in future
|
||
|
releases.
|
||
|
|
||
|
barsabove : bool, optional, default: False
|
||
|
If True, will plot the errorbars above the plot
|
||
|
symbols. Default is below.
|
||
|
|
||
|
lolims, uplims, xlolims, xuplims : bool, optional, default: False
|
||
|
These arguments can be used to indicate that a value gives only
|
||
|
upper/lower limits. In that case a caret symbol is used to
|
||
|
indicate this. *lims*-arguments may be of the same type as *xerr*
|
||
|
and *yerr*. To use limits with inverted axes, :meth:`set_xlim`
|
||
|
or :meth:`set_ylim` must be called before :meth:`errorbar`.
|
||
|
|
||
|
errorevery : int or (int, int), optional, default: 1
|
||
|
draws error bars on a subset of the data. *errorevery* =N draws
|
||
|
error bars on the points (x[::N], y[::N]).
|
||
|
*errorevery* =(start, N) draws error bars on the points
|
||
|
(x[start::N], y[start::N]). e.g. errorevery=(6, 3)
|
||
|
adds error bars to the data at (x[6], x[9], x[12], x[15], ...).
|
||
|
Used to avoid overlapping error bars when two series share x-axis
|
||
|
values.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
container : :class:`~.container.ErrorbarContainer`
|
||
|
The container contains:
|
||
|
|
||
|
- plotline: `.Line2D` instance of x, y plot markers and/or line.
|
||
|
- caplines: A tuple of `.Line2D` instances of the error bar caps.
|
||
|
- barlinecols: A tuple of
|
||
|
:class:`~matplotlib.collections.LineCollection` with the
|
||
|
horizontal and vertical error ranges.
|
||
|
|
||
|
Other Parameters
|
||
|
----------------
|
||
|
**kwargs
|
||
|
All other keyword arguments are passed on to the plot
|
||
|
command for the markers. For example, this code makes big red
|
||
|
squares with thick green edges::
|
||
|
|
||
|
x, y, yerr = rand(3, 10)
|
||
|
errorbar(x, y, yerr, marker='s', mfc='red',
|
||
|
mec='green', ms=20, mew=4)
|
||
|
|
||
|
where *mfc*, *mec*, *ms* and *mew* are aliases for the longer
|
||
|
property names, *markerfacecolor*, *markeredgecolor*, *markersize*
|
||
|
and *markeredgewidth*.
|
||
|
|
||
|
Valid kwargs for the marker properties are `.Lines2D` properties:
|
||
|
|
||
|
%(_Line2D_docstr)s
|
||
|
"""
|
||
|
kwargs = cbook.normalize_kwargs(kwargs, mlines.Line2D)
|
||
|
# anything that comes in as 'None', drop so the default thing
|
||
|
# happens down stream
|
||
|
kwargs = {k: v for k, v in kwargs.items() if v is not None}
|
||
|
kwargs.setdefault('zorder', 2)
|
||
|
|
||
|
try:
|
||
|
offset, errorevery = errorevery
|
||
|
except TypeError:
|
||
|
offset = 0
|
||
|
|
||
|
if errorevery < 1 or int(errorevery) != errorevery:
|
||
|
raise ValueError(
|
||
|
'errorevery must be positive integer or tuple of integers')
|
||
|
if int(offset) != offset:
|
||
|
raise ValueError("errorevery's starting index must be an integer")
|
||
|
|
||
|
self._process_unit_info(xdata=x, ydata=y, kwargs=kwargs)
|
||
|
|
||
|
plot_line = (fmt.lower() != 'none')
|
||
|
label = kwargs.pop("label", None)
|
||
|
|
||
|
if fmt == '':
|
||
|
fmt_style_kwargs = {}
|
||
|
else:
|
||
|
fmt_style_kwargs = {k: v for k, v in
|
||
|
zip(('linestyle', 'marker', 'color'),
|
||
|
_process_plot_format(fmt))
|
||
|
if v is not None}
|
||
|
if fmt == 'none':
|
||
|
# Remove alpha=0 color that _process_plot_format returns
|
||
|
fmt_style_kwargs.pop('color')
|
||
|
|
||
|
if ('color' in kwargs or 'color' in fmt_style_kwargs or
|
||
|
ecolor is not None):
|
||
|
base_style = {}
|
||
|
if 'color' in kwargs:
|
||
|
base_style['color'] = kwargs.pop('color')
|
||
|
else:
|
||
|
base_style = next(self._get_lines.prop_cycler)
|
||
|
|
||
|
base_style['label'] = '_nolegend_'
|
||
|
base_style.update(fmt_style_kwargs)
|
||
|
if 'color' not in base_style:
|
||
|
base_style['color'] = 'C0'
|
||
|
if ecolor is None:
|
||
|
ecolor = base_style['color']
|
||
|
# make sure all the args are iterable; use lists not arrays to
|
||
|
# preserve units
|
||
|
if not np.iterable(x):
|
||
|
x = [x]
|
||
|
|
||
|
if not np.iterable(y):
|
||
|
y = [y]
|
||
|
|
||
|
if xerr is not None:
|
||
|
if not np.iterable(xerr):
|
||
|
xerr = [xerr] * len(x)
|
||
|
|
||
|
if yerr is not None:
|
||
|
if not np.iterable(yerr):
|
||
|
yerr = [yerr] * len(y)
|
||
|
|
||
|
# make the style dict for the 'normal' plot line
|
||
|
plot_line_style = {
|
||
|
**base_style,
|
||
|
**kwargs,
|
||
|
'zorder': (kwargs['zorder'] - .1 if barsabove else
|
||
|
kwargs['zorder'] + .1),
|
||
|
}
|
||
|
|
||
|
# make the style dict for the line collections (the bars)
|
||
|
eb_lines_style = dict(base_style)
|
||
|
eb_lines_style.pop('marker', None)
|
||
|
eb_lines_style.pop('linestyle', None)
|
||
|
eb_lines_style['color'] = ecolor
|
||
|
|
||
|
if elinewidth:
|
||
|
eb_lines_style['linewidth'] = elinewidth
|
||
|
elif 'linewidth' in kwargs:
|
||
|
eb_lines_style['linewidth'] = kwargs['linewidth']
|
||
|
|
||
|
for key in ('transform', 'alpha', 'zorder', 'rasterized'):
|
||
|
if key in kwargs:
|
||
|
eb_lines_style[key] = kwargs[key]
|
||
|
|
||
|
# set up cap style dictionary
|
||
|
eb_cap_style = dict(base_style)
|
||
|
# eject any marker information from format string
|
||
|
eb_cap_style.pop('marker', None)
|
||
|
eb_lines_style.pop('markerfacecolor', None)
|
||
|
eb_lines_style.pop('markeredgewidth', None)
|
||
|
eb_lines_style.pop('markeredgecolor', None)
|
||
|
eb_cap_style.pop('ls', None)
|
||
|
eb_cap_style['linestyle'] = 'none'
|
||
|
if capsize is None:
|
||
|
capsize = rcParams["errorbar.capsize"]
|
||
|
if capsize > 0:
|
||
|
eb_cap_style['markersize'] = 2. * capsize
|
||
|
if capthick is not None:
|
||
|
eb_cap_style['markeredgewidth'] = capthick
|
||
|
|
||
|
# For backwards-compat, allow explicit setting of
|
||
|
# 'markeredgewidth' to over-ride capthick.
|
||
|
for key in ('markeredgewidth', 'transform', 'alpha',
|
||
|
'zorder', 'rasterized'):
|
||
|
if key in kwargs:
|
||
|
eb_cap_style[key] = kwargs[key]
|
||
|
eb_cap_style['color'] = ecolor
|
||
|
|
||
|
data_line = None
|
||
|
if plot_line:
|
||
|
data_line = mlines.Line2D(x, y, **plot_line_style)
|
||
|
self.add_line(data_line)
|
||
|
|
||
|
barcols = []
|
||
|
caplines = []
|
||
|
|
||
|
# arrays fine here, they are booleans and hence not units
|
||
|
lolims = np.broadcast_to(lolims, len(x)).astype(bool)
|
||
|
uplims = np.broadcast_to(uplims, len(x)).astype(bool)
|
||
|
xlolims = np.broadcast_to(xlolims, len(x)).astype(bool)
|
||
|
xuplims = np.broadcast_to(xuplims, len(x)).astype(bool)
|
||
|
|
||
|
everymask = np.zeros(len(x), bool)
|
||
|
everymask[offset::errorevery] = True
|
||
|
|
||
|
def xywhere(xs, ys, mask):
|
||
|
"""
|
||
|
return xs[mask], ys[mask] where mask is True but xs and
|
||
|
ys are not arrays
|
||
|
"""
|
||
|
assert len(xs) == len(ys)
|
||
|
assert len(xs) == len(mask)
|
||
|
xs = [thisx for thisx, b in zip(xs, mask) if b]
|
||
|
ys = [thisy for thisy, b in zip(ys, mask) if b]
|
||
|
return xs, ys
|
||
|
|
||
|
def extract_err(err, data):
|
||
|
"""
|
||
|
Private function to parse *err* and subtract/add it to *data*.
|
||
|
|
||
|
Both *err* and *data* are already iterables at this point.
|
||
|
"""
|
||
|
try: # Asymmetric error: pair of 1D iterables.
|
||
|
a, b = err
|
||
|
iter(a)
|
||
|
iter(b)
|
||
|
except (TypeError, ValueError):
|
||
|
a = b = err # Symmetric error: 1D iterable.
|
||
|
# This could just be `np.ndim(a) > 1 and np.ndim(b) > 1`, except
|
||
|
# for the (undocumented, but tested) support for (n, 1) arrays.
|
||
|
a_sh = np.shape(a)
|
||
|
b_sh = np.shape(b)
|
||
|
if (len(a_sh) > 2 or (len(a_sh) == 2 and a_sh[1] != 1)
|
||
|
or len(b_sh) > 2 or (len(b_sh) == 2 and b_sh[1] != 1)):
|
||
|
raise ValueError(
|
||
|
"err must be a scalar or a 1D or (2, n) array-like")
|
||
|
if len(a_sh) == 2 or len(b_sh) == 2:
|
||
|
cbook.warn_deprecated(
|
||
|
"3.1", message="Support for passing a (n, 1)-shaped error "
|
||
|
"array to errorbar() is deprecated since Matplotlib "
|
||
|
"%(since)s and will be removed %(removal)s; pass a 1D "
|
||
|
"array instead.")
|
||
|
# Using list comprehensions rather than arrays to preserve units.
|
||
|
for e in [a, b]:
|
||
|
if len(data) != len(e):
|
||
|
raise ValueError(
|
||
|
f"The lengths of the data ({len(data)}) and the "
|
||
|
f"error {len(e)} do not match")
|
||
|
low = [v - e for v, e in zip(data, a)]
|
||
|
high = [v + e for v, e in zip(data, b)]
|
||
|
return low, high
|
||
|
|
||
|
if xerr is not None:
|
||
|
left, right = extract_err(xerr, x)
|
||
|
# select points without upper/lower limits in x and
|
||
|
# draw normal errorbars for these points
|
||
|
noxlims = ~(xlolims | xuplims)
|
||
|
if noxlims.any() or len(noxlims) == 0:
|
||
|
yo, _ = xywhere(y, right, noxlims & everymask)
|
||
|
lo, ro = xywhere(left, right, noxlims & everymask)
|
||
|
barcols.append(self.hlines(yo, lo, ro, **eb_lines_style))
|
||
|
if capsize > 0:
|
||
|
caplines.append(mlines.Line2D(lo, yo, marker='|',
|
||
|
**eb_cap_style))
|
||
|
caplines.append(mlines.Line2D(ro, yo, marker='|',
|
||
|
**eb_cap_style))
|
||
|
|
||
|
if xlolims.any():
|
||
|
yo, _ = xywhere(y, right, xlolims & everymask)
|
||
|
lo, ro = xywhere(x, right, xlolims & everymask)
|
||
|
barcols.append(self.hlines(yo, lo, ro, **eb_lines_style))
|
||
|
rightup, yup = xywhere(right, y, xlolims & everymask)
|
||
|
if self.xaxis_inverted():
|
||
|
marker = mlines.CARETLEFTBASE
|
||
|
else:
|
||
|
marker = mlines.CARETRIGHTBASE
|
||
|
caplines.append(
|
||
|
mlines.Line2D(rightup, yup, ls='None', marker=marker,
|
||
|
**eb_cap_style))
|
||
|
if capsize > 0:
|
||
|
xlo, ylo = xywhere(x, y, xlolims & everymask)
|
||
|
caplines.append(mlines.Line2D(xlo, ylo, marker='|',
|
||
|
**eb_cap_style))
|
||
|
|
||
|
if xuplims.any():
|
||
|
yo, _ = xywhere(y, right, xuplims & everymask)
|
||
|
lo, ro = xywhere(left, x, xuplims & everymask)
|
||
|
barcols.append(self.hlines(yo, lo, ro, **eb_lines_style))
|
||
|
leftlo, ylo = xywhere(left, y, xuplims & everymask)
|
||
|
if self.xaxis_inverted():
|
||
|
marker = mlines.CARETRIGHTBASE
|
||
|
else:
|
||
|
marker = mlines.CARETLEFTBASE
|
||
|
caplines.append(
|
||
|
mlines.Line2D(leftlo, ylo, ls='None', marker=marker,
|
||
|
**eb_cap_style))
|
||
|
if capsize > 0:
|
||
|
xup, yup = xywhere(x, y, xuplims & everymask)
|
||
|
caplines.append(mlines.Line2D(xup, yup, marker='|',
|
||
|
**eb_cap_style))
|
||
|
|
||
|
if yerr is not None:
|
||
|
lower, upper = extract_err(yerr, y)
|
||
|
# select points without upper/lower limits in y and
|
||
|
# draw normal errorbars for these points
|
||
|
noylims = ~(lolims | uplims)
|
||
|
if noylims.any() or len(noylims) == 0:
|
||
|
xo, _ = xywhere(x, lower, noylims & everymask)
|
||
|
lo, uo = xywhere(lower, upper, noylims & everymask)
|
||
|
barcols.append(self.vlines(xo, lo, uo, **eb_lines_style))
|
||
|
if capsize > 0:
|
||
|
caplines.append(mlines.Line2D(xo, lo, marker='_',
|
||
|
**eb_cap_style))
|
||
|
caplines.append(mlines.Line2D(xo, uo, marker='_',
|
||
|
**eb_cap_style))
|
||
|
|
||
|
if lolims.any():
|
||
|
xo, _ = xywhere(x, lower, lolims & everymask)
|
||
|
lo, uo = xywhere(y, upper, lolims & everymask)
|
||
|
barcols.append(self.vlines(xo, lo, uo, **eb_lines_style))
|
||
|
xup, upperup = xywhere(x, upper, lolims & everymask)
|
||
|
if self.yaxis_inverted():
|
||
|
marker = mlines.CARETDOWNBASE
|
||
|
else:
|
||
|
marker = mlines.CARETUPBASE
|
||
|
caplines.append(
|
||
|
mlines.Line2D(xup, upperup, ls='None', marker=marker,
|
||
|
**eb_cap_style))
|
||
|
if capsize > 0:
|
||
|
xlo, ylo = xywhere(x, y, lolims & everymask)
|
||
|
caplines.append(mlines.Line2D(xlo, ylo, marker='_',
|
||
|
**eb_cap_style))
|
||
|
|
||
|
if uplims.any():
|
||
|
xo, _ = xywhere(x, lower, uplims & everymask)
|
||
|
lo, uo = xywhere(lower, y, uplims & everymask)
|
||
|
barcols.append(self.vlines(xo, lo, uo, **eb_lines_style))
|
||
|
xlo, lowerlo = xywhere(x, lower, uplims & everymask)
|
||
|
if self.yaxis_inverted():
|
||
|
marker = mlines.CARETUPBASE
|
||
|
else:
|
||
|
marker = mlines.CARETDOWNBASE
|
||
|
caplines.append(
|
||
|
mlines.Line2D(xlo, lowerlo, ls='None', marker=marker,
|
||
|
**eb_cap_style))
|
||
|
if capsize > 0:
|
||
|
xup, yup = xywhere(x, y, uplims & everymask)
|
||
|
caplines.append(mlines.Line2D(xup, yup, marker='_',
|
||
|
**eb_cap_style))
|
||
|
for l in caplines:
|
||
|
self.add_line(l)
|
||
|
|
||
|
self._request_autoscale_view()
|
||
|
errorbar_container = ErrorbarContainer((data_line, tuple(caplines),
|
||
|
tuple(barcols)),
|
||
|
has_xerr=(xerr is not None),
|
||
|
has_yerr=(yerr is not None),
|
||
|
label=label)
|
||
|
self.containers.append(errorbar_container)
|
||
|
|
||
|
return errorbar_container # (l0, caplines, barcols)
|
||
|
|
||
|
@cbook._rename_parameter("3.1", "manage_xticks", "manage_ticks")
|
||
|
@_preprocess_data()
|
||
|
def boxplot(self, x, notch=None, sym=None, vert=None, whis=None,
|
||
|
positions=None, widths=None, patch_artist=None,
|
||
|
bootstrap=None, usermedians=None, conf_intervals=None,
|
||
|
meanline=None, showmeans=None, showcaps=None,
|
||
|
showbox=None, showfliers=None, boxprops=None,
|
||
|
labels=None, flierprops=None, medianprops=None,
|
||
|
meanprops=None, capprops=None, whiskerprops=None,
|
||
|
manage_ticks=True, autorange=False, zorder=None):
|
||
|
"""
|
||
|
Make a box and whisker plot.
|
||
|
|
||
|
Make a box and whisker plot for each column of ``x`` or each
|
||
|
vector in sequence ``x``. The box extends from the lower to
|
||
|
upper quartile values of the data, with a line at the median.
|
||
|
The whiskers extend from the box to show the range of the
|
||
|
data. Flier points are those past the end of the whiskers.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
x : Array or a sequence of vectors.
|
||
|
The input data.
|
||
|
|
||
|
notch : bool, optional (False)
|
||
|
If `True`, will produce a notched box plot. Otherwise, a
|
||
|
rectangular boxplot is produced. The notches represent the
|
||
|
confidence interval (CI) around the median. See the entry
|
||
|
for the ``bootstrap`` parameter for information regarding
|
||
|
how the locations of the notches are computed.
|
||
|
|
||
|
.. note::
|
||
|
|
||
|
In cases where the values of the CI are less than the
|
||
|
lower quartile or greater than the upper quartile, the
|
||
|
notches will extend beyond the box, giving it a
|
||
|
distinctive "flipped" appearance. This is expected
|
||
|
behavior and consistent with other statistical
|
||
|
visualization packages.
|
||
|
|
||
|
sym : str, optional
|
||
|
The default symbol for flier points. Enter an empty string
|
||
|
('') if you don't want to show fliers. If `None`, then the
|
||
|
fliers default to 'b+' If you want more control use the
|
||
|
flierprops kwarg.
|
||
|
|
||
|
vert : bool, optional (True)
|
||
|
If `True` (default), makes the boxes vertical. If `False`,
|
||
|
everything is drawn horizontally.
|
||
|
|
||
|
whis : float or (float, float) (default = 1.5)
|
||
|
The position of the whiskers.
|
||
|
|
||
|
If a float, the lower whisker is at the lowest datum above
|
||
|
``Q1 - whis*(Q3-Q1)``, and the upper whisker at the highest datum
|
||
|
below ``Q3 + whis*(Q3-Q1)``, where Q1 and Q3 are the first and
|
||
|
third quartiles. The default value of ``whis = 1.5`` corresponds
|
||
|
to Tukey's original definition of boxplots.
|
||
|
|
||
|
If a pair of floats, they indicate the percentiles at which to
|
||
|
draw the whiskers (e.g., (5, 95)). In particular, setting this to
|
||
|
(0, 100) results in whiskers covering the whole range of the data.
|
||
|
"range" is a deprecated synonym for (0, 100).
|
||
|
|
||
|
In the edge case where ``Q1 == Q3``, *whis* is automatically set
|
||
|
to (0, 100) (cover the whole range of the data) if *autorange* is
|
||
|
True.
|
||
|
|
||
|
Beyond the whiskers, data are considered outliers and are plotted
|
||
|
as individual points.
|
||
|
|
||
|
bootstrap : int, optional
|
||
|
Specifies whether to bootstrap the confidence intervals
|
||
|
around the median for notched boxplots. If ``bootstrap`` is
|
||
|
None, no bootstrapping is performed, and notches are
|
||
|
calculated using a Gaussian-based asymptotic approximation
|
||
|
(see McGill, R., Tukey, J.W., and Larsen, W.A., 1978, and
|
||
|
Kendall and Stuart, 1967). Otherwise, bootstrap specifies
|
||
|
the number of times to bootstrap the median to determine its
|
||
|
95% confidence intervals. Values between 1000 and 10000 are
|
||
|
recommended.
|
||
|
|
||
|
usermedians : array-like, optional
|
||
|
An array or sequence whose first dimension (or length) is
|
||
|
compatible with ``x``. This overrides the medians computed
|
||
|
by matplotlib for each element of ``usermedians`` that is not
|
||
|
`None`. When an element of ``usermedians`` is None, the median
|
||
|
will be computed by matplotlib as normal.
|
||
|
|
||
|
conf_intervals : array-like, optional
|
||
|
Array or sequence whose first dimension (or length) is
|
||
|
compatible with ``x`` and whose second dimension is 2. When
|
||
|
the an element of ``conf_intervals`` is not None, the
|
||
|
notch locations computed by matplotlib are overridden
|
||
|
(provided ``notch`` is `True`). When an element of
|
||
|
``conf_intervals`` is `None`, the notches are computed by the
|
||
|
method specified by the other kwargs (e.g., ``bootstrap``).
|
||
|
|
||
|
positions : array-like, optional
|
||
|
Sets the positions of the boxes. The ticks and limits are
|
||
|
automatically set to match the positions. Defaults to
|
||
|
`range(1, N+1)` where N is the number of boxes to be drawn.
|
||
|
|
||
|
widths : scalar or array-like
|
||
|
Sets the width of each box either with a scalar or a
|
||
|
sequence. The default is 0.5, or ``0.15*(distance between
|
||
|
extreme positions)``, if that is smaller.
|
||
|
|
||
|
patch_artist : bool, optional (False)
|
||
|
If `False` produces boxes with the Line2D artist. Otherwise,
|
||
|
boxes and drawn with Patch artists.
|
||
|
|
||
|
labels : sequence, optional
|
||
|
Labels for each dataset. Length must be compatible with
|
||
|
dimensions of ``x``.
|
||
|
|
||
|
manage_ticks : bool, optional (True)
|
||
|
If True, the tick locations and labels will be adjusted to match
|
||
|
the boxplot positions.
|
||
|
|
||
|
autorange : bool, optional (False)
|
||
|
When `True` and the data are distributed such that the 25th and
|
||
|
75th percentiles are equal, ``whis`` is set to (0, 100) such
|
||
|
that the whisker ends are at the minimum and maximum of the data.
|
||
|
|
||
|
meanline : bool, optional (False)
|
||
|
If `True` (and ``showmeans`` is `True`), will try to render
|
||
|
the mean as a line spanning the full width of the box
|
||
|
according to ``meanprops`` (see below). Not recommended if
|
||
|
``shownotches`` is also True. Otherwise, means will be shown
|
||
|
as points.
|
||
|
|
||
|
zorder : scalar, optional (None)
|
||
|
Sets the zorder of the boxplot.
|
||
|
|
||
|
Other Parameters
|
||
|
----------------
|
||
|
showcaps : bool, optional (True)
|
||
|
Show the caps on the ends of whiskers.
|
||
|
showbox : bool, optional (True)
|
||
|
Show the central box.
|
||
|
showfliers : bool, optional (True)
|
||
|
Show the outliers beyond the caps.
|
||
|
showmeans : bool, optional (False)
|
||
|
Show the arithmetic means.
|
||
|
capprops : dict, optional (None)
|
||
|
Specifies the style of the caps.
|
||
|
boxprops : dict, optional (None)
|
||
|
Specifies the style of the box.
|
||
|
whiskerprops : dict, optional (None)
|
||
|
Specifies the style of the whiskers.
|
||
|
flierprops : dict, optional (None)
|
||
|
Specifies the style of the fliers.
|
||
|
medianprops : dict, optional (None)
|
||
|
Specifies the style of the median.
|
||
|
meanprops : dict, optional (None)
|
||
|
Specifies the style of the mean.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
result : dict
|
||
|
A dictionary mapping each component of the boxplot to a list
|
||
|
of the `.Line2D` instances created. That dictionary has the
|
||
|
following keys (assuming vertical boxplots):
|
||
|
|
||
|
- ``boxes``: the main body of the boxplot showing the
|
||
|
quartiles and the median's confidence intervals if
|
||
|
enabled.
|
||
|
|
||
|
- ``medians``: horizontal lines at the median of each box.
|
||
|
|
||
|
- ``whiskers``: the vertical lines extending to the most
|
||
|
extreme, non-outlier data points.
|
||
|
|
||
|
- ``caps``: the horizontal lines at the ends of the
|
||
|
whiskers.
|
||
|
|
||
|
- ``fliers``: points representing data that extend beyond
|
||
|
the whiskers (fliers).
|
||
|
|
||
|
- ``means``: points or lines representing the means.
|
||
|
|
||
|
"""
|
||
|
|
||
|
# Missing arguments default to rcParams.
|
||
|
if whis is None:
|
||
|
whis = rcParams['boxplot.whiskers']
|
||
|
if bootstrap is None:
|
||
|
bootstrap = rcParams['boxplot.bootstrap']
|
||
|
|
||
|
bxpstats = cbook.boxplot_stats(x, whis=whis, bootstrap=bootstrap,
|
||
|
labels=labels, autorange=autorange)
|
||
|
if notch is None:
|
||
|
notch = rcParams['boxplot.notch']
|
||
|
if vert is None:
|
||
|
vert = rcParams['boxplot.vertical']
|
||
|
if patch_artist is None:
|
||
|
patch_artist = rcParams['boxplot.patchartist']
|
||
|
if meanline is None:
|
||
|
meanline = rcParams['boxplot.meanline']
|
||
|
if showmeans is None:
|
||
|
showmeans = rcParams['boxplot.showmeans']
|
||
|
if showcaps is None:
|
||
|
showcaps = rcParams['boxplot.showcaps']
|
||
|
if showbox is None:
|
||
|
showbox = rcParams['boxplot.showbox']
|
||
|
if showfliers is None:
|
||
|
showfliers = rcParams['boxplot.showfliers']
|
||
|
|
||
|
if boxprops is None:
|
||
|
boxprops = {}
|
||
|
if whiskerprops is None:
|
||
|
whiskerprops = {}
|
||
|
if capprops is None:
|
||
|
capprops = {}
|
||
|
if medianprops is None:
|
||
|
medianprops = {}
|
||
|
if meanprops is None:
|
||
|
meanprops = {}
|
||
|
if flierprops is None:
|
||
|
flierprops = {}
|
||
|
|
||
|
if patch_artist:
|
||
|
boxprops['linestyle'] = 'solid' # Not consistent with bxp.
|
||
|
if 'color' in boxprops:
|
||
|
boxprops['edgecolor'] = boxprops.pop('color')
|
||
|
|
||
|
# if non-default sym value, put it into the flier dictionary
|
||
|
# the logic for providing the default symbol ('b+') now lives
|
||
|
# in bxp in the initial value of final_flierprops
|
||
|
# handle all of the *sym* related logic here so we only have to pass
|
||
|
# on the flierprops dict.
|
||
|
if sym is not None:
|
||
|
# no-flier case, which should really be done with
|
||
|
# 'showfliers=False' but none-the-less deal with it to keep back
|
||
|
# compatibility
|
||
|
if sym == '':
|
||
|
# blow away existing dict and make one for invisible markers
|
||
|
flierprops = dict(linestyle='none', marker='', color='none')
|
||
|
# turn the fliers off just to be safe
|
||
|
showfliers = False
|
||
|
# now process the symbol string
|
||
|
else:
|
||
|
# process the symbol string
|
||
|
# discarded linestyle
|
||
|
_, marker, color = _process_plot_format(sym)
|
||
|
# if we have a marker, use it
|
||
|
if marker is not None:
|
||
|
flierprops['marker'] = marker
|
||
|
# if we have a color, use it
|
||
|
if color is not None:
|
||
|
# assume that if color is passed in the user want
|
||
|
# filled symbol, if the users want more control use
|
||
|
# flierprops
|
||
|
flierprops['color'] = color
|
||
|
flierprops['markerfacecolor'] = color
|
||
|
flierprops['markeredgecolor'] = color
|
||
|
|
||
|
# replace medians if necessary:
|
||
|
if usermedians is not None:
|
||
|
if (len(np.ravel(usermedians)) != len(bxpstats) or
|
||
|
np.shape(usermedians)[0] != len(bxpstats)):
|
||
|
raise ValueError('usermedians length not compatible with x')
|
||
|
else:
|
||
|
# reassign medians as necessary
|
||
|
for stats, med in zip(bxpstats, usermedians):
|
||
|
if med is not None:
|
||
|
stats['med'] = med
|
||
|
|
||
|
if conf_intervals is not None:
|
||
|
if np.shape(conf_intervals)[0] != len(bxpstats):
|
||
|
err_mess = 'conf_intervals length not compatible with x'
|
||
|
raise ValueError(err_mess)
|
||
|
else:
|
||
|
for stats, ci in zip(bxpstats, conf_intervals):
|
||
|
if ci is not None:
|
||
|
if len(ci) != 2:
|
||
|
raise ValueError('each confidence interval must '
|
||
|
'have two values')
|
||
|
else:
|
||
|
if ci[0] is not None:
|
||
|
stats['cilo'] = ci[0]
|
||
|
if ci[1] is not None:
|
||
|
stats['cihi'] = ci[1]
|
||
|
|
||
|
artists = self.bxp(bxpstats, positions=positions, widths=widths,
|
||
|
vert=vert, patch_artist=patch_artist,
|
||
|
shownotches=notch, showmeans=showmeans,
|
||
|
showcaps=showcaps, showbox=showbox,
|
||
|
boxprops=boxprops, flierprops=flierprops,
|
||
|
medianprops=medianprops, meanprops=meanprops,
|
||
|
meanline=meanline, showfliers=showfliers,
|
||
|
capprops=capprops, whiskerprops=whiskerprops,
|
||
|
manage_ticks=manage_ticks, zorder=zorder)
|
||
|
return artists
|
||
|
|
||
|
@cbook._rename_parameter("3.1", "manage_xticks", "manage_ticks")
|
||
|
def bxp(self, bxpstats, positions=None, widths=None, vert=True,
|
||
|
patch_artist=False, shownotches=False, showmeans=False,
|
||
|
showcaps=True, showbox=True, showfliers=True,
|
||
|
boxprops=None, whiskerprops=None, flierprops=None,
|
||
|
medianprops=None, capprops=None, meanprops=None,
|
||
|
meanline=False, manage_ticks=True, zorder=None):
|
||
|
"""
|
||
|
Drawing function for box and whisker plots.
|
||
|
|
||
|
Make a box and whisker plot for each column of *x* or each
|
||
|
vector in sequence *x*. The box extends from the lower to
|
||
|
upper quartile values of the data, with a line at the median.
|
||
|
The whiskers extend from the box to show the range of the
|
||
|
data. Flier points are those past the end of the whiskers.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
bxpstats : list of dicts
|
||
|
A list of dictionaries containing stats for each boxplot.
|
||
|
Required keys are:
|
||
|
|
||
|
- ``med``: The median (scalar float).
|
||
|
|
||
|
- ``q1``: The first quartile (25th percentile) (scalar
|
||
|
float).
|
||
|
|
||
|
- ``q3``: The third quartile (75th percentile) (scalar
|
||
|
float).
|
||
|
|
||
|
- ``whislo``: Lower bound of the lower whisker (scalar
|
||
|
float).
|
||
|
|
||
|
- ``whishi``: Upper bound of the upper whisker (scalar
|
||
|
float).
|
||
|
|
||
|
Optional keys are:
|
||
|
|
||
|
- ``mean``: The mean (scalar float). Needed if
|
||
|
``showmeans=True``.
|
||
|
|
||
|
- ``fliers``: Data beyond the whiskers (sequence of floats).
|
||
|
Needed if ``showfliers=True``.
|
||
|
|
||
|
- ``cilo`` & ``cihi``: Lower and upper confidence intervals
|
||
|
about the median. Needed if ``shownotches=True``.
|
||
|
|
||
|
- ``label``: Name of the dataset (string). If available,
|
||
|
this will be used a tick label for the boxplot
|
||
|
|
||
|
positions : array-like, default = [1, 2, ..., n]
|
||
|
Sets the positions of the boxes. The ticks and limits
|
||
|
are automatically set to match the positions.
|
||
|
|
||
|
widths : array-like, default = None
|
||
|
Either a scalar or a vector and sets the width of each
|
||
|
box. The default is ``0.15*(distance between extreme
|
||
|
positions)``, clipped to no less than 0.15 and no more than
|
||
|
0.5.
|
||
|
|
||
|
vert : bool, default = True
|
||
|
If `True` (default), makes the boxes vertical. If `False`,
|
||
|
makes horizontal boxes.
|
||
|
|
||
|
patch_artist : bool, default = False
|
||
|
If `False` produces boxes with the `.Line2D` artist.
|
||
|
If `True` produces boxes with the `~matplotlib.patches.Patch` artist.
|
||
|
|
||
|
shownotches : bool, default = False
|
||
|
If `False` (default), produces a rectangular box plot.
|
||
|
If `True`, will produce a notched box plot
|
||
|
|
||
|
showmeans : bool, default = False
|
||
|
If `True`, will toggle on the rendering of the means
|
||
|
|
||
|
showcaps : bool, default = True
|
||
|
If `True`, will toggle on the rendering of the caps
|
||
|
|
||
|
showbox : bool, default = True
|
||
|
If `True`, will toggle on the rendering of the box
|
||
|
|
||
|
showfliers : bool, default = True
|
||
|
If `True`, will toggle on the rendering of the fliers
|
||
|
|
||
|
boxprops : dict or None (default)
|
||
|
If provided, will set the plotting style of the boxes
|
||
|
|
||
|
whiskerprops : dict or None (default)
|
||
|
If provided, will set the plotting style of the whiskers
|
||
|
|
||
|
capprops : dict or None (default)
|
||
|
If provided, will set the plotting style of the caps
|
||
|
|
||
|
flierprops : dict or None (default)
|
||
|
If provided will set the plotting style of the fliers
|
||
|
|
||
|
medianprops : dict or None (default)
|
||
|
If provided, will set the plotting style of the medians
|
||
|
|
||
|
meanprops : dict or None (default)
|
||
|
If provided, will set the plotting style of the means
|
||
|
|
||
|
meanline : bool, default = False
|
||
|
If `True` (and *showmeans* is `True`), will try to render the mean
|
||
|
as a line spanning the full width of the box according to
|
||
|
*meanprops*. Not recommended if *shownotches* is also True.
|
||
|
Otherwise, means will be shown as points.
|
||
|
|
||
|
manage_ticks : bool, default = True
|
||
|
If True, the tick locations and labels will be adjusted to match the
|
||
|
boxplot positions.
|
||
|
|
||
|
zorder : scalar, default = None
|
||
|
The zorder of the resulting boxplot.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
result : dict
|
||
|
A dictionary mapping each component of the boxplot to a list
|
||
|
of the `.Line2D` instances created. That dictionary has the
|
||
|
following keys (assuming vertical boxplots):
|
||
|
|
||
|
- ``boxes``: the main body of the boxplot showing the
|
||
|
quartiles and the median's confidence intervals if
|
||
|
enabled.
|
||
|
|
||
|
- ``medians``: horizontal lines at the median of each box.
|
||
|
|
||
|
- ``whiskers``: the vertical lines extending to the most
|
||
|
extreme, non-outlier data points.
|
||
|
|
||
|
- ``caps``: the horizontal lines at the ends of the
|
||
|
whiskers.
|
||
|
|
||
|
- ``fliers``: points representing data that extend beyond
|
||
|
the whiskers (fliers).
|
||
|
|
||
|
- ``means``: points or lines representing the means.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
.. plot:: gallery/statistics/bxp.py
|
||
|
|
||
|
"""
|
||
|
# lists of artists to be output
|
||
|
whiskers = []
|
||
|
caps = []
|
||
|
boxes = []
|
||
|
medians = []
|
||
|
means = []
|
||
|
fliers = []
|
||
|
|
||
|
# empty list of xticklabels
|
||
|
datalabels = []
|
||
|
|
||
|
# Use default zorder if none specified
|
||
|
if zorder is None:
|
||
|
zorder = mlines.Line2D.zorder
|
||
|
|
||
|
zdelta = 0.1
|
||
|
|
||
|
def line_props_with_rcdefaults(subkey, explicit, zdelta=0):
|
||
|
d = {k.split('.')[-1]: v for k, v in rcParams.items()
|
||
|
if k.startswith(f'boxplot.{subkey}')}
|
||
|
d['zorder'] = zorder + zdelta
|
||
|
if explicit is not None:
|
||
|
d.update(
|
||
|
cbook.normalize_kwargs(explicit, mlines.Line2D._alias_map))
|
||
|
return d
|
||
|
|
||
|
# box properties
|
||
|
if patch_artist:
|
||
|
final_boxprops = dict(
|
||
|
linestyle=rcParams['boxplot.boxprops.linestyle'],
|
||
|
linewidth=rcParams['boxplot.boxprops.linewidth'],
|
||
|
edgecolor=rcParams['boxplot.boxprops.color'],
|
||
|
facecolor=('white' if rcParams['_internal.classic_mode'] else
|
||
|
rcParams['patch.facecolor']),
|
||
|
zorder=zorder,
|
||
|
)
|
||
|
if boxprops is not None:
|
||
|
final_boxprops.update(
|
||
|
cbook.normalize_kwargs(
|
||
|
boxprops, mpatches.PathPatch._alias_map))
|
||
|
else:
|
||
|
final_boxprops = line_props_with_rcdefaults('boxprops', boxprops)
|
||
|
final_whiskerprops = line_props_with_rcdefaults(
|
||
|
'whiskerprops', whiskerprops)
|
||
|
final_capprops = line_props_with_rcdefaults(
|
||
|
'capprops', capprops)
|
||
|
final_flierprops = line_props_with_rcdefaults(
|
||
|
'flierprops', flierprops)
|
||
|
final_medianprops = line_props_with_rcdefaults(
|
||
|
'medianprops', medianprops, zdelta)
|
||
|
final_meanprops = line_props_with_rcdefaults(
|
||
|
'meanprops', meanprops, zdelta)
|
||
|
removed_prop = 'marker' if meanline else 'linestyle'
|
||
|
# Only remove the property if it's not set explicitly as a parameter.
|
||
|
if meanprops is None or removed_prop not in meanprops:
|
||
|
final_meanprops[removed_prop] = ''
|
||
|
|
||
|
def to_vc(xs, ys):
|
||
|
# convert arguments to verts and codes, append (0, 0) (ignored).
|
||
|
verts = np.append(np.column_stack([xs, ys]), [(0, 0)], 0)
|
||
|
codes = ([mpath.Path.MOVETO]
|
||
|
+ [mpath.Path.LINETO] * (len(verts) - 2)
|
||
|
+ [mpath.Path.CLOSEPOLY])
|
||
|
return verts, codes
|
||
|
|
||
|
def patch_list(xs, ys, **kwargs):
|
||
|
verts, codes = to_vc(xs, ys)
|
||
|
path = mpath.Path(verts, codes)
|
||
|
patch = mpatches.PathPatch(path, **kwargs)
|
||
|
self.add_artist(patch)
|
||
|
return [patch]
|
||
|
|
||
|
# vertical or horizontal plot?
|
||
|
if vert:
|
||
|
def doplot(*args, **kwargs):
|
||
|
return self.plot(*args, **kwargs)
|
||
|
|
||
|
def dopatch(xs, ys, **kwargs):
|
||
|
return patch_list(xs, ys, **kwargs)
|
||
|
|
||
|
else:
|
||
|
def doplot(*args, **kwargs):
|
||
|
shuffled = []
|
||
|
for i in range(0, len(args), 2):
|
||
|
shuffled.extend([args[i + 1], args[i]])
|
||
|
return self.plot(*shuffled, **kwargs)
|
||
|
|
||
|
def dopatch(xs, ys, **kwargs):
|
||
|
xs, ys = ys, xs # flip X, Y
|
||
|
return patch_list(xs, ys, **kwargs)
|
||
|
|
||
|
# input validation
|
||
|
N = len(bxpstats)
|
||
|
datashape_message = ("List of boxplot statistics and `{0}` "
|
||
|
"values must have same the length")
|
||
|
# check position
|
||
|
if positions is None:
|
||
|
positions = list(range(1, N + 1))
|
||
|
elif len(positions) != N:
|
||
|
raise ValueError(datashape_message.format("positions"))
|
||
|
|
||
|
positions = np.array(positions)
|
||
|
if len(positions) > 0 and not isinstance(positions[0], Number):
|
||
|
raise TypeError("positions should be an iterable of numbers")
|
||
|
|
||
|
# width
|
||
|
if widths is None:
|
||
|
widths = [np.clip(0.15 * np.ptp(positions), 0.15, 0.5)] * N
|
||
|
elif np.isscalar(widths):
|
||
|
widths = [widths] * N
|
||
|
elif len(widths) != N:
|
||
|
raise ValueError(datashape_message.format("widths"))
|
||
|
|
||
|
for pos, width, stats in zip(positions, widths, bxpstats):
|
||
|
# try to find a new label
|
||
|
datalabels.append(stats.get('label', pos))
|
||
|
|
||
|
# whisker coords
|
||
|
whisker_x = np.ones(2) * pos
|
||
|
whiskerlo_y = np.array([stats['q1'], stats['whislo']])
|
||
|
whiskerhi_y = np.array([stats['q3'], stats['whishi']])
|
||
|
|
||
|
# cap coords
|
||
|
cap_left = pos - width * 0.25
|
||
|
cap_right = pos + width * 0.25
|
||
|
cap_x = np.array([cap_left, cap_right])
|
||
|
cap_lo = np.ones(2) * stats['whislo']
|
||
|
cap_hi = np.ones(2) * stats['whishi']
|
||
|
|
||
|
# box and median coords
|
||
|
box_left = pos - width * 0.5
|
||
|
box_right = pos + width * 0.5
|
||
|
med_y = [stats['med'], stats['med']]
|
||
|
|
||
|
# notched boxes
|
||
|
if shownotches:
|
||
|
box_x = [box_left, box_right, box_right, cap_right, box_right,
|
||
|
box_right, box_left, box_left, cap_left, box_left,
|
||
|
box_left]
|
||
|
box_y = [stats['q1'], stats['q1'], stats['cilo'],
|
||
|
stats['med'], stats['cihi'], stats['q3'],
|
||
|
stats['q3'], stats['cihi'], stats['med'],
|
||
|
stats['cilo'], stats['q1']]
|
||
|
med_x = cap_x
|
||
|
|
||
|
# plain boxes
|
||
|
else:
|
||
|
box_x = [box_left, box_right, box_right, box_left, box_left]
|
||
|
box_y = [stats['q1'], stats['q1'], stats['q3'], stats['q3'],
|
||
|
stats['q1']]
|
||
|
med_x = [box_left, box_right]
|
||
|
|
||
|
# maybe draw the box:
|
||
|
if showbox:
|
||
|
if patch_artist:
|
||
|
boxes.extend(dopatch(box_x, box_y, **final_boxprops))
|
||
|
else:
|
||
|
boxes.extend(doplot(box_x, box_y, **final_boxprops))
|
||
|
|
||
|
# draw the whiskers
|
||
|
whiskers.extend(doplot(
|
||
|
whisker_x, whiskerlo_y, **final_whiskerprops
|
||
|
))
|
||
|
whiskers.extend(doplot(
|
||
|
whisker_x, whiskerhi_y, **final_whiskerprops
|
||
|
))
|
||
|
|
||
|
# maybe draw the caps:
|
||
|
if showcaps:
|
||
|
caps.extend(doplot(cap_x, cap_lo, **final_capprops))
|
||
|
caps.extend(doplot(cap_x, cap_hi, **final_capprops))
|
||
|
|
||
|
# draw the medians
|
||
|
medians.extend(doplot(med_x, med_y, **final_medianprops))
|
||
|
|
||
|
# maybe draw the means
|
||
|
if showmeans:
|
||
|
if meanline:
|
||
|
means.extend(doplot(
|
||
|
[box_left, box_right], [stats['mean'], stats['mean']],
|
||
|
**final_meanprops
|
||
|
))
|
||
|
else:
|
||
|
means.extend(doplot(
|
||
|
[pos], [stats['mean']], **final_meanprops
|
||
|
))
|
||
|
|
||
|
# maybe draw the fliers
|
||
|
if showfliers:
|
||
|
# fliers coords
|
||
|
flier_x = np.full(len(stats['fliers']), pos, dtype=np.float64)
|
||
|
flier_y = stats['fliers']
|
||
|
|
||
|
fliers.extend(doplot(
|
||
|
flier_x, flier_y, **final_flierprops
|
||
|
))
|
||
|
|
||
|
if manage_ticks:
|
||
|
axis_name = "x" if vert else "y"
|
||
|
interval = getattr(self.dataLim, f"interval{axis_name}")
|
||
|
axis = getattr(self, f"{axis_name}axis")
|
||
|
positions = axis.convert_units(positions)
|
||
|
# The 0.5 additional padding ensures reasonable-looking boxes
|
||
|
# even when drawing a single box. We set the sticky edge to
|
||
|
# prevent margins expansion, in order to match old behavior (back
|
||
|
# when separate calls to boxplot() would completely reset the axis
|
||
|
# limits regardless of what was drawn before). The sticky edges
|
||
|
# are attached to the median lines, as they are always present.
|
||
|
interval[:] = (min(interval[0], min(positions) - .5),
|
||
|
max(interval[1], max(positions) + .5))
|
||
|
for median, position in zip(medians, positions):
|
||
|
getattr(median.sticky_edges, axis_name).extend(
|
||
|
[position - .5, position + .5])
|
||
|
# Modified from Axis.set_ticks and Axis.set_ticklabels.
|
||
|
locator = axis.get_major_locator()
|
||
|
if not isinstance(axis.get_major_locator(),
|
||
|
mticker.FixedLocator):
|
||
|
locator = mticker.FixedLocator([])
|
||
|
axis.set_major_locator(locator)
|
||
|
locator.locs = np.array([*locator.locs, *positions])
|
||
|
formatter = axis.get_major_formatter()
|
||
|
if not isinstance(axis.get_major_formatter(),
|
||
|
mticker.FixedFormatter):
|
||
|
formatter = mticker.FixedFormatter([])
|
||
|
axis.set_major_formatter(formatter)
|
||
|
formatter.seq = [*formatter.seq, *datalabels]
|
||
|
|
||
|
self._request_autoscale_view(
|
||
|
scalex=self._autoscaleXon, scaley=self._autoscaleYon)
|
||
|
|
||
|
return dict(whiskers=whiskers, caps=caps, boxes=boxes,
|
||
|
medians=medians, fliers=fliers, means=means)
|
||
|
|
||
|
@staticmethod
|
||
|
def _parse_scatter_color_args(c, edgecolors, kwargs, xsize,
|
||
|
get_next_color_func):
|
||
|
"""
|
||
|
Helper function to process color related arguments of `.Axes.scatter`.
|
||
|
|
||
|
Argument precedence for facecolors:
|
||
|
|
||
|
- c (if not None)
|
||
|
- kwargs['facecolors']
|
||
|
- kwargs['facecolor']
|
||
|
- kwargs['color'] (==kwcolor)
|
||
|
- 'b' if in classic mode else the result of ``get_next_color_func()``
|
||
|
|
||
|
Argument precedence for edgecolors:
|
||
|
|
||
|
- edgecolors (is an explicit kw argument in scatter())
|
||
|
- kwargs['edgecolor']
|
||
|
- kwargs['color'] (==kwcolor)
|
||
|
- 'face' if not in classic mode else None
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
c : color or sequence or sequence of color or None
|
||
|
See argument description of `.Axes.scatter`.
|
||
|
edgecolors : color or sequence of color or {'face', 'none'} or None
|
||
|
See argument description of `.Axes.scatter`.
|
||
|
kwargs : dict
|
||
|
Additional kwargs. If these keys exist, we pop and process them:
|
||
|
'facecolors', 'facecolor', 'edgecolor', 'color'
|
||
|
Note: The dict is modified by this function.
|
||
|
xsize : int
|
||
|
The size of the x and y arrays passed to `.Axes.scatter`.
|
||
|
get_next_color_func : callable
|
||
|
A callable that returns a color. This color is used as facecolor
|
||
|
if no other color is provided.
|
||
|
|
||
|
Note, that this is a function rather than a fixed color value to
|
||
|
support conditional evaluation of the next color. As of the
|
||
|
current implementation obtaining the next color from the
|
||
|
property cycle advances the cycle. This must only happen if we
|
||
|
actually use the color, which will only be decided within this
|
||
|
method.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
c
|
||
|
The input *c* if it was not *None*, else a color derived from the
|
||
|
other inputs or defaults.
|
||
|
colors : array(N, 4) or None
|
||
|
The facecolors as RGBA values, or *None* if a colormap is used.
|
||
|
edgecolors
|
||
|
The edgecolor.
|
||
|
|
||
|
"""
|
||
|
facecolors = kwargs.pop('facecolors', None)
|
||
|
facecolors = kwargs.pop('facecolor', facecolors)
|
||
|
edgecolors = kwargs.pop('edgecolor', edgecolors)
|
||
|
|
||
|
kwcolor = kwargs.pop('color', None)
|
||
|
|
||
|
if kwcolor is not None and c is not None:
|
||
|
raise ValueError("Supply a 'c' argument or a 'color'"
|
||
|
" kwarg but not both; they differ but"
|
||
|
" their functionalities overlap.")
|
||
|
|
||
|
if kwcolor is not None:
|
||
|
try:
|
||
|
mcolors.to_rgba_array(kwcolor)
|
||
|
except ValueError:
|
||
|
raise ValueError(
|
||
|
"'color' kwarg must be an color or sequence of color "
|
||
|
"specs. For a sequence of values to be color-mapped, use "
|
||
|
"the 'c' argument instead.")
|
||
|
if edgecolors is None:
|
||
|
edgecolors = kwcolor
|
||
|
if facecolors is None:
|
||
|
facecolors = kwcolor
|
||
|
|
||
|
if edgecolors is None and not rcParams['_internal.classic_mode']:
|
||
|
edgecolors = rcParams['scatter.edgecolors']
|
||
|
|
||
|
c_was_none = c is None
|
||
|
if c is None:
|
||
|
c = (facecolors if facecolors is not None
|
||
|
else "b" if rcParams['_internal.classic_mode']
|
||
|
else get_next_color_func())
|
||
|
c_is_string_or_strings = (
|
||
|
isinstance(c, str)
|
||
|
or (isinstance(c, collections.abc.Iterable) and len(c) > 0
|
||
|
and isinstance(cbook.safe_first_element(c), str)))
|
||
|
|
||
|
def invalid_shape_exception(csize, xsize):
|
||
|
return ValueError(
|
||
|
f"'c' argument has {csize} elements, which is inconsistent "
|
||
|
f"with 'x' and 'y' with size {xsize}.")
|
||
|
|
||
|
c_is_mapped = False # Unless proven otherwise below.
|
||
|
valid_shape = True # Unless proven otherwise below.
|
||
|
if not c_was_none and kwcolor is None and not c_is_string_or_strings:
|
||
|
try: # First, does 'c' look suitable for value-mapping?
|
||
|
c = np.asanyarray(c, dtype=float)
|
||
|
except ValueError:
|
||
|
pass # Failed to convert to float array; must be color specs.
|
||
|
else:
|
||
|
# If c can be either mapped values or a RGB(A) color, prefer
|
||
|
# the former if shapes match, the latter otherwise.
|
||
|
if c.size == xsize:
|
||
|
c = c.ravel()
|
||
|
c_is_mapped = True
|
||
|
else: # Wrong size; it must not be intended for mapping.
|
||
|
if c.shape in ((3,), (4,)):
|
||
|
_log.warning(
|
||
|
"'c' argument looks like a single numeric RGB or "
|
||
|
"RGBA sequence, which should be avoided as value-"
|
||
|
"mapping will have precedence in case its length "
|
||
|
"matches with 'x' & 'y'. Please use a 2-D array "
|
||
|
"with a single row if you really want to specify "
|
||
|
"the same RGB or RGBA value for all points.")
|
||
|
valid_shape = False
|
||
|
if not c_is_mapped:
|
||
|
try: # Is 'c' acceptable as PathCollection facecolors?
|
||
|
colors = mcolors.to_rgba_array(c)
|
||
|
except ValueError:
|
||
|
if not valid_shape:
|
||
|
raise invalid_shape_exception(c.size, xsize)
|
||
|
# Both the mapping *and* the RGBA conversion failed: pretty
|
||
|
# severe failure => one may appreciate a verbose feedback.
|
||
|
raise ValueError(
|
||
|
f"'c' argument must be a color, a sequence of colors, or "
|
||
|
f"a sequence of numbers, not {c}")
|
||
|
else:
|
||
|
if len(colors) not in (0, 1, xsize):
|
||
|
# NB: remember that a single color is also acceptable.
|
||
|
# Besides *colors* will be an empty array if c == 'none'.
|
||
|
raise invalid_shape_exception(len(colors), xsize)
|
||
|
else:
|
||
|
colors = None # use cmap, norm after collection is created
|
||
|
return c, colors, edgecolors
|
||
|
|
||
|
@_preprocess_data(replace_names=["x", "y", "s", "linewidths",
|
||
|
"edgecolors", "c", "facecolor",
|
||
|
"facecolors", "color"],
|
||
|
label_namer="y")
|
||
|
@cbook._delete_parameter("3.2", "verts")
|
||
|
def scatter(self, x, y, s=None, c=None, marker=None, cmap=None, norm=None,
|
||
|
vmin=None, vmax=None, alpha=None, linewidths=None,
|
||
|
verts=None, edgecolors=None, *, plotnonfinite=False,
|
||
|
**kwargs):
|
||
|
"""
|
||
|
A scatter plot of *y* vs. *x* with varying marker size and/or color.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
x, y : scalar or array-like, shape (n, )
|
||
|
The data positions.
|
||
|
|
||
|
s : scalar or array-like, shape (n, ), optional
|
||
|
The marker size in points**2.
|
||
|
Default is ``rcParams['lines.markersize'] ** 2``.
|
||
|
|
||
|
c : color, sequence, or sequence of colors, optional
|
||
|
The marker color. Possible values:
|
||
|
|
||
|
- A single color format string.
|
||
|
- A sequence of colors of length n.
|
||
|
- A scalar or sequence of n numbers to be mapped to colors using
|
||
|
*cmap* and *norm*.
|
||
|
- A 2-D array in which the rows are RGB or RGBA.
|
||
|
|
||
|
Note that *c* should not be a single numeric RGB or RGBA sequence
|
||
|
because that is indistinguishable from an array of values to be
|
||
|
colormapped. If you want to specify the same RGB or RGBA value for
|
||
|
all points, use a 2-D array with a single row. Otherwise, value-
|
||
|
matching will have precedence in case of a size matching with *x*
|
||
|
and *y*.
|
||
|
|
||
|
Defaults to ``None``. In that case the marker color is determined
|
||
|
by the value of ``color``, ``facecolor`` or ``facecolors``. In case
|
||
|
those are not specified or ``None``, the marker color is determined
|
||
|
by the next color of the ``Axes``' current "shape and fill" color
|
||
|
cycle. This cycle defaults to :rc:`axes.prop_cycle`.
|
||
|
|
||
|
marker : `~matplotlib.markers.MarkerStyle`, optional
|
||
|
The marker style. *marker* can be either an instance of the class
|
||
|
or the text shorthand for a particular marker.
|
||
|
Defaults to ``None``, in which case it takes the value of
|
||
|
:rc:`scatter.marker` = 'o'.
|
||
|
See `~matplotlib.markers` for more information about marker styles.
|
||
|
|
||
|
cmap : `~matplotlib.colors.Colormap`, optional, default: None
|
||
|
A `.Colormap` instance or registered colormap name. *cmap* is only
|
||
|
used if *c* is an array of floats. If ``None``, defaults to rc
|
||
|
``image.cmap``.
|
||
|
|
||
|
norm : `~matplotlib.colors.Normalize`, optional, default: None
|
||
|
A `.Normalize` instance is used to scale luminance data to 0, 1.
|
||
|
*norm* is only used if *c* is an array of floats. If *None*, use
|
||
|
the default `.colors.Normalize`.
|
||
|
|
||
|
vmin, vmax : scalar, optional, default: None
|
||
|
*vmin* and *vmax* are used in conjunction with *norm* to normalize
|
||
|
luminance data. If None, the respective min and max of the color
|
||
|
array is used. *vmin* and *vmax* are ignored if you pass a *norm*
|
||
|
instance.
|
||
|
|
||
|
alpha : scalar, optional, default: None
|
||
|
The alpha blending value, between 0 (transparent) and 1 (opaque).
|
||
|
|
||
|
linewidths : scalar or array-like, optional, default: None
|
||
|
The linewidth of the marker edges. Note: The default *edgecolors*
|
||
|
is 'face'. You may want to change this as well.
|
||
|
If *None*, defaults to :rc:`lines.linewidth`.
|
||
|
|
||
|
edgecolors : {'face', 'none', *None*} or color or sequence of color, \
|
||
|
optional.
|
||
|
The edge color of the marker. Possible values:
|
||
|
|
||
|
- 'face': The edge color will always be the same as the face color.
|
||
|
- 'none': No patch boundary will be drawn.
|
||
|
- A Matplotlib color or sequence of color.
|
||
|
|
||
|
Defaults to ``None``, in which case it takes the value of
|
||
|
:rc:`scatter.edgecolors` = 'face'.
|
||
|
|
||
|
For non-filled markers, the *edgecolors* kwarg is ignored and
|
||
|
forced to 'face' internally.
|
||
|
|
||
|
plotnonfinite : boolean, optional, default: False
|
||
|
Set to plot points with nonfinite *c*, in conjunction with
|
||
|
`~matplotlib.colors.Colormap.set_bad`.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
paths : `~matplotlib.collections.PathCollection`
|
||
|
|
||
|
Other Parameters
|
||
|
----------------
|
||
|
**kwargs : `~matplotlib.collections.Collection` properties
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
plot : To plot scatter plots when markers are identical in size and
|
||
|
color.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
* The `.plot` function will be faster for scatterplots where markers
|
||
|
don't vary in size or color.
|
||
|
|
||
|
* Any or all of *x*, *y*, *s*, and *c* may be masked arrays, in which
|
||
|
case all masks will be combined and only unmasked points will be
|
||
|
plotted.
|
||
|
|
||
|
* Fundamentally, scatter works with 1-D arrays; *x*, *y*, *s*, and *c*
|
||
|
may be input as N-D arrays, but within scatter they will be
|
||
|
flattened. The exception is *c*, which will be flattened only if its
|
||
|
size matches the size of *x* and *y*.
|
||
|
|
||
|
"""
|
||
|
# Process **kwargs to handle aliases, conflicts with explicit kwargs:
|
||
|
|
||
|
self._process_unit_info(xdata=x, ydata=y, kwargs=kwargs)
|
||
|
x = self.convert_xunits(x)
|
||
|
y = self.convert_yunits(y)
|
||
|
|
||
|
# np.ma.ravel yields an ndarray, not a masked array,
|
||
|
# unless its argument is a masked array.
|
||
|
x = np.ma.ravel(x)
|
||
|
y = np.ma.ravel(y)
|
||
|
if x.size != y.size:
|
||
|
raise ValueError("x and y must be the same size")
|
||
|
|
||
|
if s is None:
|
||
|
s = (20 if rcParams['_internal.classic_mode'] else
|
||
|
rcParams['lines.markersize'] ** 2.0)
|
||
|
s = np.ma.ravel(s)
|
||
|
if len(s) not in (1, x.size):
|
||
|
raise ValueError("s must be a scalar, or the same size as x and y")
|
||
|
|
||
|
c, colors, edgecolors = \
|
||
|
self._parse_scatter_color_args(
|
||
|
c, edgecolors, kwargs, x.size,
|
||
|
get_next_color_func=self._get_patches_for_fill.get_next_color)
|
||
|
|
||
|
if plotnonfinite and colors is None:
|
||
|
c = np.ma.masked_invalid(c)
|
||
|
x, y, s, edgecolors, linewidths = \
|
||
|
cbook._combine_masks(x, y, s, edgecolors, linewidths)
|
||
|
else:
|
||
|
x, y, s, c, colors, edgecolors, linewidths = \
|
||
|
cbook._combine_masks(
|
||
|
x, y, s, c, colors, edgecolors, linewidths)
|
||
|
|
||
|
scales = s # Renamed for readability below.
|
||
|
|
||
|
# load default marker from rcParams
|
||
|
if marker is None:
|
||
|
marker = rcParams['scatter.marker']
|
||
|
|
||
|
if isinstance(marker, mmarkers.MarkerStyle):
|
||
|
marker_obj = marker
|
||
|
else:
|
||
|
marker_obj = mmarkers.MarkerStyle(marker)
|
||
|
|
||
|
path = marker_obj.get_path().transformed(
|
||
|
marker_obj.get_transform())
|
||
|
if not marker_obj.is_filled():
|
||
|
edgecolors = 'face'
|
||
|
linewidths = rcParams['lines.linewidth']
|
||
|
|
||
|
offsets = np.ma.column_stack([x, y])
|
||
|
|
||
|
collection = mcoll.PathCollection(
|
||
|
(path,), scales,
|
||
|
facecolors=colors,
|
||
|
edgecolors=edgecolors,
|
||
|
linewidths=linewidths,
|
||
|
offsets=offsets,
|
||
|
transOffset=kwargs.pop('transform', self.transData),
|
||
|
alpha=alpha
|
||
|
)
|
||
|
collection.set_transform(mtransforms.IdentityTransform())
|
||
|
collection.update(kwargs)
|
||
|
|
||
|
if colors is None:
|
||
|
collection.set_array(c)
|
||
|
collection.set_cmap(cmap)
|
||
|
collection.set_norm(norm)
|
||
|
|
||
|
if vmin is not None or vmax is not None:
|
||
|
collection.set_clim(vmin, vmax)
|
||
|
else:
|
||
|
collection.autoscale_None()
|
||
|
|
||
|
# Classic mode only:
|
||
|
# ensure there are margins to allow for the
|
||
|
# finite size of the symbols. In v2.x, margins
|
||
|
# are present by default, so we disable this
|
||
|
# scatter-specific override.
|
||
|
if rcParams['_internal.classic_mode']:
|
||
|
if self._xmargin < 0.05 and x.size > 0:
|
||
|
self.set_xmargin(0.05)
|
||
|
if self._ymargin < 0.05 and x.size > 0:
|
||
|
self.set_ymargin(0.05)
|
||
|
|
||
|
self.add_collection(collection)
|
||
|
self._request_autoscale_view()
|
||
|
|
||
|
return collection
|
||
|
|
||
|
@_preprocess_data(replace_names=["x", "y"], label_namer="y")
|
||
|
@docstring.dedent_interpd
|
||
|
def hexbin(self, x, y, C=None, gridsize=100, bins=None,
|
||
|
xscale='linear', yscale='linear', extent=None,
|
||
|
cmap=None, norm=None, vmin=None, vmax=None,
|
||
|
alpha=None, linewidths=None, edgecolors='face',
|
||
|
reduce_C_function=np.mean, mincnt=None, marginals=False,
|
||
|
**kwargs):
|
||
|
"""
|
||
|
Make a 2D hexagonal binning plot of points *x*, *y*.
|
||
|
|
||
|
If *C* is *None*, the value of the hexagon is determined by the number
|
||
|
of points in the hexagon. Otherwise, *C* specifies values at the
|
||
|
coordinate (x[i], y[i]). For each hexagon, these values are reduced
|
||
|
using *reduce_C_function*.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
x, y : array-like
|
||
|
The data positions. *x* and *y* must be of the same length.
|
||
|
|
||
|
C : array-like, optional
|
||
|
If given, these values are accumulated in the bins. Otherwise,
|
||
|
every point has a value of 1. Must be of the same length as *x*
|
||
|
and *y*.
|
||
|
|
||
|
gridsize : int or (int, int), default: 100
|
||
|
If a single int, the number of hexagons in the *x*-direction.
|
||
|
The number of hexagons in the *y*-direction is chosen such that
|
||
|
the hexagons are approximately regular.
|
||
|
|
||
|
Alternatively, if a tuple (*nx*, *ny*), the number of hexagons
|
||
|
in the *x*-direction and the *y*-direction.
|
||
|
|
||
|
bins : 'log' or int or sequence, default: *None*
|
||
|
Discretization of the hexagon values.
|
||
|
|
||
|
- If *None*, no binning is applied; the color of each hexagon
|
||
|
directly corresponds to its count value.
|
||
|
- If 'log', use a logarithmic scale for the color map.
|
||
|
Internally, :math:`log_{10}(i+1)` is used to determine the
|
||
|
hexagon color. This is equivalent to ``norm=LogNorm()``.
|
||
|
- If an integer, divide the counts in the specified number
|
||
|
of bins, and color the hexagons accordingly.
|
||
|
- If a sequence of values, the values of the lower bound of
|
||
|
the bins to be used.
|
||
|
|
||
|
xscale : {'linear', 'log'}, default: 'linear'
|
||
|
Use a linear or log10 scale on the horizontal axis.
|
||
|
|
||
|
yscale : {'linear', 'log'}, default: 'linear'
|
||
|
Use a linear or log10 scale on the vertical axis.
|
||
|
|
||
|
mincnt : int > 0, default: *None*
|
||
|
If not *None*, only display cells with more than *mincnt*
|
||
|
number of points in the cell.
|
||
|
|
||
|
marginals : bool, default: *False*
|
||
|
If marginals is *True*, plot the marginal density as
|
||
|
colormapped rectangles along the bottom of the x-axis and
|
||
|
left of the y-axis.
|
||
|
|
||
|
extent : float, default: *None*
|
||
|
The limits of the bins. The default assigns the limits
|
||
|
based on *gridsize*, *x*, *y*, *xscale* and *yscale*.
|
||
|
|
||
|
If *xscale* or *yscale* is set to 'log', the limits are
|
||
|
expected to be the exponent for a power of 10. E.g. for
|
||
|
x-limits of 1 and 50 in 'linear' scale and y-limits
|
||
|
of 10 and 1000 in 'log' scale, enter (1, 50, 1, 3).
|
||
|
|
||
|
Order of scalars is (left, right, bottom, top).
|
||
|
|
||
|
Other Parameters
|
||
|
----------------
|
||
|
cmap : str or `~matplotlib.colors.Colormap`, optional
|
||
|
The Colormap instance or registered colormap name used to map
|
||
|
the bin values to colors. Defaults to :rc:`image.cmap`.
|
||
|
|
||
|
norm : `~matplotlib.colors.Normalize`, optional
|
||
|
The Normalize instance scales the bin values to the canonical
|
||
|
colormap range [0, 1] for mapping to colors. By default, the data
|
||
|
range is mapped to the colorbar range using linear scaling.
|
||
|
|
||
|
vmin, vmax : float, optional, default: None
|
||
|
The colorbar range. If *None*, suitable min/max values are
|
||
|
automatically chosen by the `~.Normalize` instance (defaults to
|
||
|
the respective min/max values of the bins in case of the default
|
||
|
linear scaling). This is ignored if *norm* is given.
|
||
|
|
||
|
alpha : float between 0 and 1, optional
|
||
|
The alpha blending value, between 0 (transparent) and 1 (opaque).
|
||
|
|
||
|
linewidths : float, default: *None*
|
||
|
If *None*, defaults to 1.0.
|
||
|
|
||
|
edgecolors : {'face', 'none', *None*} or color, default: 'face'
|
||
|
The color of the hexagon edges. Possible values are:
|
||
|
|
||
|
- 'face': Draw the edges in the same color as the fill color.
|
||
|
- 'none': No edges are drawn. This can sometimes lead to unsightly
|
||
|
unpainted pixels between the hexagons.
|
||
|
- *None*: Draw outlines in the default color.
|
||
|
- An explicit matplotlib color.
|
||
|
|
||
|
reduce_C_function : callable, default is `numpy.mean`
|
||
|
The function to aggregate *C* within the bins. It is ignored if
|
||
|
*C* is not given. This must have the signature::
|
||
|
|
||
|
def reduce_C_function(C: array) -> float
|
||
|
|
||
|
Commonly used functions are:
|
||
|
|
||
|
- `numpy.mean`: average of the points
|
||
|
- `numpy.sum`: integral of the point values
|
||
|
- `numpy.max`: value taken from the largest point
|
||
|
|
||
|
**kwargs : `~matplotlib.collections.PolyCollection` properties
|
||
|
All other keyword arguments are passed on to `.PolyCollection`:
|
||
|
|
||
|
%(PolyCollection)s
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
polycollection : `~matplotlib.collections.PolyCollection`
|
||
|
A `.PolyCollection` defining the hexagonal bins.
|
||
|
|
||
|
- `.PolyCollection.get_offset` contains a Mx2 array containing
|
||
|
the x, y positions of the M hexagon centers.
|
||
|
- `.PolyCollection.get_array` contains the values of the M
|
||
|
hexagons.
|
||
|
|
||
|
If *marginals* is *True*, horizontal
|
||
|
bar and vertical bar (both PolyCollections) will be attached
|
||
|
to the return collection as attributes *hbar* and *vbar*.
|
||
|
|
||
|
"""
|
||
|
self._process_unit_info(xdata=x, ydata=y, kwargs=kwargs)
|
||
|
|
||
|
x, y, C = cbook.delete_masked_points(x, y, C)
|
||
|
|
||
|
# Set the size of the hexagon grid
|
||
|
if np.iterable(gridsize):
|
||
|
nx, ny = gridsize
|
||
|
else:
|
||
|
nx = gridsize
|
||
|
ny = int(nx / math.sqrt(3))
|
||
|
# Count the number of data in each hexagon
|
||
|
x = np.array(x, float)
|
||
|
y = np.array(y, float)
|
||
|
if xscale == 'log':
|
||
|
if np.any(x <= 0.0):
|
||
|
raise ValueError("x contains non-positive values, so can not"
|
||
|
" be log-scaled")
|
||
|
x = np.log10(x)
|
||
|
if yscale == 'log':
|
||
|
if np.any(y <= 0.0):
|
||
|
raise ValueError("y contains non-positive values, so can not"
|
||
|
" be log-scaled")
|
||
|
y = np.log10(y)
|
||
|
if extent is not None:
|
||
|
xmin, xmax, ymin, ymax = extent
|
||
|
else:
|
||
|
xmin, xmax = (np.min(x), np.max(x)) if len(x) else (0, 1)
|
||
|
ymin, ymax = (np.min(y), np.max(y)) if len(y) else (0, 1)
|
||
|
|
||
|
# to avoid issues with singular data, expand the min/max pairs
|
||
|
xmin, xmax = mtransforms.nonsingular(xmin, xmax, expander=0.1)
|
||
|
ymin, ymax = mtransforms.nonsingular(ymin, ymax, expander=0.1)
|
||
|
|
||
|
# In the x-direction, the hexagons exactly cover the region from
|
||
|
# xmin to xmax. Need some padding to avoid roundoff errors.
|
||
|
padding = 1.e-9 * (xmax - xmin)
|
||
|
xmin -= padding
|
||
|
xmax += padding
|
||
|
sx = (xmax - xmin) / nx
|
||
|
sy = (ymax - ymin) / ny
|
||
|
|
||
|
if marginals:
|
||
|
xorig = x.copy()
|
||
|
yorig = y.copy()
|
||
|
|
||
|
x = (x - xmin) / sx
|
||
|
y = (y - ymin) / sy
|
||
|
ix1 = np.round(x).astype(int)
|
||
|
iy1 = np.round(y).astype(int)
|
||
|
ix2 = np.floor(x).astype(int)
|
||
|
iy2 = np.floor(y).astype(int)
|
||
|
|
||
|
nx1 = nx + 1
|
||
|
ny1 = ny + 1
|
||
|
nx2 = nx
|
||
|
ny2 = ny
|
||
|
n = nx1 * ny1 + nx2 * ny2
|
||
|
|
||
|
d1 = (x - ix1) ** 2 + 3.0 * (y - iy1) ** 2
|
||
|
d2 = (x - ix2 - 0.5) ** 2 + 3.0 * (y - iy2 - 0.5) ** 2
|
||
|
bdist = (d1 < d2)
|
||
|
if C is None:
|
||
|
lattice1 = np.zeros((nx1, ny1))
|
||
|
lattice2 = np.zeros((nx2, ny2))
|
||
|
c1 = (0 <= ix1) & (ix1 < nx1) & (0 <= iy1) & (iy1 < ny1) & bdist
|
||
|
c2 = (0 <= ix2) & (ix2 < nx2) & (0 <= iy2) & (iy2 < ny2) & ~bdist
|
||
|
np.add.at(lattice1, (ix1[c1], iy1[c1]), 1)
|
||
|
np.add.at(lattice2, (ix2[c2], iy2[c2]), 1)
|
||
|
if mincnt is not None:
|
||
|
lattice1[lattice1 < mincnt] = np.nan
|
||
|
lattice2[lattice2 < mincnt] = np.nan
|
||
|
accum = np.concatenate([lattice1.ravel(), lattice2.ravel()])
|
||
|
good_idxs = ~np.isnan(accum)
|
||
|
|
||
|
else:
|
||
|
if mincnt is None:
|
||
|
mincnt = 0
|
||
|
|
||
|
# create accumulation arrays
|
||
|
lattice1 = np.empty((nx1, ny1), dtype=object)
|
||
|
for i in range(nx1):
|
||
|
for j in range(ny1):
|
||
|
lattice1[i, j] = []
|
||
|
lattice2 = np.empty((nx2, ny2), dtype=object)
|
||
|
for i in range(nx2):
|
||
|
for j in range(ny2):
|
||
|
lattice2[i, j] = []
|
||
|
|
||
|
for i in range(len(x)):
|
||
|
if bdist[i]:
|
||
|
if 0 <= ix1[i] < nx1 and 0 <= iy1[i] < ny1:
|
||
|
lattice1[ix1[i], iy1[i]].append(C[i])
|
||
|
else:
|
||
|
if 0 <= ix2[i] < nx2 and 0 <= iy2[i] < ny2:
|
||
|
lattice2[ix2[i], iy2[i]].append(C[i])
|
||
|
|
||
|
for i in range(nx1):
|
||
|
for j in range(ny1):
|
||
|
vals = lattice1[i, j]
|
||
|
if len(vals) > mincnt:
|
||
|
lattice1[i, j] = reduce_C_function(vals)
|
||
|
else:
|
||
|
lattice1[i, j] = np.nan
|
||
|
for i in range(nx2):
|
||
|
for j in range(ny2):
|
||
|
vals = lattice2[i, j]
|
||
|
if len(vals) > mincnt:
|
||
|
lattice2[i, j] = reduce_C_function(vals)
|
||
|
else:
|
||
|
lattice2[i, j] = np.nan
|
||
|
|
||
|
accum = np.hstack((lattice1.astype(float).ravel(),
|
||
|
lattice2.astype(float).ravel()))
|
||
|
good_idxs = ~np.isnan(accum)
|
||
|
|
||
|
offsets = np.zeros((n, 2), float)
|
||
|
offsets[:nx1 * ny1, 0] = np.repeat(np.arange(nx1), ny1)
|
||
|
offsets[:nx1 * ny1, 1] = np.tile(np.arange(ny1), nx1)
|
||
|
offsets[nx1 * ny1:, 0] = np.repeat(np.arange(nx2) + 0.5, ny2)
|
||
|
offsets[nx1 * ny1:, 1] = np.tile(np.arange(ny2), nx2) + 0.5
|
||
|
offsets[:, 0] *= sx
|
||
|
offsets[:, 1] *= sy
|
||
|
offsets[:, 0] += xmin
|
||
|
offsets[:, 1] += ymin
|
||
|
# remove accumulation bins with no data
|
||
|
offsets = offsets[good_idxs, :]
|
||
|
accum = accum[good_idxs]
|
||
|
|
||
|
polygon = [sx, sy / 3] * np.array(
|
||
|
[[.5, -.5], [.5, .5], [0., 1.], [-.5, .5], [-.5, -.5], [0., -1.]])
|
||
|
|
||
|
if linewidths is None:
|
||
|
linewidths = [1.0]
|
||
|
|
||
|
if xscale == 'log' or yscale == 'log':
|
||
|
polygons = np.expand_dims(polygon, 0) + np.expand_dims(offsets, 1)
|
||
|
if xscale == 'log':
|
||
|
polygons[:, :, 0] = 10.0 ** polygons[:, :, 0]
|
||
|
xmin = 10.0 ** xmin
|
||
|
xmax = 10.0 ** xmax
|
||
|
self.set_xscale(xscale)
|
||
|
if yscale == 'log':
|
||
|
polygons[:, :, 1] = 10.0 ** polygons[:, :, 1]
|
||
|
ymin = 10.0 ** ymin
|
||
|
ymax = 10.0 ** ymax
|
||
|
self.set_yscale(yscale)
|
||
|
collection = mcoll.PolyCollection(
|
||
|
polygons,
|
||
|
edgecolors=edgecolors,
|
||
|
linewidths=linewidths,
|
||
|
)
|
||
|
else:
|
||
|
collection = mcoll.PolyCollection(
|
||
|
[polygon],
|
||
|
edgecolors=edgecolors,
|
||
|
linewidths=linewidths,
|
||
|
offsets=offsets,
|
||
|
transOffset=mtransforms.IdentityTransform(),
|
||
|
offset_position="data"
|
||
|
)
|
||
|
|
||
|
# Set normalizer if bins is 'log'
|
||
|
if bins == 'log':
|
||
|
if norm is not None:
|
||
|
cbook._warn_external("Only one of 'bins' and 'norm' "
|
||
|
"arguments can be supplied, ignoring "
|
||
|
"bins={}".format(bins))
|
||
|
else:
|
||
|
norm = mcolors.LogNorm()
|
||
|
bins = None
|
||
|
|
||
|
if isinstance(norm, mcolors.LogNorm):
|
||
|
if (accum == 0).any():
|
||
|
# make sure we have no zeros
|
||
|
accum += 1
|
||
|
|
||
|
# autoscale the norm with curren accum values if it hasn't
|
||
|
# been set
|
||
|
if norm is not None:
|
||
|
if norm.vmin is None and norm.vmax is None:
|
||
|
norm.autoscale(accum)
|
||
|
|
||
|
if bins is not None:
|
||
|
if not np.iterable(bins):
|
||
|
minimum, maximum = min(accum), max(accum)
|
||
|
bins -= 1 # one less edge than bins
|
||
|
bins = minimum + (maximum - minimum) * np.arange(bins) / bins
|
||
|
bins = np.sort(bins)
|
||
|
accum = bins.searchsorted(accum)
|
||
|
|
||
|
collection.set_array(accum)
|
||
|
collection.set_cmap(cmap)
|
||
|
collection.set_norm(norm)
|
||
|
collection.set_alpha(alpha)
|
||
|
collection.update(kwargs)
|
||
|
|
||
|
if vmin is not None or vmax is not None:
|
||
|
collection.set_clim(vmin, vmax)
|
||
|
else:
|
||
|
collection.autoscale_None()
|
||
|
|
||
|
corners = ((xmin, ymin), (xmax, ymax))
|
||
|
self.update_datalim(corners)
|
||
|
self._request_autoscale_view(tight=True)
|
||
|
|
||
|
# add the collection last
|
||
|
self.add_collection(collection, autolim=False)
|
||
|
if not marginals:
|
||
|
return collection
|
||
|
|
||
|
if C is None:
|
||
|
C = np.ones(len(x))
|
||
|
|
||
|
def coarse_bin(x, y, coarse):
|
||
|
ind = coarse.searchsorted(x).clip(0, len(coarse) - 1)
|
||
|
mus = np.zeros(len(coarse))
|
||
|
for i in range(len(coarse)):
|
||
|
yi = y[ind == i]
|
||
|
if len(yi) > 0:
|
||
|
mu = reduce_C_function(yi)
|
||
|
else:
|
||
|
mu = np.nan
|
||
|
mus[i] = mu
|
||
|
return mus
|
||
|
|
||
|
coarse = np.linspace(xmin, xmax, gridsize)
|
||
|
|
||
|
xcoarse = coarse_bin(xorig, C, coarse)
|
||
|
valid = ~np.isnan(xcoarse)
|
||
|
verts, values = [], []
|
||
|
for i, val in enumerate(xcoarse):
|
||
|
thismin = coarse[i]
|
||
|
if i < len(coarse) - 1:
|
||
|
thismax = coarse[i + 1]
|
||
|
else:
|
||
|
thismax = thismin + np.diff(coarse)[-1]
|
||
|
|
||
|
if not valid[i]:
|
||
|
continue
|
||
|
|
||
|
verts.append([(thismin, 0),
|
||
|
(thismin, 0.05),
|
||
|
(thismax, 0.05),
|
||
|
(thismax, 0)])
|
||
|
values.append(val)
|
||
|
|
||
|
values = np.array(values)
|
||
|
trans = self.get_xaxis_transform(which='grid')
|
||
|
|
||
|
hbar = mcoll.PolyCollection(verts, transform=trans, edgecolors='face')
|
||
|
|
||
|
hbar.set_array(values)
|
||
|
hbar.set_cmap(cmap)
|
||
|
hbar.set_norm(norm)
|
||
|
hbar.set_alpha(alpha)
|
||
|
hbar.update(kwargs)
|
||
|
self.add_collection(hbar, autolim=False)
|
||
|
|
||
|
coarse = np.linspace(ymin, ymax, gridsize)
|
||
|
ycoarse = coarse_bin(yorig, C, coarse)
|
||
|
valid = ~np.isnan(ycoarse)
|
||
|
verts, values = [], []
|
||
|
for i, val in enumerate(ycoarse):
|
||
|
thismin = coarse[i]
|
||
|
if i < len(coarse) - 1:
|
||
|
thismax = coarse[i + 1]
|
||
|
else:
|
||
|
thismax = thismin + np.diff(coarse)[-1]
|
||
|
if not valid[i]:
|
||
|
continue
|
||
|
verts.append([(0, thismin), (0.0, thismax),
|
||
|
(0.05, thismax), (0.05, thismin)])
|
||
|
values.append(val)
|
||
|
|
||
|
values = np.array(values)
|
||
|
|
||
|
trans = self.get_yaxis_transform(which='grid')
|
||
|
|
||
|
vbar = mcoll.PolyCollection(verts, transform=trans, edgecolors='face')
|
||
|
vbar.set_array(values)
|
||
|
vbar.set_cmap(cmap)
|
||
|
vbar.set_norm(norm)
|
||
|
vbar.set_alpha(alpha)
|
||
|
vbar.update(kwargs)
|
||
|
self.add_collection(vbar, autolim=False)
|
||
|
|
||
|
collection.hbar = hbar
|
||
|
collection.vbar = vbar
|
||
|
|
||
|
def on_changed(collection):
|
||
|
hbar.set_cmap(collection.get_cmap())
|
||
|
hbar.set_clim(collection.get_clim())
|
||
|
vbar.set_cmap(collection.get_cmap())
|
||
|
vbar.set_clim(collection.get_clim())
|
||
|
|
||
|
collection.callbacksSM.connect('changed', on_changed)
|
||
|
|
||
|
return collection
|
||
|
|
||
|
@docstring.dedent_interpd
|
||
|
def arrow(self, x, y, dx, dy, **kwargs):
|
||
|
"""
|
||
|
Add an arrow to the axes.
|
||
|
|
||
|
This draws an arrow from ``(x, y)`` to ``(x+dx, y+dy)``.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
x, y : float
|
||
|
The x and y coordinates of the arrow base.
|
||
|
dx, dy : float
|
||
|
The length of the arrow along x and y direction.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
arrow : `.FancyArrow`
|
||
|
The created `.FancyArrow` object.
|
||
|
|
||
|
Other Parameters
|
||
|
----------------
|
||
|
**kwargs
|
||
|
Optional kwargs (inherited from `.FancyArrow` patch) control the
|
||
|
arrow construction and properties:
|
||
|
|
||
|
%(FancyArrow)s
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
The resulting arrow is affected by the axes aspect ratio and limits.
|
||
|
This may produce an arrow whose head is not square with its stem. To
|
||
|
create an arrow whose head is square with its stem,
|
||
|
use :meth:`annotate` for example:
|
||
|
|
||
|
>>> ax.annotate("", xy=(0.5, 0.5), xytext=(0, 0),
|
||
|
... arrowprops=dict(arrowstyle="->"))
|
||
|
|
||
|
"""
|
||
|
# Strip away units for the underlying patch since units
|
||
|
# do not make sense to most patch-like code
|
||
|
x = self.convert_xunits(x)
|
||
|
y = self.convert_yunits(y)
|
||
|
dx = self.convert_xunits(dx)
|
||
|
dy = self.convert_yunits(dy)
|
||
|
|
||
|
a = mpatches.FancyArrow(x, y, dx, dy, **kwargs)
|
||
|
self.add_artist(a)
|
||
|
return a
|
||
|
|
||
|
@docstring.copy(mquiver.QuiverKey.__init__)
|
||
|
def quiverkey(self, Q, X, Y, U, label, **kw):
|
||
|
qk = mquiver.QuiverKey(Q, X, Y, U, label, **kw)
|
||
|
self.add_artist(qk)
|
||
|
return qk
|
||
|
|
||
|
# Handle units for x and y, if they've been passed
|
||
|
def _quiver_units(self, args, kw):
|
||
|
if len(args) > 3:
|
||
|
x, y = args[0:2]
|
||
|
self._process_unit_info(xdata=x, ydata=y, kwargs=kw)
|
||
|
x = self.convert_xunits(x)
|
||
|
y = self.convert_yunits(y)
|
||
|
return (x, y) + args[2:]
|
||
|
return args
|
||
|
|
||
|
# args can by a combination if X, Y, U, V, C and all should be replaced
|
||
|
@_preprocess_data()
|
||
|
def quiver(self, *args, **kw):
|
||
|
# Make sure units are handled for x and y values
|
||
|
args = self._quiver_units(args, kw)
|
||
|
|
||
|
q = mquiver.Quiver(self, *args, **kw)
|
||
|
|
||
|
self.add_collection(q, autolim=True)
|
||
|
self._request_autoscale_view()
|
||
|
return q
|
||
|
quiver.__doc__ = mquiver.Quiver.quiver_doc
|
||
|
|
||
|
# args can be some combination of X, Y, U, V, C and all should be replaced
|
||
|
@_preprocess_data()
|
||
|
@docstring.dedent_interpd
|
||
|
def barbs(self, *args, **kw):
|
||
|
"""
|
||
|
%(barbs_doc)s
|
||
|
"""
|
||
|
# Make sure units are handled for x and y values
|
||
|
args = self._quiver_units(args, kw)
|
||
|
|
||
|
b = mquiver.Barbs(self, *args, **kw)
|
||
|
self.add_collection(b, autolim=True)
|
||
|
self._request_autoscale_view()
|
||
|
return b
|
||
|
|
||
|
# Uses a custom implementation of data-kwarg handling in
|
||
|
# _process_plot_var_args.
|
||
|
def fill(self, *args, data=None, **kwargs):
|
||
|
"""
|
||
|
Plot filled polygons.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
*args : sequence of x, y, [color]
|
||
|
Each polygon is defined by the lists of *x* and *y* positions of
|
||
|
its nodes, optionally followed by a *color* specifier. See
|
||
|
:mod:`matplotlib.colors` for supported color specifiers. The
|
||
|
standard color cycle is used for polygons without a color
|
||
|
specifier.
|
||
|
|
||
|
You can plot multiple polygons by providing multiple *x*, *y*,
|
||
|
*[color]* groups.
|
||
|
|
||
|
For example, each of the following is legal::
|
||
|
|
||
|
ax.fill(x, y) # a polygon with default color
|
||
|
ax.fill(x, y, "b") # a blue polygon
|
||
|
ax.fill(x, y, x2, y2) # two polygons
|
||
|
ax.fill(x, y, "b", x2, y2, "r") # a blue and a red polygon
|
||
|
|
||
|
data : indexable object, optional
|
||
|
An object with labelled data. If given, provide the label names to
|
||
|
plot in *x* and *y*, e.g.::
|
||
|
|
||
|
ax.fill("time", "signal",
|
||
|
data={"time": [0, 1, 2], "signal": [0, 1, 0]})
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
a list of :class:`~matplotlib.patches.Polygon`
|
||
|
|
||
|
Other Parameters
|
||
|
----------------
|
||
|
**kwargs : :class:`~matplotlib.patches.Polygon` properties
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
Use :meth:`fill_between` if you would like to fill the region between
|
||
|
two curves.
|
||
|
"""
|
||
|
# For compatibility(!), get aliases from Line2D rather than Patch.
|
||
|
kwargs = cbook.normalize_kwargs(kwargs, mlines.Line2D)
|
||
|
# _get_patches_for_fill returns a generator, convert it to a list.
|
||
|
patches = [*self._get_patches_for_fill(*args, data=data, **kwargs)]
|
||
|
for poly in patches:
|
||
|
self.add_patch(poly)
|
||
|
self._request_autoscale_view()
|
||
|
return patches
|
||
|
|
||
|
@_preprocess_data(replace_names=["x", "y1", "y2", "where"])
|
||
|
@docstring.dedent_interpd
|
||
|
def fill_between(self, x, y1, y2=0, where=None, interpolate=False,
|
||
|
step=None, **kwargs):
|
||
|
"""
|
||
|
Fill the area between two horizontal curves.
|
||
|
|
||
|
The curves are defined by the points (*x*, *y1*) and (*x*, *y2*). This
|
||
|
creates one or multiple polygons describing the filled area.
|
||
|
|
||
|
You may exclude some horizontal sections from filling using *where*.
|
||
|
|
||
|
By default, the edges connect the given points directly. Use *step* if
|
||
|
the filling should be a step function, i.e. constant in between *x*.
|
||
|
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
x : array (length N)
|
||
|
The x coordinates of the nodes defining the curves.
|
||
|
|
||
|
y1 : array (length N) or scalar
|
||
|
The y coordinates of the nodes defining the first curve.
|
||
|
|
||
|
y2 : array (length N) or scalar, optional, default: 0
|
||
|
The y coordinates of the nodes defining the second curve.
|
||
|
|
||
|
where : array of bool (length N), optional, default: None
|
||
|
Define *where* to exclude some horizontal regions from being
|
||
|
filled. The filled regions are defined by the coordinates
|
||
|
``x[where]``. More precisely, fill between ``x[i]`` and ``x[i+1]``
|
||
|
if ``where[i] and where[i+1]``. Note that this definition implies
|
||
|
that an isolated *True* value between two *False* values in
|
||
|
*where* will not result in filling. Both sides of the *True*
|
||
|
position remain unfilled due to the adjacent *False* values.
|
||
|
|
||
|
interpolate : bool, optional
|
||
|
This option is only relevant if *where* is used and the two curves
|
||
|
are crossing each other.
|
||
|
|
||
|
Semantically, *where* is often used for *y1* > *y2* or similar.
|
||
|
By default, the nodes of the polygon defining the filled region
|
||
|
will only be placed at the positions in the *x* array. Such a
|
||
|
polygon cannot describe the above semantics close to the
|
||
|
intersection. The x-sections containing the intersection are
|
||
|
simply clipped.
|
||
|
|
||
|
Setting *interpolate* to *True* will calculate the actual
|
||
|
intersection point and extend the filled region up to this point.
|
||
|
|
||
|
step : {'pre', 'post', 'mid'}, optional
|
||
|
Define *step* if the filling should be a step function,
|
||
|
i.e. constant in between *x*. The value determines where the
|
||
|
step will occur:
|
||
|
|
||
|
- 'pre': The y value is continued constantly to the left from
|
||
|
every *x* position, i.e. the interval ``(x[i-1], x[i]]`` has the
|
||
|
value ``y[i]``.
|
||
|
- 'post': The y value is continued constantly to the right from
|
||
|
every *x* position, i.e. the interval ``[x[i], x[i+1])`` has the
|
||
|
value ``y[i]``.
|
||
|
- 'mid': Steps occur half-way between the *x* positions.
|
||
|
|
||
|
Other Parameters
|
||
|
----------------
|
||
|
**kwargs
|
||
|
All other keyword arguments are passed on to `.PolyCollection`.
|
||
|
They control the `.Polygon` properties:
|
||
|
|
||
|
%(PolyCollection)s
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
`.PolyCollection`
|
||
|
A `.PolyCollection` containing the plotted polygons.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
fill_betweenx : Fill between two sets of x-values.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
.. [notes section required to get data note injection right]
|
||
|
|
||
|
"""
|
||
|
if not rcParams['_internal.classic_mode']:
|
||
|
kwargs = cbook.normalize_kwargs(kwargs, mcoll.Collection)
|
||
|
if not any(c in kwargs for c in ('color', 'facecolor')):
|
||
|
kwargs['facecolor'] = \
|
||
|
self._get_patches_for_fill.get_next_color()
|
||
|
|
||
|
# Handle united data, such as dates
|
||
|
self._process_unit_info(xdata=x, ydata=y1, kwargs=kwargs)
|
||
|
self._process_unit_info(ydata=y2)
|
||
|
|
||
|
# Convert the arrays so we can work with them
|
||
|
x = ma.masked_invalid(self.convert_xunits(x))
|
||
|
y1 = ma.masked_invalid(self.convert_yunits(y1))
|
||
|
y2 = ma.masked_invalid(self.convert_yunits(y2))
|
||
|
|
||
|
for name, array in [('x', x), ('y1', y1), ('y2', y2)]:
|
||
|
if array.ndim > 1:
|
||
|
raise ValueError('Input passed into argument "%r"' % name +
|
||
|
'is not 1-dimensional.')
|
||
|
|
||
|
if where is None:
|
||
|
where = True
|
||
|
else:
|
||
|
where = np.asarray(where, dtype=bool)
|
||
|
if where.size != x.size:
|
||
|
cbook.warn_deprecated(
|
||
|
"3.2",
|
||
|
message="The parameter where must have the same size as x "
|
||
|
"in fill_between(). This will become an error in "
|
||
|
"future versions of Matplotlib.")
|
||
|
where = where & ~functools.reduce(np.logical_or,
|
||
|
map(np.ma.getmask, [x, y1, y2]))
|
||
|
|
||
|
x, y1, y2 = np.broadcast_arrays(np.atleast_1d(x), y1, y2)
|
||
|
|
||
|
polys = []
|
||
|
for ind0, ind1 in cbook.contiguous_regions(where):
|
||
|
xslice = x[ind0:ind1]
|
||
|
y1slice = y1[ind0:ind1]
|
||
|
y2slice = y2[ind0:ind1]
|
||
|
if step is not None:
|
||
|
step_func = cbook.STEP_LOOKUP_MAP["steps-" + step]
|
||
|
xslice, y1slice, y2slice = step_func(xslice, y1slice, y2slice)
|
||
|
|
||
|
if not len(xslice):
|
||
|
continue
|
||
|
|
||
|
N = len(xslice)
|
||
|
X = np.zeros((2 * N + 2, 2), float)
|
||
|
|
||
|
if interpolate:
|
||
|
def get_interp_point(ind):
|
||
|
im1 = max(ind - 1, 0)
|
||
|
x_values = x[im1:ind + 1]
|
||
|
diff_values = y1[im1:ind + 1] - y2[im1:ind + 1]
|
||
|
y1_values = y1[im1:ind + 1]
|
||
|
|
||
|
if len(diff_values) == 2:
|
||
|
if np.ma.is_masked(diff_values[1]):
|
||
|
return x[im1], y1[im1]
|
||
|
elif np.ma.is_masked(diff_values[0]):
|
||
|
return x[ind], y1[ind]
|
||
|
|
||
|
diff_order = diff_values.argsort()
|
||
|
diff_root_x = np.interp(
|
||
|
0, diff_values[diff_order], x_values[diff_order])
|
||
|
x_order = x_values.argsort()
|
||
|
diff_root_y = np.interp(diff_root_x, x_values[x_order],
|
||
|
y1_values[x_order])
|
||
|
return diff_root_x, diff_root_y
|
||
|
|
||
|
start = get_interp_point(ind0)
|
||
|
end = get_interp_point(ind1)
|
||
|
else:
|
||
|
# the purpose of the next two lines is for when y2 is a
|
||
|
# scalar like 0 and we want the fill to go all the way
|
||
|
# down to 0 even if none of the y1 sample points do
|
||
|
start = xslice[0], y2slice[0]
|
||
|
end = xslice[-1], y2slice[-1]
|
||
|
|
||
|
X[0] = start
|
||
|
X[N + 1] = end
|
||
|
|
||
|
X[1:N + 1, 0] = xslice
|
||
|
X[1:N + 1, 1] = y1slice
|
||
|
X[N + 2:, 0] = xslice[::-1]
|
||
|
X[N + 2:, 1] = y2slice[::-1]
|
||
|
|
||
|
polys.append(X)
|
||
|
|
||
|
collection = mcoll.PolyCollection(polys, **kwargs)
|
||
|
|
||
|
# now update the datalim and autoscale
|
||
|
XY1 = np.array([x[where], y1[where]]).T
|
||
|
XY2 = np.array([x[where], y2[where]]).T
|
||
|
self.dataLim.update_from_data_xy(XY1, self.ignore_existing_data_limits,
|
||
|
updatex=True, updatey=True)
|
||
|
self.ignore_existing_data_limits = False
|
||
|
self.dataLim.update_from_data_xy(XY2, self.ignore_existing_data_limits,
|
||
|
updatex=False, updatey=True)
|
||
|
self.add_collection(collection, autolim=False)
|
||
|
self._request_autoscale_view()
|
||
|
return collection
|
||
|
|
||
|
@_preprocess_data(replace_names=["y", "x1", "x2", "where"])
|
||
|
@docstring.dedent_interpd
|
||
|
def fill_betweenx(self, y, x1, x2=0, where=None,
|
||
|
step=None, interpolate=False, **kwargs):
|
||
|
"""
|
||
|
Fill the area between two vertical curves.
|
||
|
|
||
|
The curves are defined by the points (*x1*, *y*) and (*x2*, *y*). This
|
||
|
creates one or multiple polygons describing the filled area.
|
||
|
|
||
|
You may exclude some vertical sections from filling using *where*.
|
||
|
|
||
|
By default, the edges connect the given points directly. Use *step* if
|
||
|
the filling should be a step function, i.e. constant in between *y*.
|
||
|
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
y : array (length N)
|
||
|
The y coordinates of the nodes defining the curves.
|
||
|
|
||
|
x1 : array (length N) or scalar
|
||
|
The x coordinates of the nodes defining the first curve.
|
||
|
|
||
|
x2 : array (length N) or scalar, optional, default: 0
|
||
|
The x coordinates of the nodes defining the second curve.
|
||
|
|
||
|
where : array of bool (length N), optional, default: None
|
||
|
Define *where* to exclude some vertical regions from being
|
||
|
filled. The filled regions are defined by the coordinates
|
||
|
``y[where]``. More precisely, fill between ``y[i]`` and ``y[i+1]``
|
||
|
if ``where[i] and where[i+1]``. Note that this definition implies
|
||
|
that an isolated *True* value between two *False* values in
|
||
|
*where* will not result in filling. Both sides of the *True*
|
||
|
position remain unfilled due to the adjacent *False* values.
|
||
|
|
||
|
interpolate : bool, optional
|
||
|
This option is only relevant if *where* is used and the two curves
|
||
|
are crossing each other.
|
||
|
|
||
|
Semantically, *where* is often used for *x1* > *x2* or similar.
|
||
|
By default, the nodes of the polygon defining the filled region
|
||
|
will only be placed at the positions in the *y* array. Such a
|
||
|
polygon cannot describe the above semantics close to the
|
||
|
intersection. The y-sections containing the intersection are
|
||
|
simply clipped.
|
||
|
|
||
|
Setting *interpolate* to *True* will calculate the actual
|
||
|
intersection point and extend the filled region up to this point.
|
||
|
|
||
|
step : {'pre', 'post', 'mid'}, optional
|
||
|
Define *step* if the filling should be a step function,
|
||
|
i.e. constant in between *y*. The value determines where the
|
||
|
step will occur:
|
||
|
|
||
|
- 'pre': The y value is continued constantly to the left from
|
||
|
every *x* position, i.e. the interval ``(x[i-1], x[i]]`` has the
|
||
|
value ``y[i]``.
|
||
|
- 'post': The y value is continued constantly to the right from
|
||
|
every *x* position, i.e. the interval ``[x[i], x[i+1])`` has the
|
||
|
value ``y[i]``.
|
||
|
- 'mid': Steps occur half-way between the *x* positions.
|
||
|
|
||
|
Other Parameters
|
||
|
----------------
|
||
|
**kwargs
|
||
|
All other keyword arguments are passed on to `.PolyCollection`.
|
||
|
They control the `.Polygon` properties:
|
||
|
|
||
|
%(PolyCollection)s
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
`.PolyCollection`
|
||
|
A `.PolyCollection` containing the plotted polygons.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
fill_between : Fill between two sets of y-values.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
.. [notes section required to get data note injection right]
|
||
|
|
||
|
"""
|
||
|
if not rcParams['_internal.classic_mode']:
|
||
|
kwargs = cbook.normalize_kwargs(kwargs, mcoll.Collection)
|
||
|
if not any(c in kwargs for c in ('color', 'facecolor')):
|
||
|
kwargs['facecolor'] = \
|
||
|
self._get_patches_for_fill.get_next_color()
|
||
|
|
||
|
# Handle united data, such as dates
|
||
|
self._process_unit_info(ydata=y, xdata=x1, kwargs=kwargs)
|
||
|
self._process_unit_info(xdata=x2)
|
||
|
|
||
|
# Convert the arrays so we can work with them
|
||
|
y = ma.masked_invalid(self.convert_yunits(y))
|
||
|
x1 = ma.masked_invalid(self.convert_xunits(x1))
|
||
|
x2 = ma.masked_invalid(self.convert_xunits(x2))
|
||
|
|
||
|
for name, array in [('y', y), ('x1', x1), ('x2', x2)]:
|
||
|
if array.ndim > 1:
|
||
|
raise ValueError('Input passed into argument "%r"' % name +
|
||
|
'is not 1-dimensional.')
|
||
|
|
||
|
if where is None:
|
||
|
where = True
|
||
|
else:
|
||
|
where = np.asarray(where, dtype=bool)
|
||
|
if where.size != y.size:
|
||
|
cbook.warn_deprecated(
|
||
|
"3.2",
|
||
|
message="The parameter where must have the same size as y "
|
||
|
"in fill_between(). This will become an error in "
|
||
|
"future versions of Matplotlib.")
|
||
|
where = where & ~functools.reduce(np.logical_or,
|
||
|
map(np.ma.getmask, [y, x1, x2]))
|
||
|
|
||
|
y, x1, x2 = np.broadcast_arrays(np.atleast_1d(y), x1, x2)
|
||
|
|
||
|
polys = []
|
||
|
for ind0, ind1 in cbook.contiguous_regions(where):
|
||
|
yslice = y[ind0:ind1]
|
||
|
x1slice = x1[ind0:ind1]
|
||
|
x2slice = x2[ind0:ind1]
|
||
|
if step is not None:
|
||
|
step_func = cbook.STEP_LOOKUP_MAP["steps-" + step]
|
||
|
yslice, x1slice, x2slice = step_func(yslice, x1slice, x2slice)
|
||
|
|
||
|
if not len(yslice):
|
||
|
continue
|
||
|
|
||
|
N = len(yslice)
|
||
|
Y = np.zeros((2 * N + 2, 2), float)
|
||
|
if interpolate:
|
||
|
def get_interp_point(ind):
|
||
|
im1 = max(ind - 1, 0)
|
||
|
y_values = y[im1:ind + 1]
|
||
|
diff_values = x1[im1:ind + 1] - x2[im1:ind + 1]
|
||
|
x1_values = x1[im1:ind + 1]
|
||
|
|
||
|
if len(diff_values) == 2:
|
||
|
if np.ma.is_masked(diff_values[1]):
|
||
|
return x1[im1], y[im1]
|
||
|
elif np.ma.is_masked(diff_values[0]):
|
||
|
return x1[ind], y[ind]
|
||
|
|
||
|
diff_order = diff_values.argsort()
|
||
|
diff_root_y = np.interp(
|
||
|
0, diff_values[diff_order], y_values[diff_order])
|
||
|
y_order = y_values.argsort()
|
||
|
diff_root_x = np.interp(diff_root_y, y_values[y_order],
|
||
|
x1_values[y_order])
|
||
|
return diff_root_x, diff_root_y
|
||
|
|
||
|
start = get_interp_point(ind0)
|
||
|
end = get_interp_point(ind1)
|
||
|
else:
|
||
|
# the purpose of the next two lines is for when x2 is a
|
||
|
# scalar like 0 and we want the fill to go all the way
|
||
|
# down to 0 even if none of the x1 sample points do
|
||
|
start = x2slice[0], yslice[0]
|
||
|
end = x2slice[-1], yslice[-1]
|
||
|
|
||
|
Y[0] = start
|
||
|
Y[N + 1] = end
|
||
|
|
||
|
Y[1:N + 1, 0] = x1slice
|
||
|
Y[1:N + 1, 1] = yslice
|
||
|
Y[N + 2:, 0] = x2slice[::-1]
|
||
|
Y[N + 2:, 1] = yslice[::-1]
|
||
|
|
||
|
polys.append(Y)
|
||
|
|
||
|
collection = mcoll.PolyCollection(polys, **kwargs)
|
||
|
|
||
|
# now update the datalim and autoscale
|
||
|
X1Y = np.array([x1[where], y[where]]).T
|
||
|
X2Y = np.array([x2[where], y[where]]).T
|
||
|
self.dataLim.update_from_data_xy(X1Y, self.ignore_existing_data_limits,
|
||
|
updatex=True, updatey=True)
|
||
|
self.ignore_existing_data_limits = False
|
||
|
self.dataLim.update_from_data_xy(X2Y, self.ignore_existing_data_limits,
|
||
|
updatex=True, updatey=False)
|
||
|
self.add_collection(collection, autolim=False)
|
||
|
self._request_autoscale_view()
|
||
|
return collection
|
||
|
|
||
|
#### plotting z(x, y): imshow, pcolor and relatives, contour
|
||
|
@_preprocess_data()
|
||
|
@cbook._delete_parameter("3.1", "shape")
|
||
|
@cbook._delete_parameter("3.1", "imlim")
|
||
|
def imshow(self, X, cmap=None, norm=None, aspect=None,
|
||
|
interpolation=None, alpha=None, vmin=None, vmax=None,
|
||
|
origin=None, extent=None, shape=None, filternorm=1,
|
||
|
filterrad=4.0, imlim=None, resample=None, url=None, **kwargs):
|
||
|
"""
|
||
|
Display data as an image; i.e. on a 2D regular raster.
|
||
|
|
||
|
The input may either be actual RGB(A) data, or 2D scalar data, which
|
||
|
will be rendered as a pseudocolor image. Note: For actually displaying
|
||
|
a grayscale image set up the color mapping using the parameters
|
||
|
``cmap='gray', vmin=0, vmax=255``.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
X : array-like or PIL image
|
||
|
The image data. Supported array shapes are:
|
||
|
|
||
|
- (M, N): an image with scalar data. The values are mapped to
|
||
|
colors using normalization and a colormap. See parameters *norm*,
|
||
|
*cmap*, *vmin*, *vmax*.
|
||
|
- (M, N, 3): an image with RGB values (0-1 float or 0-255 int).
|
||
|
- (M, N, 4): an image with RGBA values (0-1 float or 0-255 int),
|
||
|
i.e. including transparency.
|
||
|
|
||
|
The first two dimensions (M, N) define the rows and columns of
|
||
|
the image.
|
||
|
|
||
|
Out-of-range RGB(A) values are clipped.
|
||
|
|
||
|
cmap : str or `~matplotlib.colors.Colormap`, optional
|
||
|
The Colormap instance or registered colormap name used to map
|
||
|
scalar data to colors. This parameter is ignored for RGB(A) data.
|
||
|
Defaults to :rc:`image.cmap`.
|
||
|
|
||
|
norm : `~matplotlib.colors.Normalize`, optional
|
||
|
The `Normalize` instance used to scale scalar data to the [0, 1]
|
||
|
range before mapping to colors using *cmap*. By default, a linear
|
||
|
scaling mapping the lowest value to 0 and the highest to 1 is used.
|
||
|
This parameter is ignored for RGB(A) data.
|
||
|
|
||
|
aspect : {'equal', 'auto'} or float, optional
|
||
|
Controls the aspect ratio of the axes. The aspect is of particular
|
||
|
relevance for images since it may distort the image, i.e. pixel
|
||
|
will not be square.
|
||
|
|
||
|
This parameter is a shortcut for explicitly calling
|
||
|
`.Axes.set_aspect`. See there for further details.
|
||
|
|
||
|
- 'equal': Ensures an aspect ratio of 1. Pixels will be square
|
||
|
(unless pixel sizes are explicitly made non-square in data
|
||
|
coordinates using *extent*).
|
||
|
- 'auto': The axes is kept fixed and the aspect is adjusted so
|
||
|
that the data fit in the axes. In general, this will result in
|
||
|
non-square pixels.
|
||
|
|
||
|
If not given, use :rc:`image.aspect`.
|
||
|
|
||
|
interpolation : str, optional
|
||
|
The interpolation method used. If *None*, :rc:`image.interpolation`
|
||
|
is used.
|
||
|
|
||
|
Supported values are 'none', 'antialiased', 'nearest', 'bilinear',
|
||
|
'bicubic', 'spline16', 'spline36', 'hanning', 'hamming', 'hermite',
|
||
|
'kaiser', 'quadric', 'catrom', 'gaussian', 'bessel', 'mitchell',
|
||
|
'sinc', 'lanczos'.
|
||
|
|
||
|
If *interpolation* is 'none', then no interpolation is performed
|
||
|
on the Agg, ps, pdf and svg backends. Other backends will fall back
|
||
|
to 'nearest'. Note that most SVG renders perform interpolation at
|
||
|
rendering and that the default interpolation method they implement
|
||
|
may differ.
|
||
|
|
||
|
If *interpolation* is the default 'antialiased', then 'nearest'
|
||
|
interpolation is used if the image is upsampled by more than a
|
||
|
factor of three (i.e. the number of display pixels is at least
|
||
|
three times the size of the data array). If the upsampling rate is
|
||
|
smaller than 3, or the image is downsampled, then 'hanning'
|
||
|
interpolation is used to act as an anti-aliasing filter, unless the
|
||
|
image happens to be upsampled by exactly a factor of two or one.
|
||
|
|
||
|
See
|
||
|
:doc:`/gallery/images_contours_and_fields/interpolation_methods`
|
||
|
for an overview of the supported interpolation methods, and
|
||
|
:doc:`/gallery/images_contours_and_fields/image_antialiasing` for
|
||
|
a discussion of image antialiasing.
|
||
|
|
||
|
Some interpolation methods require an additional radius parameter,
|
||
|
which can be set by *filterrad*. Additionally, the antigrain image
|
||
|
resize filter is controlled by the parameter *filternorm*.
|
||
|
|
||
|
alpha : scalar or array-like, optional
|
||
|
The alpha blending value, between 0 (transparent) and 1 (opaque).
|
||
|
If *alpha* is an array, the alpha blending values are applied pixel
|
||
|
by pixel, and *alpha* must have the same shape as *X*.
|
||
|
|
||
|
vmin, vmax : scalar, optional
|
||
|
When using scalar data and no explicit *norm*, *vmin* and *vmax*
|
||
|
define the data range that the colormap covers. By default,
|
||
|
the colormap covers the complete value range of the supplied
|
||
|
data. *vmin*, *vmax* are ignored if the *norm* parameter is used.
|
||
|
|
||
|
origin : {'upper', 'lower'}, optional
|
||
|
Place the [0, 0] index of the array in the upper left or lower left
|
||
|
corner of the axes. The convention 'upper' is typically used for
|
||
|
matrices and images.
|
||
|
If not given, :rc:`image.origin` is used, defaulting to 'upper'.
|
||
|
|
||
|
Note that the vertical axes points upward for 'lower'
|
||
|
but downward for 'upper'.
|
||
|
|
||
|
See the :doc:`/tutorials/intermediate/imshow_extent` tutorial for
|
||
|
examples and a more detailed description.
|
||
|
|
||
|
extent : scalars (left, right, bottom, top), optional
|
||
|
The bounding box in data coordinates that the image will fill.
|
||
|
The image is stretched individually along x and y to fill the box.
|
||
|
|
||
|
The default extent is determined by the following conditions.
|
||
|
Pixels have unit size in data coordinates. Their centers are on
|
||
|
integer coordinates, and their center coordinates range from 0 to
|
||
|
columns-1 horizontally and from 0 to rows-1 vertically.
|
||
|
|
||
|
Note that the direction of the vertical axis and thus the default
|
||
|
values for top and bottom depend on *origin*:
|
||
|
|
||
|
- For ``origin == 'upper'`` the default is
|
||
|
``(-0.5, numcols-0.5, numrows-0.5, -0.5)``.
|
||
|
- For ``origin == 'lower'`` the default is
|
||
|
``(-0.5, numcols-0.5, -0.5, numrows-0.5)``.
|
||
|
|
||
|
See the :doc:`/tutorials/intermediate/imshow_extent` tutorial for
|
||
|
examples and a more detailed description.
|
||
|
|
||
|
filternorm : bool, optional, default: True
|
||
|
A parameter for the antigrain image resize filter (see the
|
||
|
antigrain documentation). If *filternorm* is set, the filter
|
||
|
normalizes integer values and corrects the rounding errors. It
|
||
|
doesn't do anything with the source floating point values, it
|
||
|
corrects only integers according to the rule of 1.0 which means
|
||
|
that any sum of pixel weights must be equal to 1.0. So, the
|
||
|
filter function must produce a graph of the proper shape.
|
||
|
|
||
|
filterrad : float > 0, optional, default: 4.0
|
||
|
The filter radius for filters that have a radius parameter, i.e.
|
||
|
when interpolation is one of: 'sinc', 'lanczos' or 'blackman'.
|
||
|
|
||
|
resample : bool, optional
|
||
|
When *True*, use a full resampling method. When *False*, only
|
||
|
resample when the output image is larger than the input image.
|
||
|
|
||
|
url : str, optional
|
||
|
Set the url of the created `.AxesImage`. See `.Artist.set_url`.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
image : `~matplotlib.image.AxesImage`
|
||
|
|
||
|
Other Parameters
|
||
|
----------------
|
||
|
**kwargs : `~matplotlib.artist.Artist` properties
|
||
|
These parameters are passed on to the constructor of the
|
||
|
`.AxesImage` artist.
|
||
|
|
||
|
See also
|
||
|
--------
|
||
|
matshow : Plot a matrix or an array as an image.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
Unless *extent* is used, pixel centers will be located at integer
|
||
|
coordinates. In other words: the origin will coincide with the center
|
||
|
of pixel (0, 0).
|
||
|
|
||
|
There are two common representations for RGB images with an alpha
|
||
|
channel:
|
||
|
|
||
|
- Straight (unassociated) alpha: R, G, and B channels represent the
|
||
|
color of the pixel, disregarding its opacity.
|
||
|
- Premultiplied (associated) alpha: R, G, and B channels represent
|
||
|
the color of the pixel, adjusted for its opacity by multiplication.
|
||
|
|
||
|
`~matplotlib.pyplot.imshow` expects RGB images adopting the straight
|
||
|
(unassociated) alpha representation.
|
||
|
"""
|
||
|
if aspect is None:
|
||
|
aspect = rcParams['image.aspect']
|
||
|
self.set_aspect(aspect)
|
||
|
im = mimage.AxesImage(self, cmap, norm, interpolation, origin, extent,
|
||
|
filternorm=filternorm, filterrad=filterrad,
|
||
|
resample=resample, **kwargs)
|
||
|
|
||
|
im.set_data(X)
|
||
|
im.set_alpha(alpha)
|
||
|
if im.get_clip_path() is None:
|
||
|
# image does not already have clipping set, clip to axes patch
|
||
|
im.set_clip_path(self.patch)
|
||
|
if vmin is not None or vmax is not None:
|
||
|
im.set_clim(vmin, vmax)
|
||
|
else:
|
||
|
im.autoscale_None()
|
||
|
im.set_url(url)
|
||
|
|
||
|
# update ax.dataLim, and, if autoscaling, set viewLim
|
||
|
# to tightly fit the image, regardless of dataLim.
|
||
|
im.set_extent(im.get_extent())
|
||
|
|
||
|
self.add_image(im)
|
||
|
return im
|
||
|
|
||
|
@staticmethod
|
||
|
def _pcolorargs(funcname, *args, allmatch=False):
|
||
|
# If allmatch is True, then the incoming X, Y, C must have matching
|
||
|
# dimensions, taking into account that X and Y can be 1-D rather than
|
||
|
# 2-D. This perfect match is required for Gouraud shading. For flat
|
||
|
# shading, X and Y specify boundaries, so we need one more boundary
|
||
|
# than color in each direction. For convenience, and consistent with
|
||
|
# Matlab, we discard the last row and/or column of C if necessary to
|
||
|
# meet this condition. This is done if allmatch is False.
|
||
|
|
||
|
if len(args) == 1:
|
||
|
C = np.asanyarray(args[0])
|
||
|
nrows, ncols = C.shape
|
||
|
if allmatch:
|
||
|
X, Y = np.meshgrid(np.arange(ncols), np.arange(nrows))
|
||
|
else:
|
||
|
X, Y = np.meshgrid(np.arange(ncols + 1), np.arange(nrows + 1))
|
||
|
C = cbook.safe_masked_invalid(C)
|
||
|
return X, Y, C
|
||
|
|
||
|
if len(args) == 3:
|
||
|
# Check x and y for bad data...
|
||
|
C = np.asanyarray(args[2])
|
||
|
X, Y = [cbook.safe_masked_invalid(a) for a in args[:2]]
|
||
|
if funcname == 'pcolormesh':
|
||
|
if np.ma.is_masked(X) or np.ma.is_masked(Y):
|
||
|
raise ValueError(
|
||
|
'x and y arguments to pcolormesh cannot have '
|
||
|
'non-finite values or be of type '
|
||
|
'numpy.ma.core.MaskedArray with masked values')
|
||
|
# safe_masked_invalid() returns an ndarray for dtypes other
|
||
|
# than floating point.
|
||
|
if isinstance(X, np.ma.core.MaskedArray):
|
||
|
X = X.data # strip mask as downstream doesn't like it...
|
||
|
if isinstance(Y, np.ma.core.MaskedArray):
|
||
|
Y = Y.data
|
||
|
nrows, ncols = C.shape
|
||
|
else:
|
||
|
raise TypeError(
|
||
|
'Illegal arguments to %s; see help(%s)' % (funcname, funcname))
|
||
|
|
||
|
Nx = X.shape[-1]
|
||
|
Ny = Y.shape[0]
|
||
|
if X.ndim != 2 or X.shape[0] == 1:
|
||
|
x = X.reshape(1, Nx)
|
||
|
X = x.repeat(Ny, axis=0)
|
||
|
if Y.ndim != 2 or Y.shape[1] == 1:
|
||
|
y = Y.reshape(Ny, 1)
|
||
|
Y = y.repeat(Nx, axis=1)
|
||
|
if X.shape != Y.shape:
|
||
|
raise TypeError(
|
||
|
'Incompatible X, Y inputs to %s; see help(%s)' % (
|
||
|
funcname, funcname))
|
||
|
if allmatch:
|
||
|
if (Nx, Ny) != (ncols, nrows):
|
||
|
raise TypeError('Dimensions of C %s are incompatible with'
|
||
|
' X (%d) and/or Y (%d); see help(%s)' % (
|
||
|
C.shape, Nx, Ny, funcname))
|
||
|
else:
|
||
|
if not (ncols in (Nx, Nx - 1) and nrows in (Ny, Ny - 1)):
|
||
|
raise TypeError('Dimensions of C %s are incompatible with'
|
||
|
' X (%d) and/or Y (%d); see help(%s)' % (
|
||
|
C.shape, Nx, Ny, funcname))
|
||
|
C = C[:Ny - 1, :Nx - 1]
|
||
|
C = cbook.safe_masked_invalid(C)
|
||
|
return X, Y, C
|
||
|
|
||
|
@_preprocess_data()
|
||
|
@docstring.dedent_interpd
|
||
|
def pcolor(self, *args, alpha=None, norm=None, cmap=None, vmin=None,
|
||
|
vmax=None, **kwargs):
|
||
|
r"""
|
||
|
Create a pseudocolor plot with a non-regular rectangular grid.
|
||
|
|
||
|
Call signature::
|
||
|
|
||
|
pcolor([X, Y,] C, **kwargs)
|
||
|
|
||
|
*X* and *Y* can be used to specify the corners of the quadrilaterals.
|
||
|
|
||
|
.. hint::
|
||
|
|
||
|
``pcolor()`` can be very slow for large arrays. In most
|
||
|
cases you should use the similar but much faster
|
||
|
`~.Axes.pcolormesh` instead. See there for a discussion of the
|
||
|
differences.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
C : array-like
|
||
|
A scalar 2-D array. The values will be color-mapped.
|
||
|
|
||
|
X, Y : array-like, optional
|
||
|
The coordinates of the quadrilateral corners. The quadrilateral
|
||
|
for ``C[i, j]`` has corners at::
|
||
|
|
||
|
(X[i+1, j], Y[i+1, j]) (X[i+1, j+1], Y[i+1, j+1])
|
||
|
+---------+
|
||
|
| C[i, j] |
|
||
|
+---------+
|
||
|
(X[i, j], Y[i, j]) (X[i, j+1], Y[i, j+1])
|
||
|
|
||
|
Note that the column index corresponds to the
|
||
|
x-coordinate, and the row index corresponds to y. For
|
||
|
details, see the :ref:`Notes <axes-pcolor-grid-orientation>`
|
||
|
section below.
|
||
|
|
||
|
The dimensions of *X* and *Y* should be one greater than those of
|
||
|
*C*. Alternatively, *X*, *Y* and *C* may have equal dimensions, in
|
||
|
which case the last row and column of *C* will be ignored.
|
||
|
|
||
|
If *X* and/or *Y* are 1-D arrays or column vectors they will be
|
||
|
expanded as needed into the appropriate 2-D arrays, making a
|
||
|
rectangular grid.
|
||
|
|
||
|
cmap : str or `~matplotlib.colors.Colormap`, optional
|
||
|
A Colormap instance or registered colormap name. The colormap
|
||
|
maps the *C* values to colors. Defaults to :rc:`image.cmap`.
|
||
|
|
||
|
norm : `~matplotlib.colors.Normalize`, optional
|
||
|
The Normalize instance scales the data values to the canonical
|
||
|
colormap range [0, 1] for mapping to colors. By default, the data
|
||
|
range is mapped to the colorbar range using linear scaling.
|
||
|
|
||
|
vmin, vmax : scalar, optional, default: None
|
||
|
The colorbar range. If *None*, suitable min/max values are
|
||
|
automatically chosen by the `~.Normalize` instance (defaults to
|
||
|
the respective min/max values of *C* in case of the default linear
|
||
|
scaling).
|
||
|
|
||
|
edgecolors : {'none', None, 'face', color, color sequence}, optional
|
||
|
The color of the edges. Defaults to 'none'. Possible values:
|
||
|
|
||
|
- 'none' or '': No edge.
|
||
|
- *None*: :rc:`patch.edgecolor` will be used. Note that currently
|
||
|
:rc:`patch.force_edgecolor` has to be True for this to work.
|
||
|
- 'face': Use the adjacent face color.
|
||
|
- A color or sequence of colors will set the edge color.
|
||
|
|
||
|
The singular form *edgecolor* works as an alias.
|
||
|
|
||
|
alpha : scalar, optional, default: None
|
||
|
The alpha blending value of the face color, between 0 (transparent)
|
||
|
and 1 (opaque). Note: The edgecolor is currently not affected by
|
||
|
this.
|
||
|
|
||
|
snap : bool, optional, default: False
|
||
|
Whether to snap the mesh to pixel boundaries.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
collection : `matplotlib.collections.Collection`
|
||
|
|
||
|
Other Parameters
|
||
|
----------------
|
||
|
antialiaseds : bool, optional, default: False
|
||
|
The default *antialiaseds* is False if the default
|
||
|
*edgecolors*\ ="none" is used. This eliminates artificial lines
|
||
|
at patch boundaries, and works regardless of the value of alpha.
|
||
|
If *edgecolors* is not "none", then the default *antialiaseds*
|
||
|
is taken from :rc:`patch.antialiased`.
|
||
|
Stroking the edges may be preferred if *alpha* is 1, but will
|
||
|
cause artifacts otherwise.
|
||
|
|
||
|
**kwargs
|
||
|
Additionally, the following arguments are allowed. They are passed
|
||
|
along to the `~matplotlib.collections.PolyCollection` constructor:
|
||
|
|
||
|
%(PolyCollection)s
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
pcolormesh : for an explanation of the differences between
|
||
|
pcolor and pcolormesh.
|
||
|
imshow : If *X* and *Y* are each equidistant, `~.Axes.imshow` can be a
|
||
|
faster alternative.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
**Masked arrays**
|
||
|
|
||
|
*X*, *Y* and *C* may be masked arrays. If either ``C[i, j]``, or one
|
||
|
of the vertices surrounding ``C[i, j]`` (*X* or *Y* at
|
||
|
``[i, j], [i+1, j], [i, j+1], [i+1, j+1]``) is masked, nothing is
|
||
|
plotted.
|
||
|
|
||
|
.. _axes-pcolor-grid-orientation:
|
||
|
|
||
|
**Grid orientation**
|
||
|
|
||
|
The grid orientation follows the standard matrix convention: An array
|
||
|
*C* with shape (nrows, ncolumns) is plotted with the column number as
|
||
|
*X* and the row number as *Y*.
|
||
|
|
||
|
**Handling of pcolor() end-cases**
|
||
|
|
||
|
``pcolor()`` displays all columns of *C* if *X* and *Y* are not
|
||
|
specified, or if *X* and *Y* have one more column than *C*.
|
||
|
If *X* and *Y* have the same number of columns as *C* then the last
|
||
|
column of *C* is dropped. Similarly for the rows.
|
||
|
|
||
|
Note: This behavior is different from MATLAB's ``pcolor()``, which
|
||
|
always discards the last row and column of *C*.
|
||
|
"""
|
||
|
X, Y, C = self._pcolorargs('pcolor', *args, allmatch=False)
|
||
|
Ny, Nx = X.shape
|
||
|
|
||
|
# unit conversion allows e.g. datetime objects as axis values
|
||
|
self._process_unit_info(xdata=X, ydata=Y, kwargs=kwargs)
|
||
|
X = self.convert_xunits(X)
|
||
|
Y = self.convert_yunits(Y)
|
||
|
|
||
|
# convert to MA, if necessary.
|
||
|
C = ma.asarray(C)
|
||
|
X = ma.asarray(X)
|
||
|
Y = ma.asarray(Y)
|
||
|
|
||
|
mask = ma.getmaskarray(X) + ma.getmaskarray(Y)
|
||
|
xymask = (mask[0:-1, 0:-1] + mask[1:, 1:] +
|
||
|
mask[0:-1, 1:] + mask[1:, 0:-1])
|
||
|
# don't plot if C or any of the surrounding vertices are masked.
|
||
|
mask = ma.getmaskarray(C) + xymask
|
||
|
|
||
|
unmask = ~mask
|
||
|
X1 = ma.filled(X[:-1, :-1])[unmask]
|
||
|
Y1 = ma.filled(Y[:-1, :-1])[unmask]
|
||
|
X2 = ma.filled(X[1:, :-1])[unmask]
|
||
|
Y2 = ma.filled(Y[1:, :-1])[unmask]
|
||
|
X3 = ma.filled(X[1:, 1:])[unmask]
|
||
|
Y3 = ma.filled(Y[1:, 1:])[unmask]
|
||
|
X4 = ma.filled(X[:-1, 1:])[unmask]
|
||
|
Y4 = ma.filled(Y[:-1, 1:])[unmask]
|
||
|
npoly = len(X1)
|
||
|
|
||
|
xy = np.stack([X1, Y1, X2, Y2, X3, Y3, X4, Y4, X1, Y1], axis=-1)
|
||
|
verts = xy.reshape((npoly, 5, 2))
|
||
|
|
||
|
C = ma.filled(C[:Ny - 1, :Nx - 1])[unmask]
|
||
|
|
||
|
linewidths = (0.25,)
|
||
|
if 'linewidth' in kwargs:
|
||
|
kwargs['linewidths'] = kwargs.pop('linewidth')
|
||
|
kwargs.setdefault('linewidths', linewidths)
|
||
|
|
||
|
if 'edgecolor' in kwargs:
|
||
|
kwargs['edgecolors'] = kwargs.pop('edgecolor')
|
||
|
ec = kwargs.setdefault('edgecolors', 'none')
|
||
|
|
||
|
# aa setting will default via collections to patch.antialiased
|
||
|
# unless the boundary is not stroked, in which case the
|
||
|
# default will be False; with unstroked boundaries, aa
|
||
|
# makes artifacts that are often disturbing.
|
||
|
if 'antialiased' in kwargs:
|
||
|
kwargs['antialiaseds'] = kwargs.pop('antialiased')
|
||
|
if 'antialiaseds' not in kwargs and cbook._str_lower_equal(ec, "none"):
|
||
|
kwargs['antialiaseds'] = False
|
||
|
|
||
|
kwargs.setdefault('snap', False)
|
||
|
|
||
|
collection = mcoll.PolyCollection(verts, **kwargs)
|
||
|
|
||
|
collection.set_alpha(alpha)
|
||
|
collection.set_array(C)
|
||
|
collection.set_cmap(cmap)
|
||
|
collection.set_norm(norm)
|
||
|
collection.set_clim(vmin, vmax)
|
||
|
collection.autoscale_None()
|
||
|
self.grid(False)
|
||
|
|
||
|
x = X.compressed()
|
||
|
y = Y.compressed()
|
||
|
|
||
|
# Transform from native to data coordinates?
|
||
|
t = collection._transform
|
||
|
if (not isinstance(t, mtransforms.Transform) and
|
||
|
hasattr(t, '_as_mpl_transform')):
|
||
|
t = t._as_mpl_transform(self.axes)
|
||
|
|
||
|
if t and any(t.contains_branch_seperately(self.transData)):
|
||
|
trans_to_data = t - self.transData
|
||
|
pts = np.vstack([x, y]).T.astype(float)
|
||
|
transformed_pts = trans_to_data.transform(pts)
|
||
|
x = transformed_pts[..., 0]
|
||
|
y = transformed_pts[..., 1]
|
||
|
|
||
|
self.add_collection(collection, autolim=False)
|
||
|
|
||
|
minx = np.min(x)
|
||
|
maxx = np.max(x)
|
||
|
miny = np.min(y)
|
||
|
maxy = np.max(y)
|
||
|
collection.sticky_edges.x[:] = [minx, maxx]
|
||
|
collection.sticky_edges.y[:] = [miny, maxy]
|
||
|
corners = (minx, miny), (maxx, maxy)
|
||
|
self.update_datalim(corners)
|
||
|
self._request_autoscale_view()
|
||
|
return collection
|
||
|
|
||
|
@_preprocess_data()
|
||
|
@docstring.dedent_interpd
|
||
|
def pcolormesh(self, *args, alpha=None, norm=None, cmap=None, vmin=None,
|
||
|
vmax=None, shading='flat', antialiased=False, **kwargs):
|
||
|
"""
|
||
|
Create a pseudocolor plot with a non-regular rectangular grid.
|
||
|
|
||
|
Call signature::
|
||
|
|
||
|
pcolor([X, Y,] C, **kwargs)
|
||
|
|
||
|
*X* and *Y* can be used to specify the corners of the quadrilaterals.
|
||
|
|
||
|
.. note::
|
||
|
|
||
|
`~Axes.pcolormesh` is similar to `~Axes.pcolor`. It's much faster
|
||
|
and preferred in most cases. For a detailed discussion on the
|
||
|
differences see :ref:`Differences between pcolor() and pcolormesh()
|
||
|
<differences-pcolor-pcolormesh>`.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
C : array-like
|
||
|
A scalar 2-D array. The values will be color-mapped.
|
||
|
|
||
|
X, Y : array-like, optional
|
||
|
The coordinates of the quadrilateral corners. The quadrilateral
|
||
|
for ``C[i, j]`` has corners at::
|
||
|
|
||
|
(X[i+1, j], Y[i+1, j]) (X[i+1, j+1], Y[i+1, j+1])
|
||
|
+---------+
|
||
|
| C[i, j] |
|
||
|
+---------+
|
||
|
(X[i, j], Y[i, j]) (X[i, j+1], Y[i, j+1])
|
||
|
|
||
|
Note that the column index corresponds to the
|
||
|
x-coordinate, and the row index corresponds to y. For
|
||
|
details, see the :ref:`Notes <axes-pcolormesh-grid-orientation>`
|
||
|
section below.
|
||
|
|
||
|
The dimensions of *X* and *Y* should be one greater than those of
|
||
|
*C*. Alternatively, *X*, *Y* and *C* may have equal dimensions, in
|
||
|
which case the last row and column of *C* will be ignored.
|
||
|
|
||
|
If *X* and/or *Y* are 1-D arrays or column vectors they will be
|
||
|
expanded as needed into the appropriate 2-D arrays, making a
|
||
|
rectangular grid.
|
||
|
|
||
|
cmap : str or `~matplotlib.colors.Colormap`, optional
|
||
|
A Colormap instance or registered colormap name. The colormap
|
||
|
maps the *C* values to colors. Defaults to :rc:`image.cmap`.
|
||
|
|
||
|
norm : `~matplotlib.colors.Normalize`, optional
|
||
|
The Normalize instance scales the data values to the canonical
|
||
|
colormap range [0, 1] for mapping to colors. By default, the data
|
||
|
range is mapped to the colorbar range using linear scaling.
|
||
|
|
||
|
vmin, vmax : scalar, optional, default: None
|
||
|
The colorbar range. If *None*, suitable min/max values are
|
||
|
automatically chosen by the `~.Normalize` instance (defaults to
|
||
|
the respective min/max values of *C* in case of the default linear
|
||
|
scaling).
|
||
|
|
||
|
edgecolors : {'none', None, 'face', color, color sequence}, optional
|
||
|
The color of the edges. Defaults to 'none'. Possible values:
|
||
|
|
||
|
- 'none' or '': No edge.
|
||
|
- *None*: :rc:`patch.edgecolor` will be used. Note that currently
|
||
|
:rc:`patch.force_edgecolor` has to be True for this to work.
|
||
|
- 'face': Use the adjacent face color.
|
||
|
- A color or sequence of colors will set the edge color.
|
||
|
|
||
|
The singular form *edgecolor* works as an alias.
|
||
|
|
||
|
alpha : scalar, optional, default: None
|
||
|
The alpha blending value, between 0 (transparent) and 1 (opaque).
|
||
|
|
||
|
shading : {'flat', 'gouraud'}, optional
|
||
|
The fill style, Possible values:
|
||
|
|
||
|
- 'flat': A solid color is used for each quad. The color of the
|
||
|
quad (i, j), (i+1, j), (i, j+1), (i+1, j+1) is given by
|
||
|
``C[i, j]``.
|
||
|
- 'gouraud': Each quad will be Gouraud shaded: The color of the
|
||
|
corners (i', j') are given by ``C[i',j']``. The color values of
|
||
|
the area in between is interpolated from the corner values.
|
||
|
When Gouraud shading is used, *edgecolors* is ignored.
|
||
|
|
||
|
snap : bool, optional, default: False
|
||
|
Whether to snap the mesh to pixel boundaries.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
mesh : `matplotlib.collections.QuadMesh`
|
||
|
|
||
|
Other Parameters
|
||
|
----------------
|
||
|
**kwargs
|
||
|
Additionally, the following arguments are allowed. They are passed
|
||
|
along to the `~matplotlib.collections.QuadMesh` constructor:
|
||
|
|
||
|
%(QuadMesh)s
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
pcolor : An alternative implementation with slightly different
|
||
|
features. For a detailed discussion on the differences see
|
||
|
:ref:`Differences between pcolor() and pcolormesh()
|
||
|
<differences-pcolor-pcolormesh>`.
|
||
|
imshow : If *X* and *Y* are each equidistant, `~.Axes.imshow` can be a
|
||
|
faster alternative.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
**Masked arrays**
|
||
|
|
||
|
*C* may be a masked array. If ``C[i, j]`` is masked, the corresponding
|
||
|
quadrilateral will be transparent. Masking of *X* and *Y* is not
|
||
|
supported. Use `~.Axes.pcolor` if you need this functionality.
|
||
|
|
||
|
.. _axes-pcolormesh-grid-orientation:
|
||
|
|
||
|
**Grid orientation**
|
||
|
|
||
|
The grid orientation follows the standard matrix convention: An array
|
||
|
*C* with shape (nrows, ncolumns) is plotted with the column number as
|
||
|
*X* and the row number as *Y*.
|
||
|
|
||
|
.. _differences-pcolor-pcolormesh:
|
||
|
|
||
|
**Differences between pcolor() and pcolormesh()**
|
||
|
|
||
|
Both methods are used to create a pseudocolor plot of a 2-D array
|
||
|
using quadrilaterals.
|
||
|
|
||
|
The main difference lies in the created object and internal data
|
||
|
handling:
|
||
|
While `~.Axes.pcolor` returns a `.PolyCollection`, `~.Axes.pcolormesh`
|
||
|
returns a `.QuadMesh`. The latter is more specialized for the given
|
||
|
purpose and thus is faster. It should almost always be preferred.
|
||
|
|
||
|
There is also a slight difference in the handling of masked arrays.
|
||
|
Both `~.Axes.pcolor` and `~.Axes.pcolormesh` support masked arrays
|
||
|
for *C*. However, only `~.Axes.pcolor` supports masked arrays for *X*
|
||
|
and *Y*. The reason lies in the internal handling of the masked values.
|
||
|
`~.Axes.pcolor` leaves out the respective polygons from the
|
||
|
PolyCollection. `~.Axes.pcolormesh` sets the facecolor of the masked
|
||
|
elements to transparent. You can see the difference when using
|
||
|
edgecolors. While all edges are drawn irrespective of masking in a
|
||
|
QuadMesh, the edge between two adjacent masked quadrilaterals in
|
||
|
`~.Axes.pcolor` is not drawn as the corresponding polygons do not
|
||
|
exist in the PolyCollection.
|
||
|
|
||
|
Another difference is the support of Gouraud shading in
|
||
|
`~.Axes.pcolormesh`, which is not available with `~.Axes.pcolor`.
|
||
|
|
||
|
"""
|
||
|
shading = shading.lower()
|
||
|
kwargs.setdefault('edgecolors', 'None')
|
||
|
|
||
|
allmatch = (shading == 'gouraud')
|
||
|
|
||
|
X, Y, C = self._pcolorargs('pcolormesh', *args, allmatch=allmatch)
|
||
|
Ny, Nx = X.shape
|
||
|
X = X.ravel()
|
||
|
Y = Y.ravel()
|
||
|
# unit conversion allows e.g. datetime objects as axis values
|
||
|
self._process_unit_info(xdata=X, ydata=Y, kwargs=kwargs)
|
||
|
X = self.convert_xunits(X)
|
||
|
Y = self.convert_yunits(Y)
|
||
|
|
||
|
# convert to one dimensional arrays
|
||
|
C = C.ravel()
|
||
|
coords = np.column_stack((X, Y)).astype(float, copy=False)
|
||
|
collection = mcoll.QuadMesh(Nx - 1, Ny - 1, coords,
|
||
|
antialiased=antialiased, shading=shading,
|
||
|
**kwargs)
|
||
|
collection.set_alpha(alpha)
|
||
|
collection.set_array(C)
|
||
|
collection.set_cmap(cmap)
|
||
|
collection.set_norm(norm)
|
||
|
collection.set_clim(vmin, vmax)
|
||
|
collection.autoscale_None()
|
||
|
|
||
|
self.grid(False)
|
||
|
|
||
|
# Transform from native to data coordinates?
|
||
|
t = collection._transform
|
||
|
if (not isinstance(t, mtransforms.Transform) and
|
||
|
hasattr(t, '_as_mpl_transform')):
|
||
|
t = t._as_mpl_transform(self.axes)
|
||
|
|
||
|
if t and any(t.contains_branch_seperately(self.transData)):
|
||
|
trans_to_data = t - self.transData
|
||
|
coords = trans_to_data.transform(coords)
|
||
|
|
||
|
self.add_collection(collection, autolim=False)
|
||
|
|
||
|
minx, miny = np.min(coords, axis=0)
|
||
|
maxx, maxy = np.max(coords, axis=0)
|
||
|
collection.sticky_edges.x[:] = [minx, maxx]
|
||
|
collection.sticky_edges.y[:] = [miny, maxy]
|
||
|
corners = (minx, miny), (maxx, maxy)
|
||
|
self.update_datalim(corners)
|
||
|
self._request_autoscale_view()
|
||
|
return collection
|
||
|
|
||
|
@_preprocess_data()
|
||
|
@docstring.dedent_interpd
|
||
|
def pcolorfast(self, *args, alpha=None, norm=None, cmap=None, vmin=None,
|
||
|
vmax=None, **kwargs):
|
||
|
"""
|
||
|
Create a pseudocolor plot with a non-regular rectangular grid.
|
||
|
|
||
|
Call signature::
|
||
|
|
||
|
ax.pcolorfast([X, Y], C, /, **kwargs)
|
||
|
|
||
|
This method is similar to ~.Axes.pcolor` and `~.Axes.pcolormesh`.
|
||
|
It's designed to provide the fastest pcolor-type plotting with the
|
||
|
Agg backend. To achieve this, it uses different algorithms internally
|
||
|
depending on the complexity of the input grid (regular rectangular,
|
||
|
non-regular rectangular or arbitrary quadrilateral).
|
||
|
|
||
|
.. warning::
|
||
|
|
||
|
This method is experimental. Compared to `~.Axes.pcolor` or
|
||
|
`~.Axes.pcolormesh` it has some limitations:
|
||
|
|
||
|
- It supports only flat shading (no outlines)
|
||
|
- It lacks support for log scaling of the axes.
|
||
|
- It does not have a have a pyplot wrapper.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
C : array-like(M, N)
|
||
|
The image data. Supported array shapes are:
|
||
|
|
||
|
- (M, N): an image with scalar data. The data is visualized
|
||
|
using a colormap.
|
||
|
- (M, N, 3): an image with RGB values (0-1 float or 0-255 int).
|
||
|
- (M, N, 4): an image with RGBA values (0-1 float or 0-255 int),
|
||
|
i.e. including transparency.
|
||
|
|
||
|
The first two dimensions (M, N) define the rows and columns of
|
||
|
the image.
|
||
|
|
||
|
This parameter can only be passed positionally.
|
||
|
|
||
|
X, Y : tuple or array-like, default: ``(0, N)``, ``(0, M)``
|
||
|
*X* and *Y* are used to specify the coordinates of the
|
||
|
quadrilaterals. There are different ways to do this:
|
||
|
|
||
|
- Use tuples ``X=(xmin, xmax)`` and ``Y=(ymin, ymax)`` to define
|
||
|
a *uniform rectangular grid*.
|
||
|
|
||
|
The tuples define the outer edges of the grid. All individual
|
||
|
quadrilaterals will be of the same size. This is the fastest
|
||
|
version.
|
||
|
|
||
|
- Use 1D arrays *X*, *Y* to specify a *non-uniform rectangular
|
||
|
grid*.
|
||
|
|
||
|
In this case *X* and *Y* have to be monotonic 1D arrays of length
|
||
|
*N+1* and *M+1*, specifying the x and y boundaries of the cells.
|
||
|
|
||
|
The speed is intermediate. Note: The grid is checked, and if
|
||
|
found to be uniform the fast version is used.
|
||
|
|
||
|
- Use 2D arrays *X*, *Y* if you need an *arbitrary quadrilateral
|
||
|
grid* (i.e. if the quadrilaterals are not rectangular).
|
||
|
|
||
|
In this case *X* and *Y* are 2D arrays with shape (M + 1, N + 1),
|
||
|
specifying the x and y coordinates of the corners of the colored
|
||
|
quadrilaterals.
|
||
|
|
||
|
This is the most general, but the slowest to render. It may
|
||
|
produce faster and more compact output using ps, pdf, and
|
||
|
svg backends, however.
|
||
|
|
||
|
These arguments can only be passed positionally.
|
||
|
|
||
|
cmap : str or `~matplotlib.colors.Colormap`, optional
|
||
|
A Colormap instance or registered colormap name. The colormap
|
||
|
maps the *C* values to colors. Defaults to :rc:`image.cmap`.
|
||
|
|
||
|
norm : `~matplotlib.colors.Normalize`, optional
|
||
|
The Normalize instance scales the data values to the canonical
|
||
|
colormap range [0, 1] for mapping to colors. By default, the data
|
||
|
range is mapped to the colorbar range using linear scaling.
|
||
|
|
||
|
vmin, vmax : scalar, optional, default: None
|
||
|
The colorbar range. If *None*, suitable min/max values are
|
||
|
automatically chosen by the `~.Normalize` instance (defaults to
|
||
|
the respective min/max values of *C* in case of the default linear
|
||
|
scaling).
|
||
|
|
||
|
alpha : scalar, optional, default: None
|
||
|
The alpha blending value, between 0 (transparent) and 1 (opaque).
|
||
|
|
||
|
snap : bool, optional, default: False
|
||
|
Whether to snap the mesh to pixel boundaries.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
image : `.AxesImage` or `.PcolorImage` or `.QuadMesh`
|
||
|
The return type depends on the type of grid:
|
||
|
|
||
|
- `.AxesImage` for a regular rectangular grid.
|
||
|
- `.PcolorImage` for a non-regular rectangular grid.
|
||
|
- `.QuadMesh` for a non-rectangular grid.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
.. [notes section required to get data note injection right]
|
||
|
"""
|
||
|
|
||
|
C = args[-1]
|
||
|
nr, nc = np.shape(C)[:2]
|
||
|
if len(args) == 1:
|
||
|
style = "image"
|
||
|
x = [0, nc]
|
||
|
y = [0, nr]
|
||
|
elif len(args) == 3:
|
||
|
x, y = args[:2]
|
||
|
x = np.asarray(x)
|
||
|
y = np.asarray(y)
|
||
|
if x.ndim == 1 and y.ndim == 1:
|
||
|
if x.size == 2 and y.size == 2:
|
||
|
style = "image"
|
||
|
else:
|
||
|
dx = np.diff(x)
|
||
|
dy = np.diff(y)
|
||
|
if (np.ptp(dx) < 0.01 * np.abs(dx.mean()) and
|
||
|
np.ptp(dy) < 0.01 * np.abs(dy.mean())):
|
||
|
style = "image"
|
||
|
else:
|
||
|
style = "pcolorimage"
|
||
|
elif x.ndim == 2 and y.ndim == 2:
|
||
|
style = "quadmesh"
|
||
|
else:
|
||
|
raise TypeError("arguments do not match valid signatures")
|
||
|
else:
|
||
|
raise TypeError("need 1 argument or 3 arguments")
|
||
|
|
||
|
if style == "quadmesh":
|
||
|
# data point in each cell is value at lower left corner
|
||
|
coords = np.stack([x, y], axis=-1)
|
||
|
if np.ndim(C) == 2:
|
||
|
qm_kwargs = {"array": np.ma.ravel(C)}
|
||
|
elif np.ndim(C) == 3:
|
||
|
qm_kwargs = {"color": np.ma.reshape(C, (-1, C.shape[-1]))}
|
||
|
else:
|
||
|
raise ValueError("C must be 2D or 3D")
|
||
|
collection = mcoll.QuadMesh(
|
||
|
nc, nr, coords, **qm_kwargs,
|
||
|
alpha=alpha, cmap=cmap, norm=norm,
|
||
|
antialiased=False, edgecolors="none")
|
||
|
self.add_collection(collection, autolim=False)
|
||
|
xl, xr, yb, yt = x.min(), x.max(), y.min(), y.max()
|
||
|
ret = collection
|
||
|
|
||
|
else: # It's one of the two image styles.
|
||
|
extent = xl, xr, yb, yt = x[0], x[-1], y[0], y[-1]
|
||
|
if style == "image":
|
||
|
im = mimage.AxesImage(
|
||
|
self, cmap, norm,
|
||
|
data=C, alpha=alpha, extent=extent,
|
||
|
interpolation='nearest', origin='lower',
|
||
|
**kwargs)
|
||
|
elif style == "pcolorimage":
|
||
|
im = mimage.PcolorImage(
|
||
|
self, x, y, C,
|
||
|
cmap=cmap, norm=norm, alpha=alpha, extent=extent,
|
||
|
**kwargs)
|
||
|
self.add_image(im)
|
||
|
ret = im
|
||
|
|
||
|
if vmin is not None or vmax is not None:
|
||
|
ret.set_clim(vmin, vmax)
|
||
|
elif np.ndim(C) == 2: # C.ndim == 3 is RGB(A) so doesn't need scaling.
|
||
|
ret.autoscale_None()
|
||
|
if ret.get_clip_path() is None:
|
||
|
# image does not already have clipping set, clip to axes patch
|
||
|
ret.set_clip_path(self.patch)
|
||
|
|
||
|
ret.sticky_edges.x[:] = [xl, xr]
|
||
|
ret.sticky_edges.y[:] = [yb, yt]
|
||
|
self.update_datalim(np.array([[xl, yb], [xr, yt]]))
|
||
|
self._request_autoscale_view(tight=True)
|
||
|
return ret
|
||
|
|
||
|
@_preprocess_data()
|
||
|
def contour(self, *args, **kwargs):
|
||
|
kwargs['filled'] = False
|
||
|
contours = mcontour.QuadContourSet(self, *args, **kwargs)
|
||
|
self._request_autoscale_view()
|
||
|
return contours
|
||
|
contour.__doc__ = mcontour.QuadContourSet._contour_doc
|
||
|
|
||
|
@_preprocess_data()
|
||
|
def contourf(self, *args, **kwargs):
|
||
|
kwargs['filled'] = True
|
||
|
contours = mcontour.QuadContourSet(self, *args, **kwargs)
|
||
|
self._request_autoscale_view()
|
||
|
return contours
|
||
|
contourf.__doc__ = mcontour.QuadContourSet._contour_doc
|
||
|
|
||
|
def clabel(self, CS, *args, **kwargs):
|
||
|
return CS.clabel(*args, **kwargs)
|
||
|
clabel.__doc__ = mcontour.ContourSet.clabel.__doc__
|
||
|
|
||
|
#### Data analysis
|
||
|
|
||
|
@_preprocess_data(replace_names=["x", 'weights'], label_namer="x")
|
||
|
def hist(self, x, bins=None, range=None, density=False, weights=None,
|
||
|
cumulative=False, bottom=None, histtype='bar', align='mid',
|
||
|
orientation='vertical', rwidth=None, log=False,
|
||
|
color=None, label=None, stacked=False, **kwargs):
|
||
|
"""
|
||
|
Plot a histogram.
|
||
|
|
||
|
Compute and draw the histogram of *x*. The return value is a tuple
|
||
|
(*n*, *bins*, *patches*) or ([*n0*, *n1*, ...], *bins*, [*patches0*,
|
||
|
*patches1*,...]) if the input contains multiple data. See the
|
||
|
documentation of the *weights* parameter to draw a histogram of
|
||
|
already-binned data.
|
||
|
|
||
|
Multiple data can be provided via *x* as a list of datasets
|
||
|
of potentially different length ([*x0*, *x1*, ...]), or as
|
||
|
a 2-D ndarray in which each column is a dataset. Note that
|
||
|
the ndarray form is transposed relative to the list form.
|
||
|
|
||
|
Masked arrays are not supported.
|
||
|
|
||
|
The *bins*, *range*, *weights*, and *density* parameters behave as in
|
||
|
`numpy.histogram`.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
x : (n,) array or sequence of (n,) arrays
|
||
|
Input values, this takes either a single array or a sequence of
|
||
|
arrays which are not required to be of the same length.
|
||
|
|
||
|
bins : int or sequence or str, optional
|
||
|
If *bins* is an integer, it defines the number of equal-width bins
|
||
|
in the range.
|
||
|
|
||
|
If *bins* is a sequence, it defines the bin edges, including the
|
||
|
left edge of the first bin and the right edge of the last bin;
|
||
|
in this case, bins may be unequally spaced. All but the last
|
||
|
(righthand-most) bin is half-open. In other words, if *bins* is::
|
||
|
|
||
|
[1, 2, 3, 4]
|
||
|
|
||
|
then the first bin is ``[1, 2)`` (including 1, but excluding 2) and
|
||
|
the second ``[2, 3)``. The last bin, however, is ``[3, 4]``, which
|
||
|
*includes* 4.
|
||
|
|
||
|
If *bins* is a string, it is one of the binning strategies
|
||
|
supported by `numpy.histogram_bin_edges`: 'auto', 'fd', 'doane',
|
||
|
'scott', 'stone', 'rice', 'sturges', or 'sqrt'.
|
||
|
|
||
|
The default is :rc:`hist.bins`.
|
||
|
|
||
|
range : tuple or None, optional
|
||
|
The lower and upper range of the bins. Lower and upper outliers
|
||
|
are ignored. If not provided, *range* is ``(x.min(), x.max())``.
|
||
|
Range has no effect if *bins* is a sequence.
|
||
|
|
||
|
If *bins* is a sequence or *range* is specified, autoscaling
|
||
|
is based on the specified bin range instead of the
|
||
|
range of x.
|
||
|
|
||
|
Default is ``None``
|
||
|
|
||
|
density : bool, optional
|
||
|
If ``True``, the first element of the return tuple will
|
||
|
be the counts normalized to form a probability density, i.e.,
|
||
|
the area (or integral) under the histogram will sum to 1.
|
||
|
This is achieved by dividing the count by the number of
|
||
|
observations times the bin width and not dividing by the total
|
||
|
number of observations. If *stacked* is also ``True``, the sum of
|
||
|
the histograms is normalized to 1.
|
||
|
|
||
|
Default is ``False``.
|
||
|
|
||
|
weights : (n, ) array-like or None, optional
|
||
|
An array of weights, of the same shape as *x*. Each value in *x*
|
||
|
only contributes its associated weight towards the bin count
|
||
|
(instead of 1). If *normed* or *density* is ``True``,
|
||
|
the weights are normalized, so that the integral of the density
|
||
|
over the range remains 1.
|
||
|
|
||
|
Default is ``None``.
|
||
|
|
||
|
This parameter can be used to draw a histogram of data that has
|
||
|
already been binned, e.g. using `np.histogram` (by treating each
|
||
|
bin as a single point with a weight equal to its count) ::
|
||
|
|
||
|
counts, bins = np.histogram(data)
|
||
|
plt.hist(bins[:-1], bins, weights=counts)
|
||
|
|
||
|
(or you may alternatively use `~.bar()`).
|
||
|
|
||
|
cumulative : bool or -1, optional
|
||
|
If ``True``, then a histogram is computed where each bin gives the
|
||
|
counts in that bin plus all bins for smaller values. The last bin
|
||
|
gives the total number of datapoints.
|
||
|
|
||
|
If *density* is also ``True`` then the histogram is normalized such
|
||
|
that the last bin equals 1.
|
||
|
|
||
|
If *cumulative* is a number less than 0 (e.g., -1), the direction
|
||
|
of accumulation is reversed. In this case, if *density* is also
|
||
|
``True``, then the histogram is normalized such that the first bin
|
||
|
equals 1.
|
||
|
|
||
|
bottom : array-like, scalar, or None, default: None
|
||
|
Location of the bottom of each bin, ie. bins are drawn from
|
||
|
``bottom`` to ``bottom + hist(x, bins)`` If a scalar, the bottom
|
||
|
of each bin is shifted by the same amount. If an array, each bin
|
||
|
is shifted independently and the length of bottom must match the
|
||
|
number of bins. If None, defaults to 0.
|
||
|
|
||
|
histtype : {'bar', 'barstacked', 'step', 'stepfilled'}, optional
|
||
|
The type of histogram to draw.
|
||
|
|
||
|
- 'bar' is a traditional bar-type histogram. If multiple data
|
||
|
are given the bars are arranged side by side.
|
||
|
- 'barstacked' is a bar-type histogram where multiple
|
||
|
data are stacked on top of each other.
|
||
|
- 'step' generates a lineplot that is by default unfilled.
|
||
|
- 'stepfilled' generates a lineplot that is by default filled.
|
||
|
|
||
|
Default is 'bar'
|
||
|
|
||
|
align : {'left', 'mid', 'right'}, optional
|
||
|
Controls how the histogram is plotted.
|
||
|
|
||
|
- 'left': bars are centered on the left bin edges.
|
||
|
- 'mid': bars are centered between the bin edges.
|
||
|
- 'right': bars are centered on the right bin edges.
|
||
|
|
||
|
Default is 'mid'
|
||
|
|
||
|
orientation : {'horizontal', 'vertical'}, optional
|
||
|
If 'horizontal', `~matplotlib.pyplot.barh` will be used for
|
||
|
bar-type histograms and the *bottom* kwarg will be the left edges.
|
||
|
|
||
|
rwidth : scalar or None, optional
|
||
|
The relative width of the bars as a fraction of the bin width. If
|
||
|
``None``, automatically compute the width.
|
||
|
|
||
|
Ignored if *histtype* is 'step' or 'stepfilled'.
|
||
|
|
||
|
Default is ``None``
|
||
|
|
||
|
log : bool, optional
|
||
|
If ``True``, the histogram axis will be set to a log scale. If
|
||
|
*log* is ``True`` and *x* is a 1D array, empty bins will be
|
||
|
filtered out and only the non-empty ``(n, bins, patches)``
|
||
|
will be returned.
|
||
|
|
||
|
Default is ``False``
|
||
|
|
||
|
color : color or array-like of colors or None, optional
|
||
|
Color or sequence of colors, one per dataset. Default (``None``)
|
||
|
uses the standard line color sequence.
|
||
|
|
||
|
Default is ``None``
|
||
|
|
||
|
label : str or None, optional
|
||
|
String, or sequence of strings to match multiple datasets. Bar
|
||
|
charts yield multiple patches per dataset, but only the first gets
|
||
|
the label, so that the legend command will work as expected.
|
||
|
|
||
|
default is ``None``
|
||
|
|
||
|
stacked : bool, optional
|
||
|
If ``True``, multiple data are stacked on top of each other If
|
||
|
``False`` multiple data are arranged side by side if histtype is
|
||
|
'bar' or on top of each other if histtype is 'step'
|
||
|
|
||
|
Default is ``False``
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
n : array or list of arrays
|
||
|
The values of the histogram bins. See *density* and *weights* for a
|
||
|
description of the possible semantics. If input *x* is an array,
|
||
|
then this is an array of length *nbins*. If input is a sequence of
|
||
|
arrays ``[data1, data2, ...]``, then this is a list of arrays with
|
||
|
the values of the histograms for each of the arrays in the same
|
||
|
order. The dtype of the array *n* (or of its element arrays) will
|
||
|
always be float even if no weighting or normalization is used.
|
||
|
|
||
|
bins : array
|
||
|
The edges of the bins. Length nbins + 1 (nbins left edges and right
|
||
|
edge of last bin). Always a single array even when multiple data
|
||
|
sets are passed in.
|
||
|
|
||
|
patches : list or list of lists
|
||
|
Silent list of individual patches used to create the histogram
|
||
|
or list of such list if multiple input datasets.
|
||
|
|
||
|
Other Parameters
|
||
|
----------------
|
||
|
**kwargs : `~matplotlib.patches.Patch` properties
|
||
|
|
||
|
See also
|
||
|
--------
|
||
|
hist2d : 2D histograms
|
||
|
|
||
|
"""
|
||
|
# Avoid shadowing the builtin.
|
||
|
bin_range = range
|
||
|
from builtins import range
|
||
|
|
||
|
if np.isscalar(x):
|
||
|
x = [x]
|
||
|
|
||
|
if bins is None:
|
||
|
bins = rcParams['hist.bins']
|
||
|
|
||
|
# Validate string inputs here to avoid cluttering subsequent code.
|
||
|
cbook._check_in_list(['bar', 'barstacked', 'step', 'stepfilled'],
|
||
|
histtype=histtype)
|
||
|
cbook._check_in_list(['left', 'mid', 'right'], align=align)
|
||
|
cbook._check_in_list(['horizontal', 'vertical'],
|
||
|
orientation=orientation)
|
||
|
|
||
|
if histtype == 'barstacked' and not stacked:
|
||
|
stacked = True
|
||
|
|
||
|
# basic input validation
|
||
|
input_empty = np.size(x) == 0
|
||
|
# Massage 'x' for processing.
|
||
|
x = cbook._reshape_2D(x, 'x')
|
||
|
nx = len(x) # number of datasets
|
||
|
|
||
|
# Process unit information
|
||
|
# Unit conversion is done individually on each dataset
|
||
|
self._process_unit_info(xdata=x[0], kwargs=kwargs)
|
||
|
x = [self.convert_xunits(xi) for xi in x]
|
||
|
|
||
|
if bin_range is not None:
|
||
|
bin_range = self.convert_xunits(bin_range)
|
||
|
|
||
|
if not cbook.is_scalar_or_string(bins):
|
||
|
bins = self.convert_xunits(bins)
|
||
|
|
||
|
# We need to do to 'weights' what was done to 'x'
|
||
|
if weights is not None:
|
||
|
w = cbook._reshape_2D(weights, 'weights')
|
||
|
else:
|
||
|
w = [None] * nx
|
||
|
|
||
|
if len(w) != nx:
|
||
|
raise ValueError('weights should have the same shape as x')
|
||
|
|
||
|
for xi, wi in zip(x, w):
|
||
|
if wi is not None and len(wi) != len(xi):
|
||
|
raise ValueError(
|
||
|
'weights should have the same shape as x')
|
||
|
|
||
|
if color is None:
|
||
|
color = [self._get_lines.get_next_color() for i in range(nx)]
|
||
|
else:
|
||
|
color = mcolors.to_rgba_array(color)
|
||
|
if len(color) != nx:
|
||
|
error_message = (
|
||
|
"color kwarg must have one color per data set. %d data "
|
||
|
"sets and %d colors were provided" % (nx, len(color)))
|
||
|
raise ValueError(error_message)
|
||
|
|
||
|
hist_kwargs = dict()
|
||
|
|
||
|
# if the bin_range is not given, compute without nan numpy
|
||
|
# does not do this for us when guessing the range (but will
|
||
|
# happily ignore nans when computing the histogram).
|
||
|
if bin_range is None:
|
||
|
xmin = np.inf
|
||
|
xmax = -np.inf
|
||
|
for xi in x:
|
||
|
if len(xi):
|
||
|
# python's min/max ignore nan,
|
||
|
# np.minnan returns nan for all nan input
|
||
|
xmin = min(xmin, np.nanmin(xi))
|
||
|
xmax = max(xmax, np.nanmax(xi))
|
||
|
# make sure we have seen at least one non-nan and finite
|
||
|
# value before we reset the bin range
|
||
|
if not np.isnan([xmin, xmax]).any() and not (xmin > xmax):
|
||
|
bin_range = (xmin, xmax)
|
||
|
|
||
|
# If bins are not specified either explicitly or via range,
|
||
|
# we need to figure out the range required for all datasets,
|
||
|
# and supply that to np.histogram.
|
||
|
if not input_empty and len(x) > 1:
|
||
|
if weights is not None:
|
||
|
_w = np.concatenate(w)
|
||
|
else:
|
||
|
_w = None
|
||
|
|
||
|
bins = _histogram_bin_edges(np.concatenate(x), bins, bin_range, _w)
|
||
|
else:
|
||
|
hist_kwargs['range'] = bin_range
|
||
|
|
||
|
density = bool(density)
|
||
|
if density and not stacked:
|
||
|
hist_kwargs['density'] = density
|
||
|
|
||
|
# List to store all the top coordinates of the histograms
|
||
|
tops = [] # Will have shape (n_datasets, n_bins).
|
||
|
# Loop through datasets
|
||
|
for i in range(nx):
|
||
|
# this will automatically overwrite bins,
|
||
|
# so that each histogram uses the same bins
|
||
|
m, bins = np.histogram(x[i], bins, weights=w[i], **hist_kwargs)
|
||
|
tops.append(m)
|
||
|
tops = np.array(tops, float) # causes problems later if it's an int
|
||
|
if stacked:
|
||
|
tops = tops.cumsum(axis=0)
|
||
|
# If a stacked density plot, normalize so the area of all the
|
||
|
# stacked histograms together is 1
|
||
|
if density:
|
||
|
tops = (tops / np.diff(bins)) / tops[-1].sum()
|
||
|
if cumulative:
|
||
|
slc = slice(None)
|
||
|
if isinstance(cumulative, Number) and cumulative < 0:
|
||
|
slc = slice(None, None, -1)
|
||
|
if density:
|
||
|
tops = (tops * np.diff(bins))[:, slc].cumsum(axis=1)[:, slc]
|
||
|
else:
|
||
|
tops = tops[:, slc].cumsum(axis=1)[:, slc]
|
||
|
|
||
|
patches = []
|
||
|
|
||
|
# Save autoscale state for later restoration; turn autoscaling
|
||
|
# off so we can do it all a single time at the end, instead
|
||
|
# of having it done by bar or fill and then having to be redone.
|
||
|
_saved_autoscalex = self.get_autoscalex_on()
|
||
|
_saved_autoscaley = self.get_autoscaley_on()
|
||
|
self.set_autoscalex_on(False)
|
||
|
self.set_autoscaley_on(False)
|
||
|
|
||
|
if histtype.startswith('bar'):
|
||
|
|
||
|
totwidth = np.diff(bins)
|
||
|
|
||
|
if rwidth is not None:
|
||
|
dr = np.clip(rwidth, 0, 1)
|
||
|
elif (len(tops) > 1 and
|
||
|
((not stacked) or rcParams['_internal.classic_mode'])):
|
||
|
dr = 0.8
|
||
|
else:
|
||
|
dr = 1.0
|
||
|
|
||
|
if histtype == 'bar' and not stacked:
|
||
|
width = dr * totwidth / nx
|
||
|
dw = width
|
||
|
boffset = -0.5 * dr * totwidth * (1 - 1 / nx)
|
||
|
elif histtype == 'barstacked' or stacked:
|
||
|
width = dr * totwidth
|
||
|
boffset, dw = 0.0, 0.0
|
||
|
|
||
|
if align == 'mid':
|
||
|
boffset += 0.5 * totwidth
|
||
|
elif align == 'right':
|
||
|
boffset += totwidth
|
||
|
|
||
|
if orientation == 'horizontal':
|
||
|
_barfunc = self.barh
|
||
|
bottom_kwarg = 'left'
|
||
|
else: # orientation == 'vertical'
|
||
|
_barfunc = self.bar
|
||
|
bottom_kwarg = 'bottom'
|
||
|
|
||
|
for m, c in zip(tops, color):
|
||
|
if bottom is None:
|
||
|
bottom = np.zeros(len(m))
|
||
|
if stacked:
|
||
|
height = m - bottom
|
||
|
else:
|
||
|
height = m
|
||
|
patch = _barfunc(bins[:-1]+boffset, height, width,
|
||
|
align='center', log=log,
|
||
|
color=c, **{bottom_kwarg: bottom})
|
||
|
patches.append(patch)
|
||
|
if stacked:
|
||
|
bottom[:] = m
|
||
|
boffset += dw
|
||
|
|
||
|
elif histtype.startswith('step'):
|
||
|
# these define the perimeter of the polygon
|
||
|
x = np.zeros(4 * len(bins) - 3)
|
||
|
y = np.zeros(4 * len(bins) - 3)
|
||
|
|
||
|
x[0:2*len(bins)-1:2], x[1:2*len(bins)-1:2] = bins, bins[:-1]
|
||
|
x[2*len(bins)-1:] = x[1:2*len(bins)-1][::-1]
|
||
|
|
||
|
if bottom is None:
|
||
|
bottom = np.zeros(len(bins) - 1)
|
||
|
|
||
|
y[1:2*len(bins)-1:2], y[2:2*len(bins):2] = bottom, bottom
|
||
|
y[2*len(bins)-1:] = y[1:2*len(bins)-1][::-1]
|
||
|
|
||
|
if log:
|
||
|
if orientation == 'horizontal':
|
||
|
self.set_xscale('log', nonposx='clip')
|
||
|
else: # orientation == 'vertical'
|
||
|
self.set_yscale('log', nonposy='clip')
|
||
|
|
||
|
if align == 'left':
|
||
|
x -= 0.5*(bins[1]-bins[0])
|
||
|
elif align == 'right':
|
||
|
x += 0.5*(bins[1]-bins[0])
|
||
|
|
||
|
# If fill kwarg is set, it will be passed to the patch collection,
|
||
|
# overriding this
|
||
|
fill = (histtype == 'stepfilled')
|
||
|
|
||
|
xvals, yvals = [], []
|
||
|
for m in tops:
|
||
|
if stacked:
|
||
|
# starting point for drawing polygon
|
||
|
y[0] = y[1]
|
||
|
# top of the previous polygon becomes the bottom
|
||
|
y[2*len(bins)-1:] = y[1:2*len(bins)-1][::-1]
|
||
|
# set the top of this polygon
|
||
|
y[1:2*len(bins)-1:2], y[2:2*len(bins):2] = (m + bottom,
|
||
|
m + bottom)
|
||
|
if orientation == 'horizontal':
|
||
|
xvals.append(y.copy())
|
||
|
yvals.append(x.copy())
|
||
|
else:
|
||
|
xvals.append(x.copy())
|
||
|
yvals.append(y.copy())
|
||
|
|
||
|
# stepfill is closed, step is not
|
||
|
split = -1 if fill else 2 * len(bins)
|
||
|
# add patches in reverse order so that when stacking,
|
||
|
# items lower in the stack are plotted on top of
|
||
|
# items higher in the stack
|
||
|
for x, y, c in reversed(list(zip(xvals, yvals, color))):
|
||
|
patches.append(self.fill(
|
||
|
x[:split], y[:split],
|
||
|
closed=True if fill else None,
|
||
|
facecolor=c,
|
||
|
edgecolor=None if fill else c,
|
||
|
fill=fill if fill else None))
|
||
|
for patch_list in patches:
|
||
|
for patch in patch_list:
|
||
|
if orientation == 'vertical':
|
||
|
patch.sticky_edges.y.append(0)
|
||
|
elif orientation == 'horizontal':
|
||
|
patch.sticky_edges.x.append(0)
|
||
|
|
||
|
# we return patches, so put it back in the expected order
|
||
|
patches.reverse()
|
||
|
|
||
|
self.set_autoscalex_on(_saved_autoscalex)
|
||
|
self.set_autoscaley_on(_saved_autoscaley)
|
||
|
self._request_autoscale_view()
|
||
|
|
||
|
if label is None:
|
||
|
labels = [None]
|
||
|
elif isinstance(label, str):
|
||
|
labels = [label]
|
||
|
elif not np.iterable(label):
|
||
|
labels = [str(label)]
|
||
|
else:
|
||
|
labels = [str(lab) for lab in label]
|
||
|
|
||
|
for patch, lbl in itertools.zip_longest(patches, labels):
|
||
|
if patch:
|
||
|
p = patch[0]
|
||
|
p.update(kwargs)
|
||
|
if lbl is not None:
|
||
|
p.set_label(lbl)
|
||
|
|
||
|
for p in patch[1:]:
|
||
|
p.update(kwargs)
|
||
|
p.set_label('_nolegend_')
|
||
|
|
||
|
if nx == 1:
|
||
|
return tops[0], bins, cbook.silent_list('Patch', patches[0])
|
||
|
else:
|
||
|
return tops, bins, cbook.silent_list('Lists of Patches', patches)
|
||
|
|
||
|
@_preprocess_data(replace_names=["x", "y", "weights"])
|
||
|
@cbook._rename_parameter("3.1", "normed", "density")
|
||
|
def hist2d(self, x, y, bins=10, range=None, density=False, weights=None,
|
||
|
cmin=None, cmax=None, **kwargs):
|
||
|
"""
|
||
|
Make a 2D histogram plot.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
x, y : array-like, shape (n, )
|
||
|
Input values
|
||
|
|
||
|
bins : None or int or [int, int] or array-like or [array, array]
|
||
|
|
||
|
The bin specification:
|
||
|
|
||
|
- If int, the number of bins for the two dimensions
|
||
|
(nx=ny=bins).
|
||
|
- If ``[int, int]``, the number of bins in each dimension
|
||
|
(nx, ny = bins).
|
||
|
- If array-like, the bin edges for the two dimensions
|
||
|
(x_edges=y_edges=bins).
|
||
|
- If ``[array, array]``, the bin edges in each dimension
|
||
|
(x_edges, y_edges = bins).
|
||
|
|
||
|
The default value is 10.
|
||
|
|
||
|
range : array-like shape(2, 2), optional, default: None
|
||
|
The leftmost and rightmost edges of the bins along each dimension
|
||
|
(if not specified explicitly in the bins parameters): ``[[xmin,
|
||
|
xmax], [ymin, ymax]]``. All values outside of this range will be
|
||
|
considered outliers and not tallied in the histogram.
|
||
|
|
||
|
density : bool, optional, default: False
|
||
|
Normalize histogram. *normed* is a deprecated synonym for this
|
||
|
parameter.
|
||
|
|
||
|
weights : array-like, shape (n, ), optional, default: None
|
||
|
An array of values w_i weighing each sample (x_i, y_i).
|
||
|
|
||
|
cmin : scalar, optional, default: None
|
||
|
All bins that has count less than cmin will not be displayed (set
|
||
|
to NaN before passing to imshow) and these count values in the
|
||
|
return value count histogram will also be set to nan upon return.
|
||
|
|
||
|
cmax : scalar, optional, default: None
|
||
|
All bins that has count more than cmax will not be displayed (set
|
||
|
to NaN before passing to imshow) and these count values in the
|
||
|
return value count histogram will also be set to nan upon return.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
h : 2D array
|
||
|
The bi-dimensional histogram of samples x and y. Values in x are
|
||
|
histogrammed along the first dimension and values in y are
|
||
|
histogrammed along the second dimension.
|
||
|
xedges : 1D array
|
||
|
The bin edges along the x axis.
|
||
|
yedges : 1D array
|
||
|
The bin edges along the y axis.
|
||
|
image : `~.matplotlib.collections.QuadMesh`
|
||
|
|
||
|
Other Parameters
|
||
|
----------------
|
||
|
cmap : Colormap or str, optional
|
||
|
A `.colors.Colormap` instance. If not set, use rc settings.
|
||
|
|
||
|
norm : Normalize, optional
|
||
|
A `.colors.Normalize` instance is used to
|
||
|
scale luminance data to ``[0, 1]``. If not set, defaults to
|
||
|
`.colors.Normalize()`.
|
||
|
|
||
|
vmin/vmax : None or scalar, optional
|
||
|
Arguments passed to the `~.colors.Normalize` instance.
|
||
|
|
||
|
alpha : ``0 <= scalar <= 1`` or ``None``, optional
|
||
|
The alpha blending value.
|
||
|
|
||
|
See also
|
||
|
--------
|
||
|
hist : 1D histogram plotting
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
- Currently ``hist2d`` calculates its own axis limits, and any limits
|
||
|
previously set are ignored.
|
||
|
- Rendering the histogram with a logarithmic color scale is
|
||
|
accomplished by passing a `.colors.LogNorm` instance to the *norm*
|
||
|
keyword argument. Likewise, power-law normalization (similar
|
||
|
in effect to gamma correction) can be accomplished with
|
||
|
`.colors.PowerNorm`.
|
||
|
"""
|
||
|
|
||
|
h, xedges, yedges = np.histogram2d(x, y, bins=bins, range=range,
|
||
|
normed=density, weights=weights)
|
||
|
|
||
|
if cmin is not None:
|
||
|
h[h < cmin] = None
|
||
|
if cmax is not None:
|
||
|
h[h > cmax] = None
|
||
|
|
||
|
pc = self.pcolormesh(xedges, yedges, h.T, **kwargs)
|
||
|
self.set_xlim(xedges[0], xedges[-1])
|
||
|
self.set_ylim(yedges[0], yedges[-1])
|
||
|
|
||
|
return h, xedges, yedges, pc
|
||
|
|
||
|
@_preprocess_data(replace_names=["x"])
|
||
|
@docstring.dedent_interpd
|
||
|
def psd(self, x, NFFT=None, Fs=None, Fc=None, detrend=None,
|
||
|
window=None, noverlap=None, pad_to=None,
|
||
|
sides=None, scale_by_freq=None, return_line=None, **kwargs):
|
||
|
r"""
|
||
|
Plot the power spectral density.
|
||
|
|
||
|
The power spectral density :math:`P_{xx}` by Welch's average
|
||
|
periodogram method. The vector *x* is divided into *NFFT* length
|
||
|
segments. Each segment is detrended by function *detrend* and
|
||
|
windowed by function *window*. *noverlap* gives the length of
|
||
|
the overlap between segments. The :math:`|\mathrm{fft}(i)|^2`
|
||
|
of each segment :math:`i` are averaged to compute :math:`P_{xx}`,
|
||
|
with a scaling to correct for power loss due to windowing.
|
||
|
|
||
|
If len(*x*) < *NFFT*, it will be zero padded to *NFFT*.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
x : 1-D array or sequence
|
||
|
Array or sequence containing the data
|
||
|
|
||
|
%(Spectral)s
|
||
|
|
||
|
%(PSD)s
|
||
|
|
||
|
noverlap : int
|
||
|
The number of points of overlap between segments.
|
||
|
The default value is 0 (no overlap).
|
||
|
|
||
|
Fc : int
|
||
|
The center frequency of *x* (defaults to 0), which offsets
|
||
|
the x extents of the plot to reflect the frequency range used
|
||
|
when a signal is acquired and then filtered and downsampled to
|
||
|
baseband.
|
||
|
|
||
|
return_line : bool
|
||
|
Whether to include the line object plotted in the returned values.
|
||
|
Default is False.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
Pxx : 1-D array
|
||
|
The values for the power spectrum `P_{xx}` before scaling
|
||
|
(real valued).
|
||
|
|
||
|
freqs : 1-D array
|
||
|
The frequencies corresponding to the elements in *Pxx*.
|
||
|
|
||
|
line : `~matplotlib.lines.Line2D`
|
||
|
The line created by this function.
|
||
|
Only returned if *return_line* is True.
|
||
|
|
||
|
Other Parameters
|
||
|
----------------
|
||
|
**kwargs
|
||
|
Keyword arguments control the `.Line2D` properties:
|
||
|
|
||
|
%(_Line2D_docstr)s
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
:func:`specgram`
|
||
|
:func:`specgram` differs in the default overlap; in not returning
|
||
|
the mean of the segment periodograms; in returning the times of the
|
||
|
segments; and in plotting a colormap instead of a line.
|
||
|
|
||
|
:func:`magnitude_spectrum`
|
||
|
:func:`magnitude_spectrum` plots the magnitude spectrum.
|
||
|
|
||
|
:func:`csd`
|
||
|
:func:`csd` plots the spectral density between two signals.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
For plotting, the power is plotted as
|
||
|
:math:`10\log_{10}(P_{xx})` for decibels, though *Pxx* itself
|
||
|
is returned.
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
Bendat & Piersol -- Random Data: Analysis and Measurement Procedures,
|
||
|
John Wiley & Sons (1986)
|
||
|
"""
|
||
|
if Fc is None:
|
||
|
Fc = 0
|
||
|
|
||
|
pxx, freqs = mlab.psd(x=x, NFFT=NFFT, Fs=Fs, detrend=detrend,
|
||
|
window=window, noverlap=noverlap, pad_to=pad_to,
|
||
|
sides=sides, scale_by_freq=scale_by_freq)
|
||
|
freqs += Fc
|
||
|
|
||
|
if scale_by_freq in (None, True):
|
||
|
psd_units = 'dB/Hz'
|
||
|
else:
|
||
|
psd_units = 'dB'
|
||
|
|
||
|
line = self.plot(freqs, 10 * np.log10(pxx), **kwargs)
|
||
|
self.set_xlabel('Frequency')
|
||
|
self.set_ylabel('Power Spectral Density (%s)' % psd_units)
|
||
|
self.grid(True)
|
||
|
vmin, vmax = self.viewLim.intervaly
|
||
|
intv = vmax - vmin
|
||
|
logi = int(np.log10(intv))
|
||
|
if logi == 0:
|
||
|
logi = .1
|
||
|
step = 10 * logi
|
||
|
ticks = np.arange(math.floor(vmin), math.ceil(vmax) + 1, step)
|
||
|
self.set_yticks(ticks)
|
||
|
|
||
|
if return_line is None or not return_line:
|
||
|
return pxx, freqs
|
||
|
else:
|
||
|
return pxx, freqs, line
|
||
|
|
||
|
@_preprocess_data(replace_names=["x", "y"], label_namer="y")
|
||
|
@docstring.dedent_interpd
|
||
|
def csd(self, x, y, NFFT=None, Fs=None, Fc=None, detrend=None,
|
||
|
window=None, noverlap=None, pad_to=None,
|
||
|
sides=None, scale_by_freq=None, return_line=None, **kwargs):
|
||
|
r"""
|
||
|
Plot the cross-spectral density.
|
||
|
|
||
|
The cross spectral density :math:`P_{xy}` by Welch's average
|
||
|
periodogram method. The vectors *x* and *y* are divided into
|
||
|
*NFFT* length segments. Each segment is detrended by function
|
||
|
*detrend* and windowed by function *window*. *noverlap* gives
|
||
|
the length of the overlap between segments. The product of
|
||
|
the direct FFTs of *x* and *y* are averaged over each segment
|
||
|
to compute :math:`P_{xy}`, with a scaling to correct for power
|
||
|
loss due to windowing.
|
||
|
|
||
|
If len(*x*) < *NFFT* or len(*y*) < *NFFT*, they will be zero
|
||
|
padded to *NFFT*.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
x, y : 1-D arrays or sequences
|
||
|
Arrays or sequences containing the data.
|
||
|
|
||
|
%(Spectral)s
|
||
|
|
||
|
%(PSD)s
|
||
|
|
||
|
noverlap : int
|
||
|
The number of points of overlap between segments.
|
||
|
The default value is 0 (no overlap).
|
||
|
|
||
|
Fc : int
|
||
|
The center frequency of *x* (defaults to 0), which offsets
|
||
|
the x extents of the plot to reflect the frequency range used
|
||
|
when a signal is acquired and then filtered and downsampled to
|
||
|
baseband.
|
||
|
|
||
|
return_line : bool
|
||
|
Whether to include the line object plotted in the returned values.
|
||
|
Default is False.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
Pxy : 1-D array
|
||
|
The values for the cross spectrum `P_{xy}` before scaling
|
||
|
(complex valued).
|
||
|
|
||
|
freqs : 1-D array
|
||
|
The frequencies corresponding to the elements in *Pxy*.
|
||
|
|
||
|
line : `~matplotlib.lines.Line2D`
|
||
|
The line created by this function.
|
||
|
Only returned if *return_line* is True.
|
||
|
|
||
|
Other Parameters
|
||
|
----------------
|
||
|
**kwargs
|
||
|
Keyword arguments control the `.Line2D` properties:
|
||
|
|
||
|
%(_Line2D_docstr)s
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
:func:`psd`
|
||
|
:func:`psd` is the equivalent to setting y=x.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
For plotting, the power is plotted as
|
||
|
:math:`10 \log_{10}(P_{xy})` for decibels, though `P_{xy}` itself
|
||
|
is returned.
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
Bendat & Piersol -- Random Data: Analysis and Measurement Procedures,
|
||
|
John Wiley & Sons (1986)
|
||
|
"""
|
||
|
if Fc is None:
|
||
|
Fc = 0
|
||
|
|
||
|
pxy, freqs = mlab.csd(x=x, y=y, NFFT=NFFT, Fs=Fs, detrend=detrend,
|
||
|
window=window, noverlap=noverlap, pad_to=pad_to,
|
||
|
sides=sides, scale_by_freq=scale_by_freq)
|
||
|
# pxy is complex
|
||
|
freqs += Fc
|
||
|
|
||
|
line = self.plot(freqs, 10 * np.log10(np.abs(pxy)), **kwargs)
|
||
|
self.set_xlabel('Frequency')
|
||
|
self.set_ylabel('Cross Spectrum Magnitude (dB)')
|
||
|
self.grid(True)
|
||
|
vmin, vmax = self.viewLim.intervaly
|
||
|
|
||
|
intv = vmax - vmin
|
||
|
step = 10 * int(np.log10(intv))
|
||
|
|
||
|
ticks = np.arange(math.floor(vmin), math.ceil(vmax) + 1, step)
|
||
|
self.set_yticks(ticks)
|
||
|
|
||
|
if return_line is None or not return_line:
|
||
|
return pxy, freqs
|
||
|
else:
|
||
|
return pxy, freqs, line
|
||
|
|
||
|
@_preprocess_data(replace_names=["x"])
|
||
|
@docstring.dedent_interpd
|
||
|
def magnitude_spectrum(self, x, Fs=None, Fc=None, window=None,
|
||
|
pad_to=None, sides=None, scale=None,
|
||
|
**kwargs):
|
||
|
"""
|
||
|
Plot the magnitude spectrum.
|
||
|
|
||
|
Compute the magnitude spectrum of *x*. Data is padded to a
|
||
|
length of *pad_to* and the windowing function *window* is applied to
|
||
|
the signal.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
x : 1-D array or sequence
|
||
|
Array or sequence containing the data.
|
||
|
|
||
|
%(Spectral)s
|
||
|
|
||
|
%(Single_Spectrum)s
|
||
|
|
||
|
scale : {'default', 'linear', 'dB'}
|
||
|
The scaling of the values in the *spec*. 'linear' is no scaling.
|
||
|
'dB' returns the values in dB scale, i.e., the dB amplitude
|
||
|
(20 * log10). 'default' is 'linear'.
|
||
|
|
||
|
Fc : int
|
||
|
The center frequency of *x* (defaults to 0), which offsets
|
||
|
the x extents of the plot to reflect the frequency range used
|
||
|
when a signal is acquired and then filtered and downsampled to
|
||
|
baseband.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
spectrum : 1-D array
|
||
|
The values for the magnitude spectrum before scaling (real valued).
|
||
|
|
||
|
freqs : 1-D array
|
||
|
The frequencies corresponding to the elements in *spectrum*.
|
||
|
|
||
|
line : `~matplotlib.lines.Line2D`
|
||
|
The line created by this function.
|
||
|
|
||
|
Other Parameters
|
||
|
----------------
|
||
|
**kwargs
|
||
|
Keyword arguments control the `.Line2D` properties:
|
||
|
|
||
|
%(_Line2D_docstr)s
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
:func:`psd`
|
||
|
:func:`psd` plots the power spectral density.`.
|
||
|
|
||
|
:func:`angle_spectrum`
|
||
|
:func:`angle_spectrum` plots the angles of the corresponding
|
||
|
frequencies.
|
||
|
|
||
|
:func:`phase_spectrum`
|
||
|
:func:`phase_spectrum` plots the phase (unwrapped angle) of the
|
||
|
corresponding frequencies.
|
||
|
|
||
|
:func:`specgram`
|
||
|
:func:`specgram` can plot the magnitude spectrum of segments within
|
||
|
the signal in a colormap.
|
||
|
|
||
|
"""
|
||
|
if Fc is None:
|
||
|
Fc = 0
|
||
|
|
||
|
if scale is None or scale == 'default':
|
||
|
scale = 'linear'
|
||
|
|
||
|
spec, freqs = mlab.magnitude_spectrum(x=x, Fs=Fs, window=window,
|
||
|
pad_to=pad_to, sides=sides)
|
||
|
freqs += Fc
|
||
|
|
||
|
if scale == 'linear':
|
||
|
Z = spec
|
||
|
yunits = 'energy'
|
||
|
elif scale == 'dB':
|
||
|
Z = 20. * np.log10(spec)
|
||
|
yunits = 'dB'
|
||
|
else:
|
||
|
raise ValueError('Unknown scale %s', scale)
|
||
|
|
||
|
lines = self.plot(freqs, Z, **kwargs)
|
||
|
self.set_xlabel('Frequency')
|
||
|
self.set_ylabel('Magnitude (%s)' % yunits)
|
||
|
|
||
|
return spec, freqs, lines[0]
|
||
|
|
||
|
@_preprocess_data(replace_names=["x"])
|
||
|
@docstring.dedent_interpd
|
||
|
def angle_spectrum(self, x, Fs=None, Fc=None, window=None,
|
||
|
pad_to=None, sides=None, **kwargs):
|
||
|
"""
|
||
|
Plot the angle spectrum.
|
||
|
|
||
|
Compute the angle spectrum (wrapped phase spectrum) of *x*.
|
||
|
Data is padded to a length of *pad_to* and the windowing function
|
||
|
*window* is applied to the signal.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
x : 1-D array or sequence
|
||
|
Array or sequence containing the data.
|
||
|
|
||
|
%(Spectral)s
|
||
|
|
||
|
%(Single_Spectrum)s
|
||
|
|
||
|
Fc : int
|
||
|
The center frequency of *x* (defaults to 0), which offsets
|
||
|
the x extents of the plot to reflect the frequency range used
|
||
|
when a signal is acquired and then filtered and downsampled to
|
||
|
baseband.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
spectrum : 1-D array
|
||
|
The values for the angle spectrum in radians (real valued).
|
||
|
|
||
|
freqs : 1-D array
|
||
|
The frequencies corresponding to the elements in *spectrum*.
|
||
|
|
||
|
line : `~matplotlib.lines.Line2D`
|
||
|
The line created by this function.
|
||
|
|
||
|
Other Parameters
|
||
|
----------------
|
||
|
**kwargs
|
||
|
Keyword arguments control the `.Line2D` properties:
|
||
|
|
||
|
%(_Line2D_docstr)s
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
:func:`magnitude_spectrum`
|
||
|
:func:`angle_spectrum` plots the magnitudes of the corresponding
|
||
|
frequencies.
|
||
|
|
||
|
:func:`phase_spectrum`
|
||
|
:func:`phase_spectrum` plots the unwrapped version of this
|
||
|
function.
|
||
|
|
||
|
:func:`specgram`
|
||
|
:func:`specgram` can plot the angle spectrum of segments within the
|
||
|
signal in a colormap.
|
||
|
|
||
|
"""
|
||
|
if Fc is None:
|
||
|
Fc = 0
|
||
|
|
||
|
spec, freqs = mlab.angle_spectrum(x=x, Fs=Fs, window=window,
|
||
|
pad_to=pad_to, sides=sides)
|
||
|
freqs += Fc
|
||
|
|
||
|
lines = self.plot(freqs, spec, **kwargs)
|
||
|
self.set_xlabel('Frequency')
|
||
|
self.set_ylabel('Angle (radians)')
|
||
|
|
||
|
return spec, freqs, lines[0]
|
||
|
|
||
|
@_preprocess_data(replace_names=["x"])
|
||
|
@docstring.dedent_interpd
|
||
|
def phase_spectrum(self, x, Fs=None, Fc=None, window=None,
|
||
|
pad_to=None, sides=None, **kwargs):
|
||
|
"""
|
||
|
Plot the phase spectrum.
|
||
|
|
||
|
Compute the phase spectrum (unwrapped angle spectrum) of *x*.
|
||
|
Data is padded to a length of *pad_to* and the windowing function
|
||
|
*window* is applied to the signal.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
x : 1-D array or sequence
|
||
|
Array or sequence containing the data
|
||
|
|
||
|
%(Spectral)s
|
||
|
|
||
|
%(Single_Spectrum)s
|
||
|
|
||
|
Fc : int
|
||
|
The center frequency of *x* (defaults to 0), which offsets
|
||
|
the x extents of the plot to reflect the frequency range used
|
||
|
when a signal is acquired and then filtered and downsampled to
|
||
|
baseband.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
spectrum : 1-D array
|
||
|
The values for the phase spectrum in radians (real valued).
|
||
|
|
||
|
freqs : 1-D array
|
||
|
The frequencies corresponding to the elements in *spectrum*.
|
||
|
|
||
|
line : `~matplotlib.lines.Line2D`
|
||
|
The line created by this function.
|
||
|
|
||
|
Other Parameters
|
||
|
----------------
|
||
|
**kwargs
|
||
|
Keyword arguments control the `.Line2D` properties:
|
||
|
|
||
|
%(_Line2D_docstr)s
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
:func:`magnitude_spectrum`
|
||
|
:func:`magnitude_spectrum` plots the magnitudes of the
|
||
|
corresponding frequencies.
|
||
|
|
||
|
:func:`angle_spectrum`
|
||
|
:func:`angle_spectrum` plots the wrapped version of this function.
|
||
|
|
||
|
:func:`specgram`
|
||
|
:func:`specgram` can plot the phase spectrum of segments within the
|
||
|
signal in a colormap.
|
||
|
|
||
|
"""
|
||
|
if Fc is None:
|
||
|
Fc = 0
|
||
|
|
||
|
spec, freqs = mlab.phase_spectrum(x=x, Fs=Fs, window=window,
|
||
|
pad_to=pad_to, sides=sides)
|
||
|
freqs += Fc
|
||
|
|
||
|
lines = self.plot(freqs, spec, **kwargs)
|
||
|
self.set_xlabel('Frequency')
|
||
|
self.set_ylabel('Phase (radians)')
|
||
|
|
||
|
return spec, freqs, lines[0]
|
||
|
|
||
|
@_preprocess_data(replace_names=["x", "y"])
|
||
|
@docstring.dedent_interpd
|
||
|
def cohere(self, x, y, NFFT=256, Fs=2, Fc=0, detrend=mlab.detrend_none,
|
||
|
window=mlab.window_hanning, noverlap=0, pad_to=None,
|
||
|
sides='default', scale_by_freq=None, **kwargs):
|
||
|
r"""
|
||
|
Plot the coherence between *x* and *y*.
|
||
|
|
||
|
Plot the coherence between *x* and *y*. Coherence is the
|
||
|
normalized cross spectral density:
|
||
|
|
||
|
.. math::
|
||
|
|
||
|
C_{xy} = \frac{|P_{xy}|^2}{P_{xx}P_{yy}}
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
%(Spectral)s
|
||
|
|
||
|
%(PSD)s
|
||
|
|
||
|
noverlap : int
|
||
|
The number of points of overlap between blocks. The
|
||
|
default value is 0 (no overlap).
|
||
|
|
||
|
Fc : int
|
||
|
The center frequency of *x* (defaults to 0), which offsets
|
||
|
the x extents of the plot to reflect the frequency range used
|
||
|
when a signal is acquired and then filtered and downsampled to
|
||
|
baseband.
|
||
|
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
Cxy : 1-D array
|
||
|
The coherence vector.
|
||
|
|
||
|
freqs : 1-D array
|
||
|
The frequencies for the elements in *Cxy*.
|
||
|
|
||
|
Other Parameters
|
||
|
----------------
|
||
|
**kwargs
|
||
|
Keyword arguments control the `.Line2D` properties:
|
||
|
|
||
|
%(_Line2D_docstr)s
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
Bendat & Piersol -- Random Data: Analysis and Measurement Procedures,
|
||
|
John Wiley & Sons (1986)
|
||
|
"""
|
||
|
cxy, freqs = mlab.cohere(x=x, y=y, NFFT=NFFT, Fs=Fs, detrend=detrend,
|
||
|
window=window, noverlap=noverlap,
|
||
|
scale_by_freq=scale_by_freq)
|
||
|
freqs += Fc
|
||
|
|
||
|
self.plot(freqs, cxy, **kwargs)
|
||
|
self.set_xlabel('Frequency')
|
||
|
self.set_ylabel('Coherence')
|
||
|
self.grid(True)
|
||
|
|
||
|
return cxy, freqs
|
||
|
|
||
|
@_preprocess_data(replace_names=["x"])
|
||
|
@docstring.dedent_interpd
|
||
|
def specgram(self, x, NFFT=None, Fs=None, Fc=None, detrend=None,
|
||
|
window=None, noverlap=None,
|
||
|
cmap=None, xextent=None, pad_to=None, sides=None,
|
||
|
scale_by_freq=None, mode=None, scale=None,
|
||
|
vmin=None, vmax=None, **kwargs):
|
||
|
"""
|
||
|
Plot a spectrogram.
|
||
|
|
||
|
Compute and plot a spectrogram of data in *x*. Data are split into
|
||
|
*NFFT* length segments and the spectrum of each section is
|
||
|
computed. The windowing function *window* is applied to each
|
||
|
segment, and the amount of overlap of each segment is
|
||
|
specified with *noverlap*. The spectrogram is plotted as a colormap
|
||
|
(using imshow).
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
x : 1-D array or sequence
|
||
|
Array or sequence containing the data.
|
||
|
|
||
|
%(Spectral)s
|
||
|
|
||
|
%(PSD)s
|
||
|
|
||
|
mode : {'default', 'psd', 'magnitude', 'angle', 'phase'}
|
||
|
What sort of spectrum to use. Default is 'psd', which takes the
|
||
|
power spectral density. 'magnitude' returns the magnitude
|
||
|
spectrum. 'angle' returns the phase spectrum without unwrapping.
|
||
|
'phase' returns the phase spectrum with unwrapping.
|
||
|
|
||
|
noverlap : int
|
||
|
The number of points of overlap between blocks. The
|
||
|
default value is 128.
|
||
|
|
||
|
scale : {'default', 'linear', 'dB'}
|
||
|
The scaling of the values in the *spec*. 'linear' is no scaling.
|
||
|
'dB' returns the values in dB scale. When *mode* is 'psd',
|
||
|
this is dB power (10 * log10). Otherwise this is dB amplitude
|
||
|
(20 * log10). 'default' is 'dB' if *mode* is 'psd' or
|
||
|
'magnitude' and 'linear' otherwise. This must be 'linear'
|
||
|
if *mode* is 'angle' or 'phase'.
|
||
|
|
||
|
Fc : int
|
||
|
The center frequency of *x* (defaults to 0), which offsets
|
||
|
the x extents of the plot to reflect the frequency range used
|
||
|
when a signal is acquired and then filtered and downsampled to
|
||
|
baseband.
|
||
|
|
||
|
cmap
|
||
|
A :class:`matplotlib.colors.Colormap` instance; if *None*, use
|
||
|
default determined by rc
|
||
|
|
||
|
xextent : *None* or (xmin, xmax)
|
||
|
The image extent along the x-axis. The default sets *xmin* to the
|
||
|
left border of the first bin (*spectrum* column) and *xmax* to the
|
||
|
right border of the last bin. Note that for *noverlap>0* the width
|
||
|
of the bins is smaller than those of the segments.
|
||
|
|
||
|
**kwargs
|
||
|
Additional keyword arguments are passed on to imshow which makes
|
||
|
the specgram image.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
spectrum : 2-D array
|
||
|
Columns are the periodograms of successive segments.
|
||
|
|
||
|
freqs : 1-D array
|
||
|
The frequencies corresponding to the rows in *spectrum*.
|
||
|
|
||
|
t : 1-D array
|
||
|
The times corresponding to midpoints of segments (i.e., the columns
|
||
|
in *spectrum*).
|
||
|
|
||
|
im : instance of class :class:`~matplotlib.image.AxesImage`
|
||
|
The image created by imshow containing the spectrogram
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
:func:`psd`
|
||
|
:func:`psd` differs in the default overlap; in returning the mean
|
||
|
of the segment periodograms; in not returning times; and in
|
||
|
generating a line plot instead of colormap.
|
||
|
|
||
|
:func:`magnitude_spectrum`
|
||
|
A single spectrum, similar to having a single segment when *mode*
|
||
|
is 'magnitude'. Plots a line instead of a colormap.
|
||
|
|
||
|
:func:`angle_spectrum`
|
||
|
A single spectrum, similar to having a single segment when *mode*
|
||
|
is 'angle'. Plots a line instead of a colormap.
|
||
|
|
||
|
:func:`phase_spectrum`
|
||
|
A single spectrum, similar to having a single segment when *mode*
|
||
|
is 'phase'. Plots a line instead of a colormap.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
The parameters *detrend* and *scale_by_freq* do only apply when *mode*
|
||
|
is set to 'psd'.
|
||
|
"""
|
||
|
if NFFT is None:
|
||
|
NFFT = 256 # same default as in mlab.specgram()
|
||
|
if Fc is None:
|
||
|
Fc = 0 # same default as in mlab._spectral_helper()
|
||
|
if noverlap is None:
|
||
|
noverlap = 128 # same default as in mlab.specgram()
|
||
|
|
||
|
if mode == 'complex':
|
||
|
raise ValueError('Cannot plot a complex specgram')
|
||
|
|
||
|
if scale is None or scale == 'default':
|
||
|
if mode in ['angle', 'phase']:
|
||
|
scale = 'linear'
|
||
|
else:
|
||
|
scale = 'dB'
|
||
|
elif mode in ['angle', 'phase'] and scale == 'dB':
|
||
|
raise ValueError('Cannot use dB scale with angle or phase mode')
|
||
|
|
||
|
spec, freqs, t = mlab.specgram(x=x, NFFT=NFFT, Fs=Fs,
|
||
|
detrend=detrend, window=window,
|
||
|
noverlap=noverlap, pad_to=pad_to,
|
||
|
sides=sides,
|
||
|
scale_by_freq=scale_by_freq,
|
||
|
mode=mode)
|
||
|
|
||
|
if scale == 'linear':
|
||
|
Z = spec
|
||
|
elif scale == 'dB':
|
||
|
if mode is None or mode == 'default' or mode == 'psd':
|
||
|
Z = 10. * np.log10(spec)
|
||
|
else:
|
||
|
Z = 20. * np.log10(spec)
|
||
|
else:
|
||
|
raise ValueError('Unknown scale %s', scale)
|
||
|
|
||
|
Z = np.flipud(Z)
|
||
|
|
||
|
if xextent is None:
|
||
|
# padding is needed for first and last segment:
|
||
|
pad_xextent = (NFFT-noverlap) / Fs / 2
|
||
|
xextent = np.min(t) - pad_xextent, np.max(t) + pad_xextent
|
||
|
xmin, xmax = xextent
|
||
|
freqs += Fc
|
||
|
extent = xmin, xmax, freqs[0], freqs[-1]
|
||
|
im = self.imshow(Z, cmap, extent=extent, vmin=vmin, vmax=vmax,
|
||
|
**kwargs)
|
||
|
self.axis('auto')
|
||
|
|
||
|
return spec, freqs, t, im
|
||
|
|
||
|
@docstring.dedent_interpd
|
||
|
def spy(self, Z, precision=0, marker=None, markersize=None,
|
||
|
aspect='equal', origin="upper", **kwargs):
|
||
|
"""
|
||
|
Plot the sparsity pattern of a 2D array.
|
||
|
|
||
|
This visualizes the non-zero values of the array.
|
||
|
|
||
|
Two plotting styles are available: image and marker. Both
|
||
|
are available for full arrays, but only the marker style
|
||
|
works for `scipy.sparse.spmatrix` instances.
|
||
|
|
||
|
**Image style**
|
||
|
|
||
|
If *marker* and *markersize* are *None*, `~.Axes.imshow` is used. Any
|
||
|
extra remaining keyword arguments are passed to this method.
|
||
|
|
||
|
**Marker style**
|
||
|
|
||
|
If *Z* is a `scipy.sparse.spmatrix` or *marker* or *markersize* are
|
||
|
*None*, a `.Line2D` object will be returned with the value of marker
|
||
|
determining the marker type, and any remaining keyword arguments
|
||
|
passed to `~.Axes.plot`.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
Z : array-like (M, N)
|
||
|
The array to be plotted.
|
||
|
|
||
|
precision : float or 'present', optional, default: 0
|
||
|
If *precision* is 0, any non-zero value will be plotted. Otherwise,
|
||
|
values of :math:`|Z| > precision` will be plotted.
|
||
|
|
||
|
For :class:`scipy.sparse.spmatrix` instances, you can also
|
||
|
pass 'present'. In this case any value present in the array
|
||
|
will be plotted, even if it is identically zero.
|
||
|
|
||
|
origin : {'upper', 'lower'}, optional
|
||
|
Place the [0, 0] index of the array in the upper left or lower left
|
||
|
corner of the axes. The convention 'upper' is typically used for
|
||
|
matrices and images.
|
||
|
If not given, :rc:`image.origin` is used, defaulting to 'upper'.
|
||
|
|
||
|
|
||
|
aspect : {'equal', 'auto', None} or float, optional
|
||
|
Controls the aspect ratio of the axes. The aspect is of particular
|
||
|
relevance for images since it may distort the image, i.e. pixel
|
||
|
will not be square.
|
||
|
|
||
|
This parameter is a shortcut for explicitly calling
|
||
|
`.Axes.set_aspect`. See there for further details.
|
||
|
|
||
|
- 'equal': Ensures an aspect ratio of 1. Pixels will be square.
|
||
|
- 'auto': The axes is kept fixed and the aspect is adjusted so
|
||
|
that the data fit in the axes. In general, this will result in
|
||
|
non-square pixels.
|
||
|
- *None*: Use :rc:`image.aspect`.
|
||
|
|
||
|
Default: 'equal'
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
ret : `~matplotlib.image.AxesImage` or `.Line2D`
|
||
|
The return type depends on the plotting style (see above).
|
||
|
|
||
|
Other Parameters
|
||
|
----------------
|
||
|
**kwargs
|
||
|
The supported additional parameters depend on the plotting style.
|
||
|
|
||
|
For the image style, you can pass the following additional
|
||
|
parameters of `~.Axes.imshow`:
|
||
|
|
||
|
- *cmap*
|
||
|
- *alpha*
|
||
|
- *url*
|
||
|
- any `.Artist` properties (passed on to the `.AxesImage`)
|
||
|
|
||
|
For the marker style, you can pass any `.Line2D` property except
|
||
|
for *linestyle*:
|
||
|
|
||
|
%(_Line2D_docstr)s
|
||
|
"""
|
||
|
if marker is None and markersize is None and hasattr(Z, 'tocoo'):
|
||
|
marker = 's'
|
||
|
if marker is None and markersize is None:
|
||
|
Z = np.asarray(Z)
|
||
|
mask = np.abs(Z) > precision
|
||
|
|
||
|
if 'cmap' not in kwargs:
|
||
|
kwargs['cmap'] = mcolors.ListedColormap(['w', 'k'],
|
||
|
name='binary')
|
||
|
if 'interpolation' in kwargs:
|
||
|
raise TypeError(
|
||
|
"spy() got an unexpected keyword argument 'interpolation'")
|
||
|
ret = self.imshow(mask, interpolation='nearest', aspect=aspect,
|
||
|
origin=origin, **kwargs)
|
||
|
else:
|
||
|
if hasattr(Z, 'tocoo'):
|
||
|
c = Z.tocoo()
|
||
|
if precision == 'present':
|
||
|
y = c.row
|
||
|
x = c.col
|
||
|
else:
|
||
|
nonzero = np.abs(c.data) > precision
|
||
|
y = c.row[nonzero]
|
||
|
x = c.col[nonzero]
|
||
|
else:
|
||
|
Z = np.asarray(Z)
|
||
|
nonzero = np.abs(Z) > precision
|
||
|
y, x = np.nonzero(nonzero)
|
||
|
if marker is None:
|
||
|
marker = 's'
|
||
|
if markersize is None:
|
||
|
markersize = 10
|
||
|
if 'linestyle' in kwargs:
|
||
|
raise TypeError(
|
||
|
"spy() got an unexpected keyword argument 'linestyle'")
|
||
|
marks = mlines.Line2D(x, y, linestyle='None',
|
||
|
marker=marker, markersize=markersize, **kwargs)
|
||
|
self.add_line(marks)
|
||
|
nr, nc = Z.shape
|
||
|
self.set_xlim(-0.5, nc - 0.5)
|
||
|
self.set_ylim(nr - 0.5, -0.5)
|
||
|
self.set_aspect(aspect)
|
||
|
ret = marks
|
||
|
self.title.set_y(1.05)
|
||
|
self.xaxis.tick_top()
|
||
|
self.xaxis.set_ticks_position('both')
|
||
|
self.xaxis.set_major_locator(mticker.MaxNLocator(nbins=9,
|
||
|
steps=[1, 2, 5, 10],
|
||
|
integer=True))
|
||
|
self.yaxis.set_major_locator(mticker.MaxNLocator(nbins=9,
|
||
|
steps=[1, 2, 5, 10],
|
||
|
integer=True))
|
||
|
return ret
|
||
|
|
||
|
def matshow(self, Z, **kwargs):
|
||
|
"""
|
||
|
Plot the values of a 2D matrix or array as color-coded image.
|
||
|
|
||
|
The matrix will be shown the way it would be printed, with the first
|
||
|
row at the top. Row and column numbering is zero-based.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
Z : array-like(M, N)
|
||
|
The matrix to be displayed.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
image : `~matplotlib.image.AxesImage`
|
||
|
|
||
|
Other Parameters
|
||
|
----------------
|
||
|
**kwargs : `~matplotlib.axes.Axes.imshow` arguments
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
imshow : More general function to plot data on a 2D regular raster.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
This is just a convenience function wrapping `.imshow` to set useful
|
||
|
defaults for displaying a matrix. In particular:
|
||
|
|
||
|
- Set ``origin='upper'``.
|
||
|
- Set ``interpolation='nearest'``.
|
||
|
- Set ``aspect='equal'``.
|
||
|
- Ticks are placed to the left and above.
|
||
|
- Ticks are formatted to show integer indices.
|
||
|
|
||
|
"""
|
||
|
Z = np.asanyarray(Z)
|
||
|
kw = {'origin': 'upper',
|
||
|
'interpolation': 'nearest',
|
||
|
'aspect': 'equal', # (already the imshow default)
|
||
|
**kwargs}
|
||
|
im = self.imshow(Z, **kw)
|
||
|
self.title.set_y(1.05)
|
||
|
self.xaxis.tick_top()
|
||
|
self.xaxis.set_ticks_position('both')
|
||
|
self.xaxis.set_major_locator(mticker.MaxNLocator(nbins=9,
|
||
|
steps=[1, 2, 5, 10],
|
||
|
integer=True))
|
||
|
self.yaxis.set_major_locator(mticker.MaxNLocator(nbins=9,
|
||
|
steps=[1, 2, 5, 10],
|
||
|
integer=True))
|
||
|
return im
|
||
|
|
||
|
@_preprocess_data(replace_names=["dataset"])
|
||
|
def violinplot(self, dataset, positions=None, vert=True, widths=0.5,
|
||
|
showmeans=False, showextrema=True, showmedians=False,
|
||
|
quantiles=None, points=100, bw_method=None):
|
||
|
"""
|
||
|
Make a violin plot.
|
||
|
|
||
|
Make a violin plot for each column of *dataset* or each vector in
|
||
|
sequence *dataset*. Each filled area extends to represent the
|
||
|
entire data range, with optional lines at the mean, the median,
|
||
|
the minimum, the maximum, and user-specified quantiles.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
dataset : Array or a sequence of vectors.
|
||
|
The input data.
|
||
|
|
||
|
positions : array-like, default = [1, 2, ..., n]
|
||
|
Sets the positions of the violins. The ticks and limits are
|
||
|
automatically set to match the positions.
|
||
|
|
||
|
vert : bool, default = True.
|
||
|
If true, creates a vertical violin plot.
|
||
|
Otherwise, creates a horizontal violin plot.
|
||
|
|
||
|
widths : array-like, default = 0.5
|
||
|
Either a scalar or a vector that sets the maximal width of
|
||
|
each violin. The default is 0.5, which uses about half of the
|
||
|
available horizontal space.
|
||
|
|
||
|
showmeans : bool, default = False
|
||
|
If `True`, will toggle rendering of the means.
|
||
|
|
||
|
showextrema : bool, default = True
|
||
|
If `True`, will toggle rendering of the extrema.
|
||
|
|
||
|
showmedians : bool, default = False
|
||
|
If `True`, will toggle rendering of the medians.
|
||
|
|
||
|
quantiles : array-like, default = None
|
||
|
If not None, set a list of floats in interval [0, 1] for each violin,
|
||
|
which stands for the quantiles that will be rendered for that
|
||
|
violin.
|
||
|
|
||
|
points : scalar, default = 100
|
||
|
Defines the number of points to evaluate each of the
|
||
|
gaussian kernel density estimations at.
|
||
|
|
||
|
bw_method : str, scalar or callable, optional
|
||
|
The method used to calculate the estimator bandwidth. This can be
|
||
|
'scott', 'silverman', a scalar constant or a callable. If a
|
||
|
scalar, this will be used directly as `kde.factor`. If a
|
||
|
callable, it should take a `GaussianKDE` instance as its only
|
||
|
parameter and return a scalar. If None (default), 'scott' is used.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
result : dict
|
||
|
A dictionary mapping each component of the violinplot to a
|
||
|
list of the corresponding collection instances created. The
|
||
|
dictionary has the following keys:
|
||
|
|
||
|
- ``bodies``: A list of the `~.collections.PolyCollection`
|
||
|
instances containing the filled area of each violin.
|
||
|
|
||
|
- ``cmeans``: A `~.collections.LineCollection` instance that marks
|
||
|
the mean values of each of the violin's distribution.
|
||
|
|
||
|
- ``cmins``: A `~.collections.LineCollection` instance that marks
|
||
|
the bottom of each violin's distribution.
|
||
|
|
||
|
- ``cmaxes``: A `~.collections.LineCollection` instance that marks
|
||
|
the top of each violin's distribution.
|
||
|
|
||
|
- ``cbars``: A `~.collections.LineCollection` instance that marks
|
||
|
the centers of each violin's distribution.
|
||
|
|
||
|
- ``cmedians``: A `~.collections.LineCollection` instance that
|
||
|
marks the median values of each of the violin's distribution.
|
||
|
|
||
|
- ``cquantiles``: A `~.collections.LineCollection` instance created
|
||
|
to identify the quantile values of each of the violin's
|
||
|
distribution.
|
||
|
|
||
|
"""
|
||
|
|
||
|
def _kde_method(X, coords):
|
||
|
# fallback gracefully if the vector contains only one value
|
||
|
if np.all(X[0] == X):
|
||
|
return (X[0] == coords).astype(float)
|
||
|
kde = mlab.GaussianKDE(X, bw_method)
|
||
|
return kde.evaluate(coords)
|
||
|
|
||
|
vpstats = cbook.violin_stats(dataset, _kde_method, points=points,
|
||
|
quantiles=quantiles)
|
||
|
return self.violin(vpstats, positions=positions, vert=vert,
|
||
|
widths=widths, showmeans=showmeans,
|
||
|
showextrema=showextrema, showmedians=showmedians)
|
||
|
|
||
|
def violin(self, vpstats, positions=None, vert=True, widths=0.5,
|
||
|
showmeans=False, showextrema=True, showmedians=False):
|
||
|
"""Drawing function for violin plots.
|
||
|
|
||
|
Draw a violin plot for each column of *vpstats*. Each filled area
|
||
|
extends to represent the entire data range, with optional lines at the
|
||
|
mean, the median, the minimum, the maximum, and the quantiles values.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
vpstats : list of dicts
|
||
|
A list of dictionaries containing stats for each violin plot.
|
||
|
Required keys are:
|
||
|
|
||
|
- ``coords``: A list of scalars containing the coordinates that
|
||
|
the violin's kernel density estimate were evaluated at.
|
||
|
|
||
|
- ``vals``: A list of scalars containing the values of the
|
||
|
kernel density estimate at each of the coordinates given
|
||
|
in *coords*.
|
||
|
|
||
|
- ``mean``: The mean value for this violin's dataset.
|
||
|
|
||
|
- ``median``: The median value for this violin's dataset.
|
||
|
|
||
|
- ``min``: The minimum value for this violin's dataset.
|
||
|
|
||
|
- ``max``: The maximum value for this violin's dataset.
|
||
|
|
||
|
Optional keys are:
|
||
|
|
||
|
- ``quantiles``: A list of scalars containing the quantile values
|
||
|
for this violin's dataset.
|
||
|
|
||
|
positions : array-like, default = [1, 2, ..., n]
|
||
|
Sets the positions of the violins. The ticks and limits are
|
||
|
automatically set to match the positions.
|
||
|
|
||
|
vert : bool, default = True.
|
||
|
If true, plots the violins vertically.
|
||
|
Otherwise, plots the violins horizontally.
|
||
|
|
||
|
widths : array-like, default = 0.5
|
||
|
Either a scalar or a vector that sets the maximal width of
|
||
|
each violin. The default is 0.5, which uses about half of the
|
||
|
available horizontal space.
|
||
|
|
||
|
showmeans : bool, default = False
|
||
|
If true, will toggle rendering of the means.
|
||
|
|
||
|
showextrema : bool, default = True
|
||
|
If true, will toggle rendering of the extrema.
|
||
|
|
||
|
showmedians : bool, default = False
|
||
|
If true, will toggle rendering of the medians.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
result : dict
|
||
|
A dictionary mapping each component of the violinplot to a
|
||
|
list of the corresponding collection instances created. The
|
||
|
dictionary has the following keys:
|
||
|
|
||
|
- ``bodies``: A list of the `~.collections.PolyCollection`
|
||
|
instances containing the filled area of each violin.
|
||
|
|
||
|
- ``cmeans``: A `~.collections.LineCollection` instance that marks
|
||
|
the mean values of each of the violin's distribution.
|
||
|
|
||
|
- ``cmins``: A `~.collections.LineCollection` instance that marks
|
||
|
the bottom of each violin's distribution.
|
||
|
|
||
|
- ``cmaxes``: A `~.collections.LineCollection` instance that marks
|
||
|
the top of each violin's distribution.
|
||
|
|
||
|
- ``cbars``: A `~.collections.LineCollection` instance that marks
|
||
|
the centers of each violin's distribution.
|
||
|
|
||
|
- ``cmedians``: A `~.collections.LineCollection` instance that
|
||
|
marks the median values of each of the violin's distribution.
|
||
|
|
||
|
- ``cquantiles``: A `~.collections.LineCollection` instance created
|
||
|
to identify the quantiles values of each of the violin's
|
||
|
distribution.
|
||
|
|
||
|
"""
|
||
|
|
||
|
# Statistical quantities to be plotted on the violins
|
||
|
means = []
|
||
|
mins = []
|
||
|
maxes = []
|
||
|
medians = []
|
||
|
quantiles = np.asarray([])
|
||
|
|
||
|
# Collections to be returned
|
||
|
artists = {}
|
||
|
|
||
|
N = len(vpstats)
|
||
|
datashape_message = ("List of violinplot statistics and `{0}` "
|
||
|
"values must have the same length")
|
||
|
|
||
|
# Validate positions
|
||
|
if positions is None:
|
||
|
positions = range(1, N + 1)
|
||
|
elif len(positions) != N:
|
||
|
raise ValueError(datashape_message.format("positions"))
|
||
|
|
||
|
# Validate widths
|
||
|
if np.isscalar(widths):
|
||
|
widths = [widths] * N
|
||
|
elif len(widths) != N:
|
||
|
raise ValueError(datashape_message.format("widths"))
|
||
|
|
||
|
# Calculate ranges for statistics lines
|
||
|
pmins = -0.25 * np.array(widths) + positions
|
||
|
pmaxes = 0.25 * np.array(widths) + positions
|
||
|
|
||
|
# Check whether we are rendering vertically or horizontally
|
||
|
if vert:
|
||
|
fill = self.fill_betweenx
|
||
|
perp_lines = self.hlines
|
||
|
par_lines = self.vlines
|
||
|
else:
|
||
|
fill = self.fill_between
|
||
|
perp_lines = self.vlines
|
||
|
par_lines = self.hlines
|
||
|
|
||
|
if rcParams['_internal.classic_mode']:
|
||
|
fillcolor = 'y'
|
||
|
edgecolor = 'r'
|
||
|
else:
|
||
|
fillcolor = edgecolor = self._get_lines.get_next_color()
|
||
|
|
||
|
# Render violins
|
||
|
bodies = []
|
||
|
for stats, pos, width in zip(vpstats, positions, widths):
|
||
|
# The 0.5 factor reflects the fact that we plot from v-p to
|
||
|
# v+p
|
||
|
vals = np.array(stats['vals'])
|
||
|
vals = 0.5 * width * vals / vals.max()
|
||
|
bodies += [fill(stats['coords'],
|
||
|
-vals + pos,
|
||
|
vals + pos,
|
||
|
facecolor=fillcolor,
|
||
|
alpha=0.3)]
|
||
|
means.append(stats['mean'])
|
||
|
mins.append(stats['min'])
|
||
|
maxes.append(stats['max'])
|
||
|
medians.append(stats['median'])
|
||
|
q = stats.get('quantiles')
|
||
|
if q is not None:
|
||
|
# If exist key quantiles, assume it's a list of floats
|
||
|
quantiles = np.concatenate((quantiles, q))
|
||
|
artists['bodies'] = bodies
|
||
|
|
||
|
# Render means
|
||
|
if showmeans:
|
||
|
artists['cmeans'] = perp_lines(means, pmins, pmaxes,
|
||
|
colors=edgecolor)
|
||
|
|
||
|
# Render extrema
|
||
|
if showextrema:
|
||
|
artists['cmaxes'] = perp_lines(maxes, pmins, pmaxes,
|
||
|
colors=edgecolor)
|
||
|
artists['cmins'] = perp_lines(mins, pmins, pmaxes,
|
||
|
colors=edgecolor)
|
||
|
artists['cbars'] = par_lines(positions, mins, maxes,
|
||
|
colors=edgecolor)
|
||
|
|
||
|
# Render medians
|
||
|
if showmedians:
|
||
|
artists['cmedians'] = perp_lines(medians,
|
||
|
pmins,
|
||
|
pmaxes,
|
||
|
colors=edgecolor)
|
||
|
|
||
|
# Render quantile values
|
||
|
if quantiles.size > 0:
|
||
|
# Recalculate ranges for statistics lines for quantiles.
|
||
|
# ppmins are the left end of quantiles lines
|
||
|
ppmins = np.asarray([])
|
||
|
# pmaxes are the right end of quantiles lines
|
||
|
ppmaxs = np.asarray([])
|
||
|
for stats, cmin, cmax in zip(vpstats, pmins, pmaxes):
|
||
|
q = stats.get('quantiles')
|
||
|
if q is not None:
|
||
|
ppmins = np.concatenate((ppmins, [cmin] * np.size(q)))
|
||
|
ppmaxs = np.concatenate((ppmaxs, [cmax] * np.size(q)))
|
||
|
# Start rendering
|
||
|
artists['cquantiles'] = perp_lines(quantiles, ppmins, ppmaxs,
|
||
|
colors=edgecolor)
|
||
|
|
||
|
return artists
|
||
|
|
||
|
# Methods that are entirely implemented in other modules.
|
||
|
|
||
|
table = mtable.table
|
||
|
|
||
|
# args can by either Y or y1, y2, ... and all should be replaced
|
||
|
stackplot = _preprocess_data()(mstack.stackplot)
|
||
|
|
||
|
streamplot = _preprocess_data(
|
||
|
replace_names=["x", "y", "u", "v", "start_points"])(mstream.streamplot)
|
||
|
|
||
|
tricontour = mtri.tricontour
|
||
|
tricontourf = mtri.tricontourf
|
||
|
tripcolor = mtri.tripcolor
|
||
|
triplot = mtri.triplot
|