You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

408 lines
11 KiB
Python

5 years ago
# -*- coding: utf-8 -*-
"""
Unit tests for nltk.tokenize.
See also nltk/test/tokenize.doctest
"""
from __future__ import unicode_literals
import unittest
from nose import SkipTest
from nose.tools import assert_equal
from nltk.tokenize import (
punkt,
word_tokenize,
TweetTokenizer,
StanfordSegmenter,
TreebankWordTokenizer,
SyllableTokenizer,
)
class TestTokenize(unittest.TestCase):
def test_tweet_tokenizer(self):
"""
Test TweetTokenizer using words with special and accented characters.
"""
tokenizer = TweetTokenizer(strip_handles=True, reduce_len=True)
s9 = "@myke: Let's test these words: resumé España München français"
tokens = tokenizer.tokenize(s9)
expected = [
':',
"Let's",
'test',
'these',
'words',
':',
'resumé',
'España',
'München',
'français',
]
self.assertEqual(tokens, expected)
def test_sonority_sequencing_syllable_tokenizer(self):
"""
Test SyllableTokenizer tokenizer.
"""
tokenizer = SyllableTokenizer()
tokens = tokenizer.tokenize('justification')
self.assertEqual(tokens, ['jus', 'ti', 'fi', 'ca', 'tion'])
def test_stanford_segmenter_arabic(self):
"""
Test the Stanford Word Segmenter for Arabic (default config)
"""
try:
seg = StanfordSegmenter()
seg.default_config('ar')
sent = u'يبحث علم الحاسوب استخدام الحوسبة بجميع اشكالها لحل المشكلات'
segmented_sent = seg.segment(sent.split())
assert segmented_sent.split() == [
'يبحث',
'علم',
'الحاسوب',
'استخدام',
'الحوسبة',
'ب',
'جميع',
'اشكال',
'ها',
'ل',
'حل',
'المشكلات',
]
except LookupError as e:
raise SkipTest(str(e))
def test_stanford_segmenter_chinese(self):
"""
Test the Stanford Word Segmenter for Chinese (default config)
"""
try:
seg = StanfordSegmenter()
seg.default_config('zh')
sent = u"这是斯坦福中文分词器测试"
segmented_sent = seg.segment(sent.split())
assert segmented_sent.split() == ['', '', '斯坦福', '中文', '分词器', '测试']
except LookupError as e:
raise SkipTest(str(e))
def test_phone_tokenizer(self):
"""
Test a string that resembles a phone number but contains a newline
"""
# Should be recognized as a phone number, albeit one with multiple spaces
tokenizer = TweetTokenizer()
test1 = "(393) 928 -3010"
expected = ['(393) 928 -3010']
result = tokenizer.tokenize(test1)
self.assertEqual(result, expected)
# Due to newline, first three elements aren't part of a phone number;
# fourth is
test2 = "(393)\n928 -3010"
expected = ['(', '393', ')', "928 -3010"]
result = tokenizer.tokenize(test2)
self.assertEqual(result, expected)
def test_remove_handle(self):
"""
Test remove_handle() from casual.py with specially crafted edge cases
"""
tokenizer = TweetTokenizer(strip_handles=True)
# Simple example. Handles with just numbers should be allowed
test1 = "@twitter hello @twi_tter_. hi @12345 @123news"
expected = ['hello', '.', 'hi']
result = tokenizer.tokenize(test1)
self.assertEqual(result, expected)
# Handles are allowed to follow any of the following characters
test2 = "@n`@n~@n(@n)@n-@n=@n+@n\\@n|@n[@n]@n{@n}@n;@n:@n'@n\"@n/@n?@n.@n,@n<@n>@n @n\n@n ñ@n.ü@n.ç@n."
expected = [
'`',
'~',
'(',
')',
'-',
'=',
'+',
'\\',
'|',
'[',
']',
'{',
'}',
';',
':',
"'",
'"',
'/',
'?',
'.',
',',
'<',
'>',
'ñ',
'.',
'ü',
'.',
'ç',
'.',
]
result = tokenizer.tokenize(test2)
self.assertEqual(result, expected)
# Handles are NOT allowed to follow any of the following characters
test3 = "a@n j@n z@n A@n L@n Z@n 1@n 4@n 7@n 9@n 0@n _@n !@n @@n #@n $@n %@n &@n *@n"
expected = [
'a',
'@n',
'j',
'@n',
'z',
'@n',
'A',
'@n',
'L',
'@n',
'Z',
'@n',
'1',
'@n',
'4',
'@n',
'7',
'@n',
'9',
'@n',
'0',
'@n',
'_',
'@n',
'!',
'@n',
'@',
'@n',
'#',
'@n',
'$',
'@n',
'%',
'@n',
'&',
'@n',
'*',
'@n',
]
result = tokenizer.tokenize(test3)
self.assertEqual(result, expected)
# Handles are allowed to precede the following characters
test4 = "@n!a @n#a @n$a @n%a @n&a @n*a"
expected = ['!', 'a', '#', 'a', '$', 'a', '%', 'a', '&', 'a', '*', 'a']
result = tokenizer.tokenize(test4)
self.assertEqual(result, expected)
# Tests interactions with special symbols and multiple @
test5 = "@n!@n @n#@n @n$@n @n%@n @n&@n @n*@n @n@n @@n @n@@n @n_@n @n7@n @nj@n"
expected = [
'!',
'@n',
'#',
'@n',
'$',
'@n',
'%',
'@n',
'&',
'@n',
'*',
'@n',
'@n',
'@n',
'@',
'@n',
'@n',
'@',
'@n',
'@n_',
'@n',
'@n7',
'@n',
'@nj',
'@n',
]
result = tokenizer.tokenize(test5)
self.assertEqual(result, expected)
# Tests that handles can have a max length of 20
test6 = "@abcdefghijklmnopqrstuvwxyz @abcdefghijklmnopqrst1234 @abcdefghijklmnopqrst_ @abcdefghijklmnopqrstendofhandle"
expected = ['uvwxyz', '1234', '_', 'endofhandle']
result = tokenizer.tokenize(test6)
self.assertEqual(result, expected)
# Edge case where an @ comes directly after a long handle
test7 = "@abcdefghijklmnopqrstu@abcde @abcdefghijklmnopqrst@abcde @abcdefghijklmnopqrst_@abcde @abcdefghijklmnopqrst5@abcde"
expected = [
'u',
'@abcde',
'@abcdefghijklmnopqrst',
'@abcde',
'_',
'@abcde',
'5',
'@abcde',
]
result = tokenizer.tokenize(test7)
self.assertEqual(result, expected)
def test_treebank_span_tokenizer(self):
"""
Test TreebankWordTokenizer.span_tokenize function
"""
tokenizer = TreebankWordTokenizer()
# Test case in the docstring
test1 = "Good muffins cost $3.88\nin New (York). Please (buy) me\ntwo of them.\n(Thanks)."
expected = [
(0, 4),
(5, 12),
(13, 17),
(18, 19),
(19, 23),
(24, 26),
(27, 30),
(31, 32),
(32, 36),
(36, 37),
(37, 38),
(40, 46),
(47, 48),
(48, 51),
(51, 52),
(53, 55),
(56, 59),
(60, 62),
(63, 68),
(69, 70),
(70, 76),
(76, 77),
(77, 78),
]
result = list(tokenizer.span_tokenize(test1))
self.assertEqual(result, expected)
# Test case with double quotation
test2 = "The DUP is similar to the \"religious right\" in the United States and takes a hardline stance on social issues"
expected = [
(0, 3),
(4, 7),
(8, 10),
(11, 18),
(19, 21),
(22, 25),
(26, 27),
(27, 36),
(37, 42),
(42, 43),
(44, 46),
(47, 50),
(51, 57),
(58, 64),
(65, 68),
(69, 74),
(75, 76),
(77, 85),
(86, 92),
(93, 95),
(96, 102),
(103, 109),
]
result = list(tokenizer.span_tokenize(test2))
self.assertEqual(result, expected)
# Test case with double qoutation as well as converted quotations
test3 = "The DUP is similar to the \"religious right\" in the United States and takes a ``hardline'' stance on social issues"
expected = [
(0, 3),
(4, 7),
(8, 10),
(11, 18),
(19, 21),
(22, 25),
(26, 27),
(27, 36),
(37, 42),
(42, 43),
(44, 46),
(47, 50),
(51, 57),
(58, 64),
(65, 68),
(69, 74),
(75, 76),
(77, 79),
(79, 87),
(87, 89),
(90, 96),
(97, 99),
(100, 106),
(107, 113),
]
result = list(tokenizer.span_tokenize(test3))
self.assertEqual(result, expected)
def test_word_tokenize(self):
"""
Test word_tokenize function
"""
sentence = "The 'v', I've been fooled but I'll seek revenge."
expected = ['The', "'", 'v', "'", ',', 'I', "'ve", 'been', 'fooled',
'but', 'I', "'ll", 'seek', 'revenge', '.']
self.assertEqual(word_tokenize(sentence), expected)
sentence = "'v' 're'"
expected = ["'", 'v', "'", "'re", "'"]
self.assertEqual(word_tokenize(sentence), expected)
def test_punkt_pair_iter(self):
test_cases = [
('12', [('1', '2'), ('2', None)]),
('123', [('1', '2'), ('2', '3'), ('3', None)]),
('1234', [('1', '2'), ('2', '3'), ('3', '4'), ('4', None)]),
]
for (test_input, expected_output) in test_cases:
actual_output = [x for x in punkt._pair_iter(test_input)]
assert_equal(actual_output, expected_output)
def test_punkt_pair_iter_handles_stop_iteration_exception(self):
# test input to trigger StopIteration from next()
it = iter([])
# call method under test and produce a generator
gen = punkt._pair_iter(it)
# unpack generator, ensure that no error is raised
list(gen)
def test_punkt_tokenize_words_handles_stop_iteration_exception(self):
obj = punkt.PunktBaseClass()
class TestPunktTokenizeWordsMock:
def word_tokenize(self, s):
return iter([])
obj._lang_vars = TestPunktTokenizeWordsMock()
# unpack generator, ensure that no error is raised
list(obj._tokenize_words('test'))