You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
311 lines
8.6 KiB
Python
311 lines
8.6 KiB
Python
5 years ago
|
# Natural Language Toolkit: Semantic Interpretation
|
||
|
#
|
||
|
# Author: Ewan Klein <ewan@inf.ed.ac.uk>
|
||
|
#
|
||
|
# Copyright (C) 2001-2019 NLTK Project
|
||
|
# URL: <http://nltk.org/>
|
||
|
# For license information, see LICENSE.TXT
|
||
|
|
||
|
"""
|
||
|
Utility functions for batch-processing sentences: parsing and
|
||
|
extraction of the semantic representation of the root node of the the
|
||
|
syntax tree, followed by evaluation of the semantic representation in
|
||
|
a first-order model.
|
||
|
"""
|
||
|
from __future__ import print_function, unicode_literals
|
||
|
|
||
|
import codecs
|
||
|
from nltk.sem import evaluate
|
||
|
|
||
|
|
||
|
##############################################################
|
||
|
## Utility functions for connecting parse output to semantics
|
||
|
##############################################################
|
||
|
|
||
|
|
||
|
def parse_sents(inputs, grammar, trace=0):
|
||
|
"""
|
||
|
Convert input sentences into syntactic trees.
|
||
|
|
||
|
:param inputs: sentences to be parsed
|
||
|
:type inputs: list(str)
|
||
|
:param grammar: ``FeatureGrammar`` or name of feature-based grammar
|
||
|
:type grammar: nltk.grammar.FeatureGrammar
|
||
|
:rtype: list(nltk.tree.Tree) or dict(list(str)): list(Tree)
|
||
|
:return: a mapping from input sentences to a list of ``Tree``s
|
||
|
"""
|
||
|
# put imports here to avoid circult dependencies
|
||
|
from nltk.grammar import FeatureGrammar
|
||
|
from nltk.parse import FeatureChartParser, load_parser
|
||
|
|
||
|
if isinstance(grammar, FeatureGrammar):
|
||
|
cp = FeatureChartParser(grammar)
|
||
|
else:
|
||
|
cp = load_parser(grammar, trace=trace)
|
||
|
parses = []
|
||
|
for sent in inputs:
|
||
|
tokens = sent.split() # use a tokenizer?
|
||
|
syntrees = list(cp.parse(tokens))
|
||
|
parses.append(syntrees)
|
||
|
return parses
|
||
|
|
||
|
|
||
|
def root_semrep(syntree, semkey='SEM'):
|
||
|
"""
|
||
|
Find the semantic representation at the root of a tree.
|
||
|
|
||
|
:param syntree: a parse ``Tree``
|
||
|
:param semkey: the feature label to use for the root semantics in the tree
|
||
|
:return: the semantic representation at the root of a ``Tree``
|
||
|
:rtype: sem.Expression
|
||
|
"""
|
||
|
from nltk.grammar import FeatStructNonterminal
|
||
|
|
||
|
node = syntree.label()
|
||
|
assert isinstance(node, FeatStructNonterminal)
|
||
|
try:
|
||
|
return node[semkey]
|
||
|
except KeyError:
|
||
|
print(node, end=' ')
|
||
|
print("has no specification for the feature %s" % semkey)
|
||
|
raise
|
||
|
|
||
|
|
||
|
def interpret_sents(inputs, grammar, semkey='SEM', trace=0):
|
||
|
"""
|
||
|
Add the semantic representation to each syntactic parse tree
|
||
|
of each input sentence.
|
||
|
|
||
|
:param inputs: a list of sentences
|
||
|
:type inputs: list(str)
|
||
|
:param grammar: ``FeatureGrammar`` or name of feature-based grammar
|
||
|
:type grammar: nltk.grammar.FeatureGrammar
|
||
|
:return: a mapping from sentences to lists of pairs (parse-tree, semantic-representations)
|
||
|
:rtype: list(list(tuple(nltk.tree.Tree, nltk.sem.logic.ConstantExpression)))
|
||
|
"""
|
||
|
return [
|
||
|
[(syn, root_semrep(syn, semkey)) for syn in syntrees]
|
||
|
for syntrees in parse_sents(inputs, grammar, trace=trace)
|
||
|
]
|
||
|
|
||
|
|
||
|
def evaluate_sents(inputs, grammar, model, assignment, trace=0):
|
||
|
"""
|
||
|
Add the truth-in-a-model value to each semantic representation
|
||
|
for each syntactic parse of each input sentences.
|
||
|
|
||
|
:param inputs: a list of sentences
|
||
|
:type inputs: list(str)
|
||
|
:param grammar: ``FeatureGrammar`` or name of feature-based grammar
|
||
|
:type grammar: nltk.grammar.FeatureGrammar
|
||
|
:return: a mapping from sentences to lists of triples (parse-tree, semantic-representations, evaluation-in-model)
|
||
|
:rtype: list(list(tuple(nltk.tree.Tree, nltk.sem.logic.ConstantExpression, bool or dict(str): bool)))
|
||
|
"""
|
||
|
return [
|
||
|
[
|
||
|
(syn, sem, model.evaluate("%s" % sem, assignment, trace=trace))
|
||
|
for (syn, sem) in interpretations
|
||
|
]
|
||
|
for interpretations in interpret_sents(inputs, grammar)
|
||
|
]
|
||
|
|
||
|
|
||
|
def demo_model0():
|
||
|
global m0, g0
|
||
|
# Initialize a valuation of non-logical constants."""
|
||
|
v = [
|
||
|
('john', 'b1'),
|
||
|
('mary', 'g1'),
|
||
|
('suzie', 'g2'),
|
||
|
('fido', 'd1'),
|
||
|
('tess', 'd2'),
|
||
|
('noosa', 'n'),
|
||
|
('girl', set(['g1', 'g2'])),
|
||
|
('boy', set(['b1', 'b2'])),
|
||
|
('dog', set(['d1', 'd2'])),
|
||
|
('bark', set(['d1', 'd2'])),
|
||
|
('walk', set(['b1', 'g2', 'd1'])),
|
||
|
('chase', set([('b1', 'g1'), ('b2', 'g1'), ('g1', 'd1'), ('g2', 'd2')])),
|
||
|
(
|
||
|
'see',
|
||
|
set([('b1', 'g1'), ('b2', 'd2'), ('g1', 'b1'), ('d2', 'b1'), ('g2', 'n')]),
|
||
|
),
|
||
|
('in', set([('b1', 'n'), ('b2', 'n'), ('d2', 'n')])),
|
||
|
('with', set([('b1', 'g1'), ('g1', 'b1'), ('d1', 'b1'), ('b1', 'd1')])),
|
||
|
]
|
||
|
# Read in the data from ``v``
|
||
|
val = evaluate.Valuation(v)
|
||
|
# Bind ``dom`` to the ``domain`` property of ``val``
|
||
|
dom = val.domain
|
||
|
# Initialize a model with parameters ``dom`` and ``val``.
|
||
|
m0 = evaluate.Model(dom, val)
|
||
|
# Initialize a variable assignment with parameter ``dom``
|
||
|
g0 = evaluate.Assignment(dom)
|
||
|
|
||
|
|
||
|
def read_sents(filename, encoding='utf8'):
|
||
|
with codecs.open(filename, 'r', encoding) as fp:
|
||
|
sents = [l.rstrip() for l in fp]
|
||
|
|
||
|
# get rid of blank lines
|
||
|
sents = [l for l in sents if len(l) > 0]
|
||
|
sents = [l for l in sents if not l[0] == '#']
|
||
|
return sents
|
||
|
|
||
|
|
||
|
def demo_legacy_grammar():
|
||
|
"""
|
||
|
Check that interpret_sents() is compatible with legacy grammars that use
|
||
|
a lowercase 'sem' feature.
|
||
|
|
||
|
Define 'test.fcfg' to be the following
|
||
|
|
||
|
"""
|
||
|
from nltk.grammar import FeatureGrammar
|
||
|
|
||
|
g = FeatureGrammar.fromstring(
|
||
|
"""
|
||
|
% start S
|
||
|
S[sem=<hello>] -> 'hello'
|
||
|
"""
|
||
|
)
|
||
|
print("Reading grammar: %s" % g)
|
||
|
print("*" * 20)
|
||
|
for reading in interpret_sents(['hello'], g, semkey='sem'):
|
||
|
syn, sem = reading[0]
|
||
|
print()
|
||
|
print("output: ", sem)
|
||
|
|
||
|
|
||
|
def demo():
|
||
|
import sys
|
||
|
from optparse import OptionParser
|
||
|
|
||
|
description = """
|
||
|
Parse and evaluate some sentences.
|
||
|
"""
|
||
|
|
||
|
opts = OptionParser(description=description)
|
||
|
|
||
|
opts.set_defaults(
|
||
|
evaluate=True,
|
||
|
beta=True,
|
||
|
syntrace=0,
|
||
|
semtrace=0,
|
||
|
demo='default',
|
||
|
grammar='',
|
||
|
sentences='',
|
||
|
)
|
||
|
|
||
|
opts.add_option(
|
||
|
"-d",
|
||
|
"--demo",
|
||
|
dest="demo",
|
||
|
help="choose demo D; omit this for the default demo, or specify 'chat80'",
|
||
|
metavar="D",
|
||
|
)
|
||
|
opts.add_option(
|
||
|
"-g", "--gram", dest="grammar", help="read in grammar G", metavar="G"
|
||
|
)
|
||
|
opts.add_option(
|
||
|
"-m",
|
||
|
"--model",
|
||
|
dest="model",
|
||
|
help="import model M (omit '.py' suffix)",
|
||
|
metavar="M",
|
||
|
)
|
||
|
opts.add_option(
|
||
|
"-s",
|
||
|
"--sentences",
|
||
|
dest="sentences",
|
||
|
help="read in a file of test sentences S",
|
||
|
metavar="S",
|
||
|
)
|
||
|
opts.add_option(
|
||
|
"-e",
|
||
|
"--no-eval",
|
||
|
action="store_false",
|
||
|
dest="evaluate",
|
||
|
help="just do a syntactic analysis",
|
||
|
)
|
||
|
opts.add_option(
|
||
|
"-b",
|
||
|
"--no-beta-reduction",
|
||
|
action="store_false",
|
||
|
dest="beta",
|
||
|
help="don't carry out beta-reduction",
|
||
|
)
|
||
|
opts.add_option(
|
||
|
"-t",
|
||
|
"--syntrace",
|
||
|
action="count",
|
||
|
dest="syntrace",
|
||
|
help="set syntactic tracing on; requires '-e' option",
|
||
|
)
|
||
|
opts.add_option(
|
||
|
"-T",
|
||
|
"--semtrace",
|
||
|
action="count",
|
||
|
dest="semtrace",
|
||
|
help="set semantic tracing on",
|
||
|
)
|
||
|
|
||
|
(options, args) = opts.parse_args()
|
||
|
|
||
|
SPACER = '-' * 30
|
||
|
|
||
|
demo_model0()
|
||
|
|
||
|
sents = [
|
||
|
'Fido sees a boy with Mary',
|
||
|
'John sees Mary',
|
||
|
'every girl chases a dog',
|
||
|
'every boy chases a girl',
|
||
|
'John walks with a girl in Noosa',
|
||
|
'who walks',
|
||
|
]
|
||
|
|
||
|
gramfile = 'grammars/sample_grammars/sem2.fcfg'
|
||
|
|
||
|
if options.sentences:
|
||
|
sentsfile = options.sentences
|
||
|
if options.grammar:
|
||
|
gramfile = options.grammar
|
||
|
if options.model:
|
||
|
exec("import %s as model" % options.model)
|
||
|
|
||
|
if sents is None:
|
||
|
sents = read_sents(sentsfile)
|
||
|
|
||
|
# Set model and assignment
|
||
|
model = m0
|
||
|
g = g0
|
||
|
|
||
|
if options.evaluate:
|
||
|
evaluations = evaluate_sents(sents, gramfile, model, g, trace=options.semtrace)
|
||
|
else:
|
||
|
semreps = interpret_sents(sents, gramfile, trace=options.syntrace)
|
||
|
|
||
|
for i, sent in enumerate(sents):
|
||
|
n = 1
|
||
|
print('\nSentence: %s' % sent)
|
||
|
print(SPACER)
|
||
|
if options.evaluate:
|
||
|
|
||
|
for (syntree, semrep, value) in evaluations[i]:
|
||
|
if isinstance(value, dict):
|
||
|
value = set(value.keys())
|
||
|
print('%d: %s' % (n, semrep))
|
||
|
print(value)
|
||
|
n += 1
|
||
|
else:
|
||
|
|
||
|
for (syntree, semrep) in semreps[i]:
|
||
|
print('%d: %s' % (n, semrep))
|
||
|
n += 1
|
||
|
|
||
|
|
||
|
if __name__ == "__main__":
|
||
|
demo()
|
||
|
demo_legacy_grammar()
|