You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
839 lines
29 KiB
Python
839 lines
29 KiB
Python
5 years ago
|
# Natural Language Toolkit: Glue Semantics
|
||
|
#
|
||
|
# Author: Dan Garrette <dhgarrette@gmail.com>
|
||
|
#
|
||
|
# Copyright (C) 2001-2019 NLTK Project
|
||
|
# URL: <http://nltk.org/>
|
||
|
# For license information, see LICENSE.TXT
|
||
|
from __future__ import print_function, division, unicode_literals
|
||
|
|
||
|
import os
|
||
|
from itertools import chain
|
||
|
|
||
|
from six import string_types
|
||
|
|
||
|
import nltk
|
||
|
from nltk.internals import Counter
|
||
|
from nltk.tag import UnigramTagger, BigramTagger, TrigramTagger, RegexpTagger
|
||
|
from nltk.sem.logic import (
|
||
|
Expression,
|
||
|
Variable,
|
||
|
VariableExpression,
|
||
|
LambdaExpression,
|
||
|
AbstractVariableExpression,
|
||
|
)
|
||
|
from nltk.compat import python_2_unicode_compatible
|
||
|
from nltk.sem import drt
|
||
|
from nltk.sem import linearlogic
|
||
|
|
||
|
SPEC_SEMTYPES = {
|
||
|
'a': 'ex_quant',
|
||
|
'an': 'ex_quant',
|
||
|
'every': 'univ_quant',
|
||
|
'the': 'def_art',
|
||
|
'no': 'no_quant',
|
||
|
'default': 'ex_quant',
|
||
|
}
|
||
|
|
||
|
OPTIONAL_RELATIONSHIPS = ['nmod', 'vmod', 'punct']
|
||
|
|
||
|
|
||
|
@python_2_unicode_compatible
|
||
|
class GlueFormula(object):
|
||
|
def __init__(self, meaning, glue, indices=None):
|
||
|
if not indices:
|
||
|
indices = set()
|
||
|
|
||
|
if isinstance(meaning, string_types):
|
||
|
self.meaning = Expression.fromstring(meaning)
|
||
|
elif isinstance(meaning, Expression):
|
||
|
self.meaning = meaning
|
||
|
else:
|
||
|
raise RuntimeError(
|
||
|
'Meaning term neither string or expression: %s, %s'
|
||
|
% (meaning, meaning.__class__)
|
||
|
)
|
||
|
|
||
|
if isinstance(glue, string_types):
|
||
|
self.glue = linearlogic.LinearLogicParser().parse(glue)
|
||
|
elif isinstance(glue, linearlogic.Expression):
|
||
|
self.glue = glue
|
||
|
else:
|
||
|
raise RuntimeError(
|
||
|
'Glue term neither string or expression: %s, %s'
|
||
|
% (glue, glue.__class__)
|
||
|
)
|
||
|
|
||
|
self.indices = indices
|
||
|
|
||
|
def applyto(self, arg):
|
||
|
""" self = (\\x.(walk x), (subj -o f))
|
||
|
arg = (john , subj)
|
||
|
returns ((walk john), f)
|
||
|
"""
|
||
|
if self.indices & arg.indices: # if the sets are NOT disjoint
|
||
|
raise linearlogic.LinearLogicApplicationException(
|
||
|
"'%s' applied to '%s'. Indices are not disjoint." % (self, arg)
|
||
|
)
|
||
|
else: # if the sets ARE disjoint
|
||
|
return_indices = self.indices | arg.indices
|
||
|
|
||
|
try:
|
||
|
return_glue = linearlogic.ApplicationExpression(
|
||
|
self.glue, arg.glue, arg.indices
|
||
|
)
|
||
|
except linearlogic.LinearLogicApplicationException:
|
||
|
raise linearlogic.LinearLogicApplicationException(
|
||
|
"'%s' applied to '%s'" % (self.simplify(), arg.simplify())
|
||
|
)
|
||
|
|
||
|
arg_meaning_abstracted = arg.meaning
|
||
|
if return_indices:
|
||
|
for dep in self.glue.simplify().antecedent.dependencies[
|
||
|
::-1
|
||
|
]: # if self.glue is (A -o B), dep is in A.dependencies
|
||
|
arg_meaning_abstracted = self.make_LambdaExpression(
|
||
|
Variable('v%s' % dep), arg_meaning_abstracted
|
||
|
)
|
||
|
return_meaning = self.meaning.applyto(arg_meaning_abstracted)
|
||
|
|
||
|
return self.__class__(return_meaning, return_glue, return_indices)
|
||
|
|
||
|
def make_VariableExpression(self, name):
|
||
|
return VariableExpression(name)
|
||
|
|
||
|
def make_LambdaExpression(self, variable, term):
|
||
|
return LambdaExpression(variable, term)
|
||
|
|
||
|
def lambda_abstract(self, other):
|
||
|
assert isinstance(other, GlueFormula)
|
||
|
assert isinstance(other.meaning, AbstractVariableExpression)
|
||
|
return self.__class__(
|
||
|
self.make_LambdaExpression(other.meaning.variable, self.meaning),
|
||
|
linearlogic.ImpExpression(other.glue, self.glue),
|
||
|
)
|
||
|
|
||
|
def compile(self, counter=None):
|
||
|
"""From Iddo Lev's PhD Dissertation p108-109"""
|
||
|
if not counter:
|
||
|
counter = Counter()
|
||
|
(compiled_glue, new_forms) = self.glue.simplify().compile_pos(
|
||
|
counter, self.__class__
|
||
|
)
|
||
|
return new_forms + [
|
||
|
self.__class__(self.meaning, compiled_glue, set([counter.get()]))
|
||
|
]
|
||
|
|
||
|
def simplify(self):
|
||
|
return self.__class__(
|
||
|
self.meaning.simplify(), self.glue.simplify(), self.indices
|
||
|
)
|
||
|
|
||
|
def __eq__(self, other):
|
||
|
return (
|
||
|
self.__class__ == other.__class__
|
||
|
and self.meaning == other.meaning
|
||
|
and self.glue == other.glue
|
||
|
)
|
||
|
|
||
|
def __ne__(self, other):
|
||
|
return not self == other
|
||
|
|
||
|
# sorting for use in doctests which must be deterministic
|
||
|
def __lt__(self, other):
|
||
|
return str(self) < str(other)
|
||
|
|
||
|
def __str__(self):
|
||
|
assert isinstance(self.indices, set)
|
||
|
accum = '%s : %s' % (self.meaning, self.glue)
|
||
|
if self.indices:
|
||
|
accum += ' : {' + ', '.join(str(index) for index in self.indices) + '}'
|
||
|
return accum
|
||
|
|
||
|
def __repr__(self):
|
||
|
return "%s" % self
|
||
|
|
||
|
|
||
|
@python_2_unicode_compatible
|
||
|
class GlueDict(dict):
|
||
|
def __init__(self, filename, encoding=None):
|
||
|
self.filename = filename
|
||
|
self.file_encoding = encoding
|
||
|
self.read_file()
|
||
|
|
||
|
def read_file(self, empty_first=True):
|
||
|
if empty_first:
|
||
|
self.clear()
|
||
|
|
||
|
try:
|
||
|
contents = nltk.data.load(
|
||
|
self.filename, format='text', encoding=self.file_encoding
|
||
|
)
|
||
|
# TODO: the above can't handle zip files, but this should anyway be fixed in nltk.data.load()
|
||
|
except LookupError as e:
|
||
|
try:
|
||
|
contents = nltk.data.load(
|
||
|
'file:' + self.filename, format='text', encoding=self.file_encoding
|
||
|
)
|
||
|
except LookupError:
|
||
|
raise e
|
||
|
lines = contents.splitlines()
|
||
|
|
||
|
for line in lines: # example: 'n : (\\x.(<word> x), (v-or))'
|
||
|
# lambdacalc -^ linear logic -^
|
||
|
line = line.strip() # remove trailing newline
|
||
|
if not len(line):
|
||
|
continue # skip empty lines
|
||
|
if line[0] == '#':
|
||
|
continue # skip commented out lines
|
||
|
|
||
|
parts = line.split(
|
||
|
' : ', 2
|
||
|
) # ['verb', '(\\x.(<word> x), ( subj -o f ))', '[subj]']
|
||
|
|
||
|
glue_formulas = []
|
||
|
paren_count = 0
|
||
|
tuple_start = 0
|
||
|
tuple_comma = 0
|
||
|
|
||
|
relationships = None
|
||
|
|
||
|
if len(parts) > 1:
|
||
|
for (i, c) in enumerate(parts[1]):
|
||
|
if c == '(':
|
||
|
if paren_count == 0: # if it's the first '(' of a tuple
|
||
|
tuple_start = i + 1 # then save the index
|
||
|
paren_count += 1
|
||
|
elif c == ')':
|
||
|
paren_count -= 1
|
||
|
if paren_count == 0: # if it's the last ')' of a tuple
|
||
|
meaning_term = parts[1][
|
||
|
tuple_start:tuple_comma
|
||
|
] # '\\x.(<word> x)'
|
||
|
glue_term = parts[1][tuple_comma + 1 : i] # '(v-r)'
|
||
|
glue_formulas.append(
|
||
|
[meaning_term, glue_term]
|
||
|
) # add the GlueFormula to the list
|
||
|
elif c == ',':
|
||
|
if (
|
||
|
paren_count == 1
|
||
|
): # if it's a comma separating the parts of the tuple
|
||
|
tuple_comma = i # then save the index
|
||
|
elif c == '#': # skip comments at the ends of lines
|
||
|
if (
|
||
|
paren_count != 0
|
||
|
): # if the line hasn't parsed correctly so far
|
||
|
raise RuntimeError(
|
||
|
'Formula syntax is incorrect for entry ' + line
|
||
|
)
|
||
|
break # break to the next line
|
||
|
|
||
|
if len(parts) > 2: # if there is a relationship entry at the end
|
||
|
rel_start = parts[2].index('[') + 1
|
||
|
rel_end = parts[2].index(']')
|
||
|
if rel_start == rel_end:
|
||
|
relationships = frozenset()
|
||
|
else:
|
||
|
relationships = frozenset(
|
||
|
r.strip() for r in parts[2][rel_start:rel_end].split(',')
|
||
|
)
|
||
|
|
||
|
try:
|
||
|
start_inheritance = parts[0].index('(')
|
||
|
end_inheritance = parts[0].index(')')
|
||
|
sem = parts[0][:start_inheritance].strip()
|
||
|
supertype = parts[0][start_inheritance + 1 : end_inheritance]
|
||
|
except:
|
||
|
sem = parts[0].strip()
|
||
|
supertype = None
|
||
|
|
||
|
if sem not in self:
|
||
|
self[sem] = {}
|
||
|
|
||
|
if (
|
||
|
relationships is None
|
||
|
): # if not specified for a specific relationship set
|
||
|
# add all relationship entries for parents
|
||
|
if supertype:
|
||
|
for rels in self[supertype]:
|
||
|
if rels not in self[sem]:
|
||
|
self[sem][rels] = []
|
||
|
glue = self[supertype][rels]
|
||
|
self[sem][rels].extend(glue)
|
||
|
self[sem][rels].extend(
|
||
|
glue_formulas
|
||
|
) # add the glue formulas to every rel entry
|
||
|
else:
|
||
|
if None not in self[sem]:
|
||
|
self[sem][None] = []
|
||
|
self[sem][None].extend(
|
||
|
glue_formulas
|
||
|
) # add the glue formulas to every rel entry
|
||
|
else:
|
||
|
if relationships not in self[sem]:
|
||
|
self[sem][relationships] = []
|
||
|
if supertype:
|
||
|
self[sem][relationships].extend(self[supertype][relationships])
|
||
|
self[sem][relationships].extend(
|
||
|
glue_formulas
|
||
|
) # add the glue entry to the dictionary
|
||
|
|
||
|
def __str__(self):
|
||
|
accum = ''
|
||
|
for pos in self:
|
||
|
str_pos = "%s" % pos
|
||
|
for relset in self[pos]:
|
||
|
i = 1
|
||
|
for gf in self[pos][relset]:
|
||
|
if i == 1:
|
||
|
accum += str_pos + ': '
|
||
|
else:
|
||
|
accum += ' ' * (len(str_pos) + 2)
|
||
|
accum += "%s" % gf
|
||
|
if relset and i == len(self[pos][relset]):
|
||
|
accum += ' : %s' % relset
|
||
|
accum += '\n'
|
||
|
i += 1
|
||
|
return accum
|
||
|
|
||
|
def to_glueformula_list(self, depgraph, node=None, counter=None, verbose=False):
|
||
|
if node is None:
|
||
|
# TODO: should it be depgraph.root? Is this code tested?
|
||
|
top = depgraph.nodes[0]
|
||
|
depList = list(chain(*top['deps'].values()))
|
||
|
root = depgraph.nodes[depList[0]]
|
||
|
|
||
|
return self.to_glueformula_list(depgraph, root, Counter(), verbose)
|
||
|
|
||
|
glueformulas = self.lookup(node, depgraph, counter)
|
||
|
for dep_idx in chain(*node['deps'].values()):
|
||
|
dep = depgraph.nodes[dep_idx]
|
||
|
glueformulas.extend(
|
||
|
self.to_glueformula_list(depgraph, dep, counter, verbose)
|
||
|
)
|
||
|
return glueformulas
|
||
|
|
||
|
def lookup(self, node, depgraph, counter):
|
||
|
semtype_names = self.get_semtypes(node)
|
||
|
|
||
|
semtype = None
|
||
|
for name in semtype_names:
|
||
|
if name in self:
|
||
|
semtype = self[name]
|
||
|
break
|
||
|
if semtype is None:
|
||
|
# raise KeyError, "There is no GlueDict entry for sem type '%s' (for '%s')" % (sem, word)
|
||
|
return []
|
||
|
|
||
|
self.add_missing_dependencies(node, depgraph)
|
||
|
|
||
|
lookup = self._lookup_semtype_option(semtype, node, depgraph)
|
||
|
|
||
|
if not len(lookup):
|
||
|
raise KeyError(
|
||
|
"There is no GlueDict entry for sem type of '%s' "
|
||
|
"with tag '%s', and rel '%s'" % (node['word'], node['tag'], node['rel'])
|
||
|
)
|
||
|
|
||
|
return self.get_glueformulas_from_semtype_entry(
|
||
|
lookup, node['word'], node, depgraph, counter
|
||
|
)
|
||
|
|
||
|
def add_missing_dependencies(self, node, depgraph):
|
||
|
rel = node['rel'].lower()
|
||
|
|
||
|
if rel == 'main':
|
||
|
headnode = depgraph.nodes[node['head']]
|
||
|
subj = self.lookup_unique('subj', headnode, depgraph)
|
||
|
relation = subj['rel']
|
||
|
node['deps'].setdefault(relation, [])
|
||
|
node['deps'][relation].append(subj['address'])
|
||
|
# node['deps'].append(subj['address'])
|
||
|
|
||
|
def _lookup_semtype_option(self, semtype, node, depgraph):
|
||
|
relationships = frozenset(
|
||
|
depgraph.nodes[dep]['rel'].lower()
|
||
|
for dep in chain(*node['deps'].values())
|
||
|
if depgraph.nodes[dep]['rel'].lower() not in OPTIONAL_RELATIONSHIPS
|
||
|
)
|
||
|
|
||
|
try:
|
||
|
lookup = semtype[relationships]
|
||
|
except KeyError:
|
||
|
# An exact match is not found, so find the best match where
|
||
|
# 'best' is defined as the glue entry whose relationship set has the
|
||
|
# most relations of any possible relationship set that is a subset
|
||
|
# of the actual depgraph
|
||
|
best_match = frozenset()
|
||
|
for relset_option in set(semtype) - set([None]):
|
||
|
if (
|
||
|
len(relset_option) > len(best_match)
|
||
|
and relset_option < relationships
|
||
|
):
|
||
|
best_match = relset_option
|
||
|
if not best_match:
|
||
|
if None in semtype:
|
||
|
best_match = None
|
||
|
else:
|
||
|
return None
|
||
|
lookup = semtype[best_match]
|
||
|
|
||
|
return lookup
|
||
|
|
||
|
def get_semtypes(self, node):
|
||
|
"""
|
||
|
Based on the node, return a list of plausible semtypes in order of
|
||
|
plausibility.
|
||
|
"""
|
||
|
rel = node['rel'].lower()
|
||
|
word = node['word'].lower()
|
||
|
|
||
|
if rel == 'spec':
|
||
|
if word in SPEC_SEMTYPES:
|
||
|
return [SPEC_SEMTYPES[word]]
|
||
|
else:
|
||
|
return [SPEC_SEMTYPES['default']]
|
||
|
elif rel in ['nmod', 'vmod']:
|
||
|
return [node['tag'], rel]
|
||
|
else:
|
||
|
return [node['tag']]
|
||
|
|
||
|
def get_glueformulas_from_semtype_entry(
|
||
|
self, lookup, word, node, depgraph, counter
|
||
|
):
|
||
|
glueformulas = []
|
||
|
|
||
|
glueFormulaFactory = self.get_GlueFormula_factory()
|
||
|
for meaning, glue in lookup:
|
||
|
gf = glueFormulaFactory(self.get_meaning_formula(meaning, word), glue)
|
||
|
if not len(glueformulas):
|
||
|
gf.word = word
|
||
|
else:
|
||
|
gf.word = '%s%s' % (word, len(glueformulas) + 1)
|
||
|
|
||
|
gf.glue = self.initialize_labels(gf.glue, node, depgraph, counter.get())
|
||
|
|
||
|
glueformulas.append(gf)
|
||
|
return glueformulas
|
||
|
|
||
|
def get_meaning_formula(self, generic, word):
|
||
|
"""
|
||
|
:param generic: A meaning formula string containing the
|
||
|
parameter "<word>"
|
||
|
:param word: The actual word to be replace "<word>"
|
||
|
"""
|
||
|
word = word.replace('.', '')
|
||
|
return generic.replace('<word>', word)
|
||
|
|
||
|
def initialize_labels(self, expr, node, depgraph, unique_index):
|
||
|
if isinstance(expr, linearlogic.AtomicExpression):
|
||
|
name = self.find_label_name(expr.name.lower(), node, depgraph, unique_index)
|
||
|
if name[0].isupper():
|
||
|
return linearlogic.VariableExpression(name)
|
||
|
else:
|
||
|
return linearlogic.ConstantExpression(name)
|
||
|
else:
|
||
|
return linearlogic.ImpExpression(
|
||
|
self.initialize_labels(expr.antecedent, node, depgraph, unique_index),
|
||
|
self.initialize_labels(expr.consequent, node, depgraph, unique_index),
|
||
|
)
|
||
|
|
||
|
def find_label_name(self, name, node, depgraph, unique_index):
|
||
|
try:
|
||
|
dot = name.index('.')
|
||
|
|
||
|
before_dot = name[:dot]
|
||
|
after_dot = name[dot + 1 :]
|
||
|
if before_dot == 'super':
|
||
|
return self.find_label_name(
|
||
|
after_dot, depgraph.nodes[node['head']], depgraph, unique_index
|
||
|
)
|
||
|
else:
|
||
|
return self.find_label_name(
|
||
|
after_dot,
|
||
|
self.lookup_unique(before_dot, node, depgraph),
|
||
|
depgraph,
|
||
|
unique_index,
|
||
|
)
|
||
|
except ValueError:
|
||
|
lbl = self.get_label(node)
|
||
|
if name == 'f':
|
||
|
return lbl
|
||
|
elif name == 'v':
|
||
|
return '%sv' % lbl
|
||
|
elif name == 'r':
|
||
|
return '%sr' % lbl
|
||
|
elif name == 'super':
|
||
|
return self.get_label(depgraph.nodes[node['head']])
|
||
|
elif name == 'var':
|
||
|
return '%s%s' % (lbl.upper(), unique_index)
|
||
|
elif name == 'a':
|
||
|
return self.get_label(self.lookup_unique('conja', node, depgraph))
|
||
|
elif name == 'b':
|
||
|
return self.get_label(self.lookup_unique('conjb', node, depgraph))
|
||
|
else:
|
||
|
return self.get_label(self.lookup_unique(name, node, depgraph))
|
||
|
|
||
|
def get_label(self, node):
|
||
|
"""
|
||
|
Pick an alphabetic character as identifier for an entity in the model.
|
||
|
|
||
|
:param value: where to index into the list of characters
|
||
|
:type value: int
|
||
|
"""
|
||
|
value = node['address']
|
||
|
|
||
|
letter = [
|
||
|
'f',
|
||
|
'g',
|
||
|
'h',
|
||
|
'i',
|
||
|
'j',
|
||
|
'k',
|
||
|
'l',
|
||
|
'm',
|
||
|
'n',
|
||
|
'o',
|
||
|
'p',
|
||
|
'q',
|
||
|
'r',
|
||
|
's',
|
||
|
't',
|
||
|
'u',
|
||
|
'v',
|
||
|
'w',
|
||
|
'x',
|
||
|
'y',
|
||
|
'z',
|
||
|
'a',
|
||
|
'b',
|
||
|
'c',
|
||
|
'd',
|
||
|
'e',
|
||
|
][value - 1]
|
||
|
num = int(value) // 26
|
||
|
if num > 0:
|
||
|
return letter + str(num)
|
||
|
else:
|
||
|
return letter
|
||
|
|
||
|
def lookup_unique(self, rel, node, depgraph):
|
||
|
"""
|
||
|
Lookup 'key'. There should be exactly one item in the associated relation.
|
||
|
"""
|
||
|
deps = [
|
||
|
depgraph.nodes[dep]
|
||
|
for dep in chain(*node['deps'].values())
|
||
|
if depgraph.nodes[dep]['rel'].lower() == rel.lower()
|
||
|
]
|
||
|
|
||
|
if len(deps) == 0:
|
||
|
raise KeyError("'%s' doesn't contain a feature '%s'" % (node['word'], rel))
|
||
|
elif len(deps) > 1:
|
||
|
raise KeyError(
|
||
|
"'%s' should only have one feature '%s'" % (node['word'], rel)
|
||
|
)
|
||
|
else:
|
||
|
return deps[0]
|
||
|
|
||
|
def get_GlueFormula_factory(self):
|
||
|
return GlueFormula
|
||
|
|
||
|
|
||
|
class Glue(object):
|
||
|
def __init__(
|
||
|
self, semtype_file=None, remove_duplicates=False, depparser=None, verbose=False
|
||
|
):
|
||
|
self.verbose = verbose
|
||
|
self.remove_duplicates = remove_duplicates
|
||
|
self.depparser = depparser
|
||
|
|
||
|
from nltk import Prover9
|
||
|
|
||
|
self.prover = Prover9()
|
||
|
|
||
|
if semtype_file:
|
||
|
self.semtype_file = semtype_file
|
||
|
else:
|
||
|
self.semtype_file = os.path.join(
|
||
|
'grammars', 'sample_grammars', 'glue.semtype'
|
||
|
)
|
||
|
|
||
|
def train_depparser(self, depgraphs=None):
|
||
|
if depgraphs:
|
||
|
self.depparser.train(depgraphs)
|
||
|
else:
|
||
|
self.depparser.train_from_file(
|
||
|
nltk.data.find(
|
||
|
os.path.join('grammars', 'sample_grammars', 'glue_train.conll')
|
||
|
)
|
||
|
)
|
||
|
|
||
|
def parse_to_meaning(self, sentence):
|
||
|
readings = []
|
||
|
for agenda in self.parse_to_compiled(sentence):
|
||
|
readings.extend(self.get_readings(agenda))
|
||
|
return readings
|
||
|
|
||
|
def get_readings(self, agenda):
|
||
|
readings = []
|
||
|
agenda_length = len(agenda)
|
||
|
atomics = dict()
|
||
|
nonatomics = dict()
|
||
|
while agenda: # is not empty
|
||
|
cur = agenda.pop()
|
||
|
glue_simp = cur.glue.simplify()
|
||
|
if isinstance(
|
||
|
glue_simp, linearlogic.ImpExpression
|
||
|
): # if cur.glue is non-atomic
|
||
|
for key in atomics:
|
||
|
try:
|
||
|
if isinstance(cur.glue, linearlogic.ApplicationExpression):
|
||
|
bindings = cur.glue.bindings
|
||
|
else:
|
||
|
bindings = linearlogic.BindingDict()
|
||
|
glue_simp.antecedent.unify(key, bindings)
|
||
|
for atomic in atomics[key]:
|
||
|
if not (
|
||
|
cur.indices & atomic.indices
|
||
|
): # if the sets of indices are disjoint
|
||
|
try:
|
||
|
agenda.append(cur.applyto(atomic))
|
||
|
except linearlogic.LinearLogicApplicationException:
|
||
|
pass
|
||
|
except linearlogic.UnificationException:
|
||
|
pass
|
||
|
try:
|
||
|
nonatomics[glue_simp.antecedent].append(cur)
|
||
|
except KeyError:
|
||
|
nonatomics[glue_simp.antecedent] = [cur]
|
||
|
|
||
|
else: # else cur.glue is atomic
|
||
|
for key in nonatomics:
|
||
|
for nonatomic in nonatomics[key]:
|
||
|
try:
|
||
|
if isinstance(
|
||
|
nonatomic.glue, linearlogic.ApplicationExpression
|
||
|
):
|
||
|
bindings = nonatomic.glue.bindings
|
||
|
else:
|
||
|
bindings = linearlogic.BindingDict()
|
||
|
glue_simp.unify(key, bindings)
|
||
|
if not (
|
||
|
cur.indices & nonatomic.indices
|
||
|
): # if the sets of indices are disjoint
|
||
|
try:
|
||
|
agenda.append(nonatomic.applyto(cur))
|
||
|
except linearlogic.LinearLogicApplicationException:
|
||
|
pass
|
||
|
except linearlogic.UnificationException:
|
||
|
pass
|
||
|
try:
|
||
|
atomics[glue_simp].append(cur)
|
||
|
except KeyError:
|
||
|
atomics[glue_simp] = [cur]
|
||
|
|
||
|
for entry in atomics:
|
||
|
for gf in atomics[entry]:
|
||
|
if len(gf.indices) == agenda_length:
|
||
|
self._add_to_reading_list(gf, readings)
|
||
|
for entry in nonatomics:
|
||
|
for gf in nonatomics[entry]:
|
||
|
if len(gf.indices) == agenda_length:
|
||
|
self._add_to_reading_list(gf, readings)
|
||
|
return readings
|
||
|
|
||
|
def _add_to_reading_list(self, glueformula, reading_list):
|
||
|
add_reading = True
|
||
|
if self.remove_duplicates:
|
||
|
for reading in reading_list:
|
||
|
try:
|
||
|
if reading.equiv(glueformula.meaning, self.prover):
|
||
|
add_reading = False
|
||
|
break
|
||
|
except Exception as e:
|
||
|
# if there is an exception, the syntax of the formula
|
||
|
# may not be understandable by the prover, so don't
|
||
|
# throw out the reading.
|
||
|
print('Error when checking logical equality of statements', e)
|
||
|
|
||
|
if add_reading:
|
||
|
reading_list.append(glueformula.meaning)
|
||
|
|
||
|
def parse_to_compiled(self, sentence):
|
||
|
gfls = [self.depgraph_to_glue(dg) for dg in self.dep_parse(sentence)]
|
||
|
return [self.gfl_to_compiled(gfl) for gfl in gfls]
|
||
|
|
||
|
def dep_parse(self, sentence):
|
||
|
"""
|
||
|
Return a dependency graph for the sentence.
|
||
|
|
||
|
:param sentence: the sentence to be parsed
|
||
|
:type sentence: list(str)
|
||
|
:rtype: DependencyGraph
|
||
|
"""
|
||
|
|
||
|
# Lazy-initialize the depparser
|
||
|
if self.depparser is None:
|
||
|
from nltk.parse import MaltParser
|
||
|
|
||
|
self.depparser = MaltParser(tagger=self.get_pos_tagger())
|
||
|
if not self.depparser._trained:
|
||
|
self.train_depparser()
|
||
|
return self.depparser.parse(sentence, verbose=self.verbose)
|
||
|
|
||
|
def depgraph_to_glue(self, depgraph):
|
||
|
return self.get_glue_dict().to_glueformula_list(depgraph)
|
||
|
|
||
|
def get_glue_dict(self):
|
||
|
return GlueDict(self.semtype_file)
|
||
|
|
||
|
def gfl_to_compiled(self, gfl):
|
||
|
index_counter = Counter()
|
||
|
return_list = []
|
||
|
for gf in gfl:
|
||
|
return_list.extend(gf.compile(index_counter))
|
||
|
|
||
|
if self.verbose:
|
||
|
print('Compiled Glue Premises:')
|
||
|
for cgf in return_list:
|
||
|
print(cgf)
|
||
|
|
||
|
return return_list
|
||
|
|
||
|
def get_pos_tagger(self):
|
||
|
from nltk.corpus import brown
|
||
|
|
||
|
regexp_tagger = RegexpTagger(
|
||
|
[
|
||
|
(r'^-?[0-9]+(.[0-9]+)?$', 'CD'), # cardinal numbers
|
||
|
(r'(The|the|A|a|An|an)$', 'AT'), # articles
|
||
|
(r'.*able$', 'JJ'), # adjectives
|
||
|
(r'.*ness$', 'NN'), # nouns formed from adjectives
|
||
|
(r'.*ly$', 'RB'), # adverbs
|
||
|
(r'.*s$', 'NNS'), # plural nouns
|
||
|
(r'.*ing$', 'VBG'), # gerunds
|
||
|
(r'.*ed$', 'VBD'), # past tense verbs
|
||
|
(r'.*', 'NN'), # nouns (default)
|
||
|
]
|
||
|
)
|
||
|
brown_train = brown.tagged_sents(categories='news')
|
||
|
unigram_tagger = UnigramTagger(brown_train, backoff=regexp_tagger)
|
||
|
bigram_tagger = BigramTagger(brown_train, backoff=unigram_tagger)
|
||
|
trigram_tagger = TrigramTagger(brown_train, backoff=bigram_tagger)
|
||
|
|
||
|
# Override particular words
|
||
|
main_tagger = RegexpTagger(
|
||
|
[(r'(A|a|An|an)$', 'ex_quant'), (r'(Every|every|All|all)$', 'univ_quant')],
|
||
|
backoff=trigram_tagger,
|
||
|
)
|
||
|
|
||
|
return main_tagger
|
||
|
|
||
|
|
||
|
class DrtGlueFormula(GlueFormula):
|
||
|
def __init__(self, meaning, glue, indices=None):
|
||
|
if not indices:
|
||
|
indices = set()
|
||
|
|
||
|
if isinstance(meaning, string_types):
|
||
|
self.meaning = drt.DrtExpression.fromstring(meaning)
|
||
|
elif isinstance(meaning, drt.DrtExpression):
|
||
|
self.meaning = meaning
|
||
|
else:
|
||
|
raise RuntimeError(
|
||
|
'Meaning term neither string or expression: %s, %s'
|
||
|
% (meaning, meaning.__class__)
|
||
|
)
|
||
|
|
||
|
if isinstance(glue, string_types):
|
||
|
self.glue = linearlogic.LinearLogicParser().parse(glue)
|
||
|
elif isinstance(glue, linearlogic.Expression):
|
||
|
self.glue = glue
|
||
|
else:
|
||
|
raise RuntimeError(
|
||
|
'Glue term neither string or expression: %s, %s'
|
||
|
% (glue, glue.__class__)
|
||
|
)
|
||
|
|
||
|
self.indices = indices
|
||
|
|
||
|
def make_VariableExpression(self, name):
|
||
|
return drt.DrtVariableExpression(name)
|
||
|
|
||
|
def make_LambdaExpression(self, variable, term):
|
||
|
return drt.DrtLambdaExpression(variable, term)
|
||
|
|
||
|
|
||
|
class DrtGlueDict(GlueDict):
|
||
|
def get_GlueFormula_factory(self):
|
||
|
return DrtGlueFormula
|
||
|
|
||
|
|
||
|
class DrtGlue(Glue):
|
||
|
def __init__(
|
||
|
self, semtype_file=None, remove_duplicates=False, depparser=None, verbose=False
|
||
|
):
|
||
|
if not semtype_file:
|
||
|
semtype_file = os.path.join(
|
||
|
'grammars', 'sample_grammars', 'drt_glue.semtype'
|
||
|
)
|
||
|
Glue.__init__(self, semtype_file, remove_duplicates, depparser, verbose)
|
||
|
|
||
|
def get_glue_dict(self):
|
||
|
return DrtGlueDict(self.semtype_file)
|
||
|
|
||
|
|
||
|
def demo(show_example=-1):
|
||
|
from nltk.parse import MaltParser
|
||
|
|
||
|
examples = [
|
||
|
'David sees Mary',
|
||
|
'David eats a sandwich',
|
||
|
'every man chases a dog',
|
||
|
'every man believes a dog sleeps',
|
||
|
'John gives David a sandwich',
|
||
|
'John chases himself',
|
||
|
]
|
||
|
# 'John persuades David to order a pizza',
|
||
|
# 'John tries to go',
|
||
|
# 'John tries to find a unicorn',
|
||
|
# 'John seems to vanish',
|
||
|
# 'a unicorn seems to approach',
|
||
|
# 'every big cat leaves',
|
||
|
# 'every gray cat leaves',
|
||
|
# 'every big gray cat leaves',
|
||
|
# 'a former senator leaves',
|
||
|
|
||
|
print('============== DEMO ==============')
|
||
|
|
||
|
tagger = RegexpTagger(
|
||
|
[
|
||
|
('^(David|Mary|John)$', 'NNP'),
|
||
|
(
|
||
|
'^(sees|eats|chases|believes|gives|sleeps|chases|persuades|tries|seems|leaves)$',
|
||
|
'VB',
|
||
|
),
|
||
|
('^(go|order|vanish|find|approach)$', 'VB'),
|
||
|
('^(a)$', 'ex_quant'),
|
||
|
('^(every)$', 'univ_quant'),
|
||
|
('^(sandwich|man|dog|pizza|unicorn|cat|senator)$', 'NN'),
|
||
|
('^(big|gray|former)$', 'JJ'),
|
||
|
('^(him|himself)$', 'PRP'),
|
||
|
]
|
||
|
)
|
||
|
|
||
|
depparser = MaltParser(tagger=tagger)
|
||
|
glue = Glue(depparser=depparser, verbose=False)
|
||
|
|
||
|
for (i, sentence) in enumerate(examples):
|
||
|
if i == show_example or show_example == -1:
|
||
|
print('[[[Example %s]]] %s' % (i, sentence))
|
||
|
for reading in glue.parse_to_meaning(sentence.split()):
|
||
|
print(reading.simplify())
|
||
|
print('')
|
||
|
|
||
|
|
||
|
if __name__ == '__main__':
|
||
|
demo()
|