You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1852 lines
71 KiB
Python

5 years ago
#### PATTERN | EN | PARSE TREE #####################################################################
# Copyright (c) 2010 University of Antwerp, Belgium
# Author: Tom De Smedt <tom@organisms.be>
# License: BSD (see LICENSE.txt for details).
# http://www.clips.ua.ac.be/pages/pattern
####################################################################################################
# Text and Sentence objects to traverse words and chunks in parsed text.
# from pattern.en import parsetree
# for sentence in parsetree("The cat sat on the mat."):
# for chunk in sentence.chunks:
# for word in chunk.words:
# print(word.string, word.tag, word.lemma)
# Terminology:
# - part-of-speech: the role that a word plays in a sentence: noun (NN), verb (VB), adjective, ...
# - sentence: a unit of language, with a subject (e.g., "the cat") and a predicate ("jumped").
# - token: a word in a sentence with a part-of-speech tag (e.g., "jump/VB" or "jump/NN").
# - word: a string of characters that expresses a meaningful concept (e.g., "cat").
# - lemma: the canonical word form ("jumped" => "jump").
# - lexeme: the set of word forms ("jump", "jumps", "jumping", ...)
# - chunk: a phrase, group of words that express a single thought (e.g., "the cat").
# - subject: the phrase that the sentence is about, usually a noun phrase.
# - predicate: the remainder of the sentence tells us what the subject does (jump).
# - object: the phrase that is affected by the action (the cat jumped [the mouse]").
# - preposition: temporal, spatial or logical relationship ("the cat jumped [on the table]").
# - anchor: the chunk to which the preposition is attached:
# "the cat eats its snackerel with vigor" => eat with vigor?
# OR => vigorous snackerel?
# The Text and Sentece classes are containers:
# no parsing functionality should be added to it.
from __future__ import unicode_literals
from __future__ import division
from builtins import str, bytes, dict, int
from builtins import map, zip, filter
from builtins import object, range
from io import open
from itertools import chain
try:
from config import SLASH
from config import WORD, POS, CHUNK, PNP, REL, ANCHOR, LEMMA
MBSP = True # Memory-Based Shallow Parser for Python.
except:
SLASH, WORD, POS, CHUNK, PNP, REL, ANCHOR, LEMMA = \
"&slash;", "word", "part-of-speech", "chunk", "preposition", "relation", "anchor", "lemma"
MBSP = False
# B- marks the start of a chunk: the/DT/B-NP cat/NN/I-NP
# I- words are inside a chunk.
# O- words are outside a chunk (punctuation etc.).
IOB, BEGIN, INSIDE, OUTSIDE = "IOB", "B", "I", "O"
# -SBJ marks subjects: the/DT/B-NP-SBJ cat/NN/I-NP-SBJ
# -OBJ marks objects.
ROLE = "role"
SLASH0 = SLASH[0]
### LIST FUNCTIONS #################################################################################
def find(function, iterable):
""" Returns the first item in the list for which function(item) is True, None otherwise.
"""
for x in iterable:
if function(x):
return x
def intersects(iterable1, iterable2):
""" Returns True if the given lists have at least one item in common.
"""
return find(lambda x: x in iterable1, iterable2) is not None
def unique(iterable):
""" Returns a list copy in which each item occurs only once (in-order).
"""
seen = set()
return [x for x in iterable if x not in seen and not seen.add(x)]
_zip = zip
def zip(*args, **kwargs):
""" Returns a list of tuples, where the i-th tuple contains the i-th element
from each of the argument sequences or iterables (or default if too short).
"""
args = [list(iterable) for iterable in args]
n = max(map(len, args))
v = kwargs.get("default", None)
return list(_zip(*[i + [v] * (n - len(i)) for i in args]))
def unzip(i, iterable):
""" Returns the item at the given index from inside each tuple in the list.
"""
return [x[i] for x in iterable]
class Map(list):
""" A stored imap() on a list.
The list is referenced instead of copied, and the items are mapped on-the-fly.
"""
def __init__(self, function=lambda x: x, items=[]):
self._f = function
self._a = items
@property
def items(self):
return self._a
def __repr__(self):
return repr(list(iter(self)))
def __getitem__(self, i):
return self._f(self._a[i])
def __len__(self):
return len(self._a)
def __iter__(self):
i = 0
while i < len(self._a):
yield self._f(self._a[i])
i += 1
### SENTENCE #######################################################################################
# The output of parse() is a slash-formatted string (e.g., "the/DT cat/NN"),
# so slashes in words themselves are encoded as &slash;
encode_entities = lambda string: string.replace("/", SLASH)
decode_entities = lambda string: string.replace(SLASH, "/")
#--- WORD ------------------------------------------------------------------------------------------
class Word(object):
def __init__(self, sentence, string, lemma=None, type=None, index=0):
""" A word in the sentence.
- lemma: base form of the word; "was" => "be".
- type: the part-of-speech tag; "NN" => a noun.
- chunk: the chunk (or phrase) this word belongs to.
- index: the index in the sentence.
"""
if not isinstance(string, str):
try:
string = string.decode("utf-8") # ensure Unicode
except:
pass
self.sentence = sentence
self.index = index
self.string = string # "was"
self.lemma = lemma # "be"
self.type = type # VB
self.chunk = None # Chunk object this word belongs to (i.e., a VP).
self.pnp = None # PNP chunk object this word belongs to.
# word.chunk and word.pnp are set in chunk.append().
self._custom_tags = None # Tags object, created on request.
def copy(self, chunk=None, pnp=None):
w = Word(
self.sentence,
self.string,
self.lemma,
self.type,
self.index
)
w.chunk = chunk
w.pnp = pnp
if self._custom_tags:
w._custom_tags = Tags(w, items=self._custom_tags)
return w
def _get_tag(self):
return self.type
def _set_tag(self, v):
self.type = v
tag = pos = part_of_speech = property(_get_tag, _set_tag)
@property
def phrase(self):
return self.chunk
@property
def prepositional_phrase(self):
return self.pnp
prepositional_noun_phrase = prepositional_phrase
@property
def tags(self):
""" Yields a list of all the token tags as they appeared when the word was parsed.
For example: ["was", "VBD", "B-VP", "O", "VP-1", "A1", "be"]
"""
# See also. Sentence.__repr__().
ch, I, O, B = self.chunk, INSIDE + "-", OUTSIDE, BEGIN + "-"
tags = [OUTSIDE for i in range(len(self.sentence.token))]
for i, tag in enumerate(self.sentence.token): # Default: [WORD, POS, CHUNK, PNP, RELATION, ANCHOR, LEMMA]
if tag == WORD:
tags[i] = encode_entities(self.string)
elif tag == POS or tag == "pos" and self.type:
tags[i] = self.type
elif tag == CHUNK and ch and ch.type:
tags[i] = (self == ch[0] and B or I) + ch.type
elif tag == PNP and self.pnp:
tags[i] = (self == self.pnp[0] and B or I) + "PNP"
elif tag == REL and ch and len(ch.relations) > 0:
tags[i] = ["-".join([str(x) for x in [ch.type] + list(reversed(r)) if x]) for r in ch.relations]
tags[i] = "*".join(tags[i])
elif tag == ANCHOR and ch:
tags[i] = ch.anchor_id or OUTSIDE
elif tag == LEMMA:
tags[i] = encode_entities(self.lemma or "")
elif tag in self.custom_tags:
tags[i] = self.custom_tags.get(tag) or OUTSIDE
return tags
@property
def custom_tags(self):
if not self._custom_tags:
self._custom_tags = Tags(self)
return self._custom_tags
def next(self, type=None):
""" Returns the next word in the sentence with the given type.
"""
i = self.index + 1
s = self.sentence
while i < len(s):
if type in (s[i].type, None):
return s[i]
i += 1
def previous(self, type=None):
""" Returns the next previous word in the sentence with the given type.
"""
i = self.index - 1
s = self.sentence
while i > 0:
if type in (s[i].type, None):
return s[i]
i -= 1
# User-defined tags are available as Word.[tag] attributes.
def __getattr__(self, tag):
d = self.__dict__.get("_custom_tags", None)
if d and tag in d:
return d[tag]
raise AttributeError("Word instance has no attribute '%s'" % tag)
# Word.string and unicode(Word) are Unicode strings.
# repr(Word) is a Python string (with Unicode characters encoded).
def __str__(self):
return self.string
def __repr__(self):
return "Word(%s)" % repr("%s/%s" % (
encode_entities(self.string),
self.type is not None and self.type or OUTSIDE))
def __eq__(self, word):
return id(self) == id(word)
def __ne__(self, word):
return id(self) != id(word)
# This is required because we overwrite the parent's __eq__() method.
# Otherwise objects will be unhashable in Python 3.
# More information: http://docs.python.org/3.6/reference/datamodel.html#object.__hash__
__hash__ = object.__hash__
class Tags(dict):
def __init__(self, word, items=[]):
""" A dictionary of custom word tags.
A word may be annotated with its part-of-speech tag (e.g., "cat/NN"),
phrase tag (e.g., "cat/NN/NP"), the prepositional noun phrase it is part of etc.
An example of an extra custom slot is its semantic type,
e.g., gene type, topic, and so on: "cat/NN/NP/genus_felis"
"""
if items:
dict.__init__(self, items)
self.word = word
def __setitem__(self, k, v):
# Ensure that the custom tag is also in Word.sentence.token,
# so that it is not forgotten when exporting or importing XML.
dict.__setitem__(self, k, v)
if k not in reversed(self.word.sentence.token):
self.word.sentence.token.append(k)
def setdefault(self, k, v):
if k not in self:
self.__setitem__(k, v)
return self[k]
#--- CHUNK -----------------------------------------------------------------------------------------
class Chunk(object):
def __init__(self, sentence, words=[], type=None, role=None, relation=None):
""" A list of words that make up a phrase in the sentence.
- type: the phrase tag; "NP" => a noun phrase (e.g., "the black cat").
- role: the function of the phrase; "SBJ" => sentence subject.
- relation: an id shared with other phrases, linking subject to object in the sentence.
"""
# A chunk can have multiple roles or relations in the sentence,
# so role and relation can also be given as lists.
b1 = isinstance(relation, (list, tuple))
b2 = isinstance(role, (list, tuple))
if not b1 and not b2:
r = [(relation, role)]
elif b1 and b2:
r = list(zip(relation, role))
elif b1:
r = list(zip(relation, [role] * len(relation)))
elif b2:
r = list(zip([relation] * len(role), role))
r = [(a, b) for a, b in r if a is not None or b is not None]
self.sentence = sentence
self.words = []
self.type = type # NP, VP, ADJP ...
self.relations = r # NP-SBJ-1 => [(1, SBJ)]
self.pnp = None # PNP chunk object this chunk belongs to.
self.anchor = None # PNP chunk's anchor.
self.attachments = [] # PNP chunks attached to this anchor.
self._conjunctions = None # Conjunctions object, created on request.
self._modifiers = None
self.extend(words)
def extend(self, words):
for w in words:
self.append(w)
def append(self, word):
self.words.append(word)
word.chunk = self
def __getitem__(self, index):
return self.words[index]
def __len__(self):
return len(self.words)
def __iter__(self):
return self.words.__iter__()
def _get_tag(self):
return self.type
def _set_tag(self, v):
self.type = v
tag = pos = part_of_speech = property(_get_tag, _set_tag)
@property
def start(self):
return self.words[0].index
@property
def stop(self):
return self.words[-1].index + 1
@property
def range(self):
return range(self.start, self.stop)
@property
def span(self):
return (self.start, self.stop)
@property
def lemmata(self):
return [word.lemma for word in self.words]
@property
def tagged(self):
return [(word.string, word.type) for word in self.words]
@property
def head(self):
""" Yields the head of the chunk (usually, the last word in the chunk).
"""
if self.type == "NP" and any(w.type.startswith("NNP") for w in self):
w = find(lambda w: w.type.startswith("NNP"), reversed(self))
elif self.type == "NP": # "the cat" => "cat"
w = find(lambda w: w.type.startswith("NN"), reversed(self))
elif self.type == "VP": # "is watching" => "watching"
w = find(lambda w: w.type.startswith("VB"), reversed(self))
elif self.type == "PP": # "from up on" => "from"
w = find(lambda w: w.type.startswith(("IN", "PP")), self)
elif self.type == "PNP": # "from up on the roof" => "roof"
w = find(lambda w: w.type.startswith("NN"), reversed(self))
else:
w = None
if w is None:
w = self[-1]
return w
@property
def relation(self):
""" Yields the first relation id of the chunk.
"""
# [(2,OBJ), (3,OBJ)])] => 2
return len(self.relations) > 0 and self.relations[0][0] or None
@property
def role(self):
""" Yields the first role of the chunk (SBJ, OBJ, ...).
"""
# [(1,SBJ), (1,OBJ)])] => SBJ
return len(self.relations) > 0 and self.relations[0][1] or None
@property
def subject(self):
ch = self.sentence.relations["SBJ"].get(self.relation, None)
if ch != self:
return ch
@property
def object(self):
ch = self.sentence.relations["OBJ"].get(self.relation, None)
if ch != self:
return ch
@property
def verb(self):
ch = self.sentence.relations["VP"].get(self.relation, None)
if ch != self:
return ch
@property
def related(self):
""" Yields a list of all chunks in the sentence with the same relation id.
"""
return [ch for ch in self.sentence.chunks
if ch != self and intersects(unzip(0, ch.relations), unzip(0, self.relations))]
@property
def prepositional_phrase(self):
return self.pnp
prepositional_noun_phrase = prepositional_phrase
@property
def anchor_id(self):
""" Yields the anchor tag as parsed from the original token.
Chunks that are anchors have a tag with an "A" prefix (e.g., "A1").
Chunks that are PNP attachmens (or chunks inside a PNP) have "P" (e.g., "P1").
Chunks inside a PNP can be both anchor and attachment (e.g., "P1-A2"),
as in: "clawed/A1 at/P1 mice/P1-A2 in/P2 the/P2 wall/P2"
"""
id = ""
f = lambda ch: list(filter(lambda k: self.sentence._anchors[k] == ch, self.sentence._anchors))
if self.pnp and self.pnp.anchor:
id += "-" + "-".join(f(self.pnp))
if self.anchor:
id += "-" + "-".join(f(self))
if self.attachments:
id += "-" + "-".join(f(self))
return id.strip("-") or None
@property
def conjunctions(self):
if not self._conjunctions:
self._conjunctions = Conjunctions(self)
return self._conjunctions
@property
def modifiers(self):
""" For verb phrases (VP), yields a list of the nearest adjectives and adverbs.
"""
if self._modifiers is None:
# Iterate over all the chunks and attach modifiers to their VP-anchor.
is_modifier = lambda ch: ch.type in ("ADJP", "ADVP") and ch.relation is None
for chunk in self.sentence.chunks:
chunk._modifiers = []
for chunk in filter(is_modifier, self.sentence.chunks):
anchor = chunk.nearest("VP")
if anchor:
anchor._modifiers.append(chunk)
return self._modifiers
def nearest(self, type="VP"):
""" Returns the nearest chunk in the sentence with the given type.
This can be used (for example) to find adverbs and adjectives related to verbs,
as in: "the cat is ravenous" => is what? => "ravenous".
"""
candidate, d = None, len(self.sentence.chunks)
if isinstance(self, PNPChunk):
i = self.sentence.chunks.index(self.chunks[0])
else:
i = self.sentence.chunks.index(self)
for j, chunk in enumerate(self.sentence.chunks):
if chunk.type.startswith(type) and abs(i - j) < d:
candidate, d = chunk, abs(i - j)
return candidate
def next(self, type=None):
""" Returns the next chunk in the sentence with the given type.
"""
i = self.stop
s = self.sentence
while i < len(s):
if s[i].chunk is not None and type in (s[i].chunk.type, None):
return s[i].chunk
i += 1
def previous(self, type=None):
""" Returns the next previous chunk in the sentence with the given type.
"""
i = self.start - 1
s = self.sentence
while i > 0:
if s[i].chunk is not None and type in (s[i].chunk.type, None):
return s[i].chunk
i -= 1
# Chunk.string and unicode(Chunk) are Unicode strings.
# repr(Chunk) is a Python string (with Unicode characters encoded).
@property
def string(self):
return " ".join(word.string for word in self.words)
def __str__(self):
return self.string
def __repr__(self):
return "Chunk(%s)" % repr("%s/%s%s%s") % (
self.string,
self.type is not None and self.type or OUTSIDE,
self.role is not None and ("-" + self.role) or "",
self.relation is not None and ("-" + str(self.relation)) or "")
def __eq__(self, chunk):
return id(self) == id(chunk)
def __ne__(self, chunk):
return id(self) != id(chunk)
# This is required because we overwrite the parent's __eq__() method.
# Otherwise objects will be unhashable in Python 3.
# More information: http://docs.python.org/3.6/reference/datamodel.html#object.__hash__
__hash__ = object.__hash__
# Chinks are non-chunks,
# see also the chunked() function:
class Chink(Chunk):
def __repr__(self):
return Chunk.__repr__(self).replace("Chunk(", "Chink(", 1)
#--- PNP CHUNK -------------------------------------------------------------------------------------
class PNPChunk(Chunk):
def __init__(self, *args, **kwargs):
""" A chunk of chunks that make up a prepositional noun phrase (i.e., PP + NP).
When the output of the parser includes PP-attachment,
PNPChunck.anchor will yield the chunk that is clarified by the preposition.
For example: "the cat went [for the mouse] [with its claws]":
- [went] what? => for the mouse,
- [went] how? => with its claws.
"""
self.anchor = None # The anchor chunk (e.g., "for the mouse" => "went").
self.chunks = [] # List of chunks in the prepositional noun phrase.
Chunk.__init__(self, *args, **kwargs)
def append(self, word):
self.words.append(word)
word.pnp = self
if word.chunk is not None:
word.chunk.pnp = self
if word.chunk not in self.chunks:
self.chunks.append(word.chunk)
@property
def preposition(self):
""" Yields the first chunk in the prepositional noun phrase, usually a PP-chunk.
PP-chunks contain words such as "for", "with", "in", ...
"""
return self.chunks[0]
pp = preposition
@property
def phrases(self):
return self.chunks
def guess_anchor(self):
""" Returns an anchor chunk for this prepositional noun phrase (without a PP-attacher).
Often, the nearest verb phrase is a good candidate.
"""
return self.nearest("VP")
#--- CONJUNCTION -----------------------------------------------------------------------------------
CONJUNCT = AND = "AND"
DISJUNCT = OR = "OR"
class Conjunctions(list):
def __init__(self, chunk):
""" Chunk.conjunctions is a list of other chunks participating in a conjunction.
Each item in the list is a (chunk, conjunction)-tuple, with conjunction either AND or OR.
"""
self.anchor = chunk
def append(self, chunk, type=CONJUNCT):
list.append(self, (chunk, type))
#--- SENTENCE --------------------------------------------------------------------------------------
_UID = 0
def _uid():
global _UID
_UID += 1
return _UID
def _is_tokenstring(string):
# The class mbsp.TokenString stores the format of tags for each token.
# Since it comes directly from MBSP.parse(), this format is always correct,
# regardless of the given token format parameter for Sentence() or Text().
return isinstance(string, str) and hasattr(string, "tags")
class Sentence(object):
def __init__(self, string="", token=[WORD, POS, CHUNK, PNP, REL, ANCHOR, LEMMA], language="en"):
""" A nested tree of sentence words, chunks and prepositions.
The input is a tagged string from parse().
The order in which token tags appear can be specified.
"""
# Extract token format from TokenString or TaggedString if possible.
if _is_tokenstring(string):
token, language = string.tags, getattr(string, "language", language)
# Convert to Unicode.
if not isinstance(string, str):
for encoding in (("utf-8",), ("windows-1252",), ("utf-8", "ignore")):
try:
string = string.decode(*encoding)
except:
pass
self.parent = None # A Slice refers to the Sentence it is part of.
self.text = None # A Sentence refers to the Text it is part of.
self.language = language
self.id = _uid()
self.token = list(token)
self.words = []
self.chunks = [] # Words grouped into chunks.
self.pnp = [] # Words grouped into PNP chunks.
self._anchors = {} # Anchor tags related to anchor chunks or attached PNP's.
self._relation = None # Helper variable: the last chunk's relation and role.
self._attachment = None # Helper variable: the last attachment tag (e.g., "P1") parsed in _do_pnp().
self._previous = None # Helper variable: the last token parsed in parse_token().
self.relations = {"SBJ": {}, "OBJ": {}, "VP": {}}
# Split the slash-formatted token into the separate tags in the given order.
# Append Word and Chunk objects according to the token's tags.
for chars in string.split(" "):
if chars:
self.append(*self.parse_token(chars, token))
@property
def word(self):
return self.words
@property
def lemmata(self):
return Map(lambda w: w.lemma, self.words)
#return [word.lemma for word in self.words]
lemma = lemmata
@property
def parts_of_speech(self):
return Map(lambda w: w.type, self.words)
#return [word.type for word in self.words]
pos = parts_of_speech
@property
def tagged(self):
return [(word.string, word.type) for word in self]
@property
def phrases(self):
return self.chunks
chunk = phrases
@property
def prepositional_phrases(self):
return self.pnp
prepositional_noun_phrases = prepositional_phrases
@property
def start(self):
return 0
@property
def stop(self):
return self.start + len(self.words)
@property
def nouns(self):
return [word for word in self if word.type.startswith("NN")]
@property
def verbs(self):
return [word for word in self if word.type.startswith("VB")]
@property
def adjectives(self):
return [word for word in self if word.type.startswith("JJ")]
@property
def subjects(self):
return list(self.relations["SBJ"].values())
@property
def objects(self):
return list(self.relations["OBJ"].values())
@property
def verbs(self):
return list(self.relations["VP"].values())
@property
def anchors(self):
return [chunk for chunk in self.chunks if len(chunk.attachments) > 0]
@property
def is_question(self):
return len(self) > 0 and str(self[-1]) == "?"
@property
def is_exclamation(self):
return len(self) > 0 and str(self[-1]) == "!"
def __getitem__(self, index):
return self.words[index]
def __len__(self):
return len(self.words)
def __iter__(self):
return self.words.__iter__()
def append(self, word, lemma=None, type=None, chunk=None, role=None, relation=None, pnp=None, anchor=None, iob=None, custom={}):
""" Appends the next word to the sentence / chunk / preposition.
For example: Sentence.append("clawed", "claw", "VB", "VP", role=None, relation=1)
- word : the current word,
- lemma : the canonical form of the word,
- type : part-of-speech tag for the word (NN, JJ, ...),
- chunk : part-of-speech tag for the chunk this word is part of (NP, VP, ...),
- role : the chunk's grammatical role (SBJ, OBJ, ...),
- relation : an id shared by other related chunks (e.g., SBJ-1 <=> VP-1),
- pnp : PNP if this word is in a prepositional noun phrase (B- prefix optional),
- iob : BEGIN if the word marks the start of a new chunk,
INSIDE (optional) if the word is part of the previous chunk,
- custom : a dictionary of (tag, value)-items for user-defined word tags.
"""
self._do_word(word, lemma, type) # Append Word object.
self._do_chunk(chunk, role, relation, iob) # Append Chunk, or add last word to last chunk.
self._do_conjunction()
self._do_relation()
self._do_pnp(pnp, anchor)
self._do_anchor(anchor)
self._do_custom(custom)
def parse_token(self, token, tags=[WORD, POS, CHUNK, PNP, REL, ANCHOR, LEMMA]):
""" Returns the arguments for Sentence.append() from a tagged token representation.
The order in which token tags appear can be specified.
The default order is (separated by slashes):
- word,
- part-of-speech,
- (IOB-)chunk,
- (IOB-)preposition,
- chunk(-relation)(-role),
- anchor,
- lemma.
Examples:
The/DT/B-NP/O/NP-SBJ-1/O/the
cats/NNS/I-NP/O/NP-SBJ-1/O/cat
clawed/VBD/B-VP/O/VP-1/A1/claw
at/IN/B-PP/B-PNP/PP/P1/at
the/DT/B-NP/I-PNP/NP/P1/the
sofa/NN/I-NP/I-PNP/NP/P1/sofa
././O/O/O/O/.
Returns a (word, lemma, type, chunk, role, relation, preposition, anchor, iob, custom)-tuple,
which can be passed to Sentence.append(): Sentence.append(*Sentence.parse_token("cats/NNS/NP"))
The custom value is a dictionary of (tag, value)-items of unrecognized tags in the token.
"""
p = {WORD: "",
POS: None,
IOB: None,
CHUNK: None,
PNP: None,
REL: None,
ROLE: None,
ANCHOR: None,
LEMMA: None}
# Split the slash-formatted token into separate tags in the given order.
# Decode &slash; characters (usually in words and lemmata).
# Assume None for missing tags (except the word itself, which defaults to an empty string).
custom = {}
for k, v in zip(tags, token.split("/")):
if SLASH0 in v:
v = v.replace(SLASH, "/")
if k == "pos":
k = POS
if k not in p:
custom[k] = None
if v != OUTSIDE or k == WORD or k == LEMMA: # "type O negative" => "O" != OUTSIDE.
(p if k not in custom else custom)[k] = v
# Split IOB-prefix from the chunk tag:
# B- marks the start of a new chunk,
# I- marks inside of a chunk.
ch = p[CHUNK]
if ch is not None and ch.startswith(("B-", "I-")):
p[IOB], p[CHUNK] = ch[:1], ch[2:] # B-NP
# Split the role from the relation:
# NP-SBJ-1 => relation id is 1 and role is SBJ,
# VP-1 => relation id is 1 with no role.
# Tokens may be tagged with multiple relations (e.g., NP-OBJ-1*NP-OBJ-3).
if p[REL] is not None:
ch, p[REL], p[ROLE] = self._parse_relation(p[REL])
# Infer a missing chunk tag from the relation tag (e.g., NP-SBJ-1 => NP).
# For PP relation tags (e.g., PP-CLR-1), the first chunk is PP, the following chunks NP.
if ch == "PP" \
and self._previous \
and self._previous[REL] == p[REL] \
and self._previous[ROLE] == p[ROLE]:
ch = "NP"
if p[CHUNK] is None and ch != OUTSIDE:
p[CHUNK] = ch
self._previous = p
# Return the tags in the right order for Sentence.append().
return p[WORD], p[LEMMA], p[POS], p[CHUNK], p[ROLE], p[REL], p[PNP], p[ANCHOR], p[IOB], custom
def _parse_relation(self, tag):
""" Parses the chunk tag, role and relation id from the token relation tag.
- VP => VP, [], []
- VP-1 => VP, [1], [None]
- ADJP-PRD => ADJP, [None], [PRD]
- NP-SBJ-1 => NP, [1], [SBJ]
- NP-OBJ-1*NP-OBJ-2 => NP, [1,2], [OBJ,OBJ]
- NP-SBJ;NP-OBJ-1 => NP, [1,1], [SBJ,OBJ]
"""
chunk, relation, role = None, [], []
if ";" in tag:
# NP-SBJ;NP-OBJ-1 => 1 relates to both SBJ and OBJ.
id = tag.split("*")[0][-2:]
id = id if id.startswith("-") else ""
tag = tag.replace(";", id + "*")
if "*" in tag:
tag = tag.split("*")
else:
tag = [tag]
for s in tag:
s = s.split("-")
n = len(s)
if n == 1:
chunk = s[0]
if n == 2:
chunk = s[0]
relation.append(s[1])
role.append(None)
if n >= 3:
chunk = s[0]
relation.append(s[2])
role.append(s[1])
if n > 1:
id = relation[-1]
if id.isdigit():
relation[-1] = int(id)
else:
# Correct "ADJP-PRD":
# (ADJP, [PRD], [None]) => (ADJP, [None], [PRD])
relation[-1], role[-1] = None, id
return chunk, relation, role
def _do_word(self, word, lemma=None, type=None):
""" Adds a new Word to the sentence.
Other Sentence._do_[tag] functions assume a new word has just been appended.
"""
# Improve 3rd person singular "'s" lemma to "be", e.g., as in "he's fine".
if lemma == "'s" and type in ("VB", "VBZ"):
lemma = "be"
self.words.append(Word(self, word, lemma, type, index=len(self.words)))
def _do_chunk(self, type, role=None, relation=None, iob=None):
""" Adds a new Chunk to the sentence, or adds the last word to the previous chunk.
The word is attached to the previous chunk if both type and relation match,
and if the word's chunk tag does not start with "B-" (i.e., iob != BEGIN).
Punctuation marks (or other "O" chunk tags) are not chunked.
"""
if (type is None or type == OUTSIDE) and \
(role is None or role == OUTSIDE) and (relation is None or relation == OUTSIDE):
return
if iob != BEGIN \
and self.chunks \
and self.chunks[-1].type == type \
and self._relation == (relation, role) \
and self.words[-2].chunk is not None: # "one, two" => "one" & "two" different chunks.
self.chunks[-1].append(self.words[-1])
else:
ch = Chunk(self, [self.words[-1]], type, role, relation)
self.chunks.append(ch)
self._relation = (relation, role)
def _do_relation(self):
""" Attaches subjects, objects and verbs.
If the previous chunk is a subject/object/verb, it is stored in Sentence.relations{}.
"""
if self.chunks:
ch = self.chunks[-1]
for relation, role in ch.relations:
if role == "SBJ" or role == "OBJ":
self.relations[role][relation] = ch
if ch.type in ("VP",):
self.relations[ch.type][ch.relation] = ch
def _do_pnp(self, pnp, anchor=None):
""" Attaches prepositional noun phrases.
Identifies PNP's from either the PNP tag or the P-attachment tag.
This does not determine the PP-anchor, it only groups words in a PNP chunk.
"""
if anchor or pnp and pnp.endswith("PNP"):
if anchor is not None:
m = find(lambda x: x.startswith("P"), anchor)
else:
m = None
if self.pnp \
and pnp \
and pnp != OUTSIDE \
and pnp.startswith("B-") is False \
and self.words[-2].pnp is not None:
self.pnp[-1].append(self.words[-1])
elif m is not None and m == self._attachment:
self.pnp[-1].append(self.words[-1])
else:
ch = PNPChunk(self, [self.words[-1]], type="PNP")
self.pnp.append(ch)
self._attachment = m
def _do_anchor(self, anchor):
""" Collects preposition anchors and attachments in a dictionary.
Once the dictionary has an entry for both the anchor and the attachment, they are linked.
"""
if anchor:
for x in anchor.split("-"):
A, P = None, None
if x.startswith("A") and len(self.chunks) > 0: # anchor
A, P = x, x.replace("A", "P")
self._anchors[A] = self.chunks[-1]
if x.startswith("P") and len(self.pnp) > 0: # attachment (PNP)
A, P = x.replace("P", "A"), x
self._anchors[P] = self.pnp[-1]
if A in self._anchors and P in self._anchors and not self._anchors[P].anchor:
pnp = self._anchors[P]
pnp.anchor = self._anchors[A]
pnp.anchor.attachments.append(pnp)
def _do_custom(self, custom):
""" Adds the user-defined tags to the last word.
Custom tags can be used to add extra semantical meaning or metadata to words.
"""
if custom:
self.words[-1].custom_tags.update(custom)
def _do_conjunction(self, _and=("and", "e", "en", "et", "und", "y")):
""" Attach conjunctions.
CC-words like "and" and "or" between two chunks indicate a conjunction.
"""
w = self.words
if len(w) > 2 and w[-2].type == "CC" and w[-2].chunk is None:
cc = w[-2].string.lower() in _and and AND or OR
ch1 = w[-3].chunk
ch2 = w[-1].chunk
if ch1 is not None and \
ch2 is not None:
ch1.conjunctions.append(ch2, cc)
ch2.conjunctions.append(ch1, cc)
def get(self, index, tag=LEMMA):
""" Returns a tag for the word at the given index.
The tag can be WORD, LEMMA, POS, CHUNK, PNP, RELATION, ROLE, ANCHOR or a custom word tag.
"""
if tag == WORD:
return self.words[index]
if tag == LEMMA:
return self.words[index].lemma
if tag == POS or tag == "pos":
return self.words[index].type
if tag == CHUNK:
return self.words[index].chunk
if tag == PNP:
return self.words[index].pnp
if tag == REL:
ch = self.words[index].chunk
return ch and ch.relation
if tag == ROLE:
ch = self.words[index].chunk
return ch and ch.role
if tag == ANCHOR:
ch = self.words[index].pnp
return ch and ch.anchor
if tag in self.words[index].custom_tags:
return self.words[index].custom_tags[tag]
return None
def loop(self, *tags):
""" Iterates over the tags in the entire Sentence,
For example, Sentence.loop(POS, LEMMA) yields tuples of the part-of-speech tags and lemmata.
Possible tags: WORD, LEMMA, POS, CHUNK, PNP, RELATION, ROLE, ANCHOR or a custom word tag.
Any order or combination of tags can be supplied.
"""
for i in range(len(self.words)):
yield tuple([self.get(i, tag=tag) for tag in tags])
def indexof(self, value, tag=WORD):
""" Returns the indices of tokens in the sentence where the given token tag equals the string.
The string can contain a wildcard "*" at the end (this way "NN*" will match "NN" and "NNS").
The tag can be WORD, LEMMA, POS, CHUNK, PNP, RELATION, ROLE, ANCHOR or a custom word tag.
For example: Sentence.indexof("VP", tag=CHUNK)
returns the indices of all the words that are part of a VP chunk.
"""
match = lambda a, b: a.endswith("*") and b.startswith(a[:-1]) or a == b
indices = []
for i in range(len(self.words)):
if match(value, self.get(i, tag)):
indices.append(i)
return indices
def slice(self, start, stop):
""" Returns a portion of the sentence from word start index to word stop index.
The returned slice is a subclass of Sentence and a deep copy.
"""
s = Slice(token=self.token, language=self.language)
for i, word in enumerate(self.words[start:stop]):
# The easiest way to copy (part of) a sentence
# is by unpacking all of the token tags and passing them to Sentence.append().
p0 = word.string # WORD
p1 = word.lemma # LEMMA
p2 = word.type # POS
p3 = word.chunk is not None and word.chunk.type or None # CHUNK
p4 = word.pnp is not None and "PNP" or None # PNP
p5 = word.chunk is not None and unzip(0, word.chunk.relations) or None # REL
p6 = word.chunk is not None and unzip(1, word.chunk.relations) or None # ROLE
p7 = word.chunk and word.chunk.anchor_id or None # ANCHOR
p8 = word.chunk and word.chunk.start == start + i and BEGIN or None # IOB
p9 = word.custom_tags # User-defined tags.
# If the given range does not contain the chunk head, remove the chunk tags.
if word.chunk is not None and (word.chunk.stop > stop):
p3, p4, p5, p6, p7, p8 = None, None, None, None, None, None
# If the word starts the preposition, add the IOB B-prefix (i.e., B-PNP).
if word.pnp is not None and word.pnp.start == start + i:
p4 = BEGIN + "-" + "PNP"
# If the given range does not contain the entire PNP, remove the PNP tags.
# The range must contain the entire PNP,
# since it starts with the PP and ends with the chunk head (and is meaningless without these).
if word.pnp is not None and (word.pnp.start < start or word.chunk.stop > stop):
p4, p7 = None, None
s.append(word=p0, lemma=p1, type=p2, chunk=p3, pnp=p4, relation=p5, role=p6, anchor=p7, iob=p8, custom=p9)
s.parent = self
s._start = start
return s
def copy(self):
return self.slice(0, len(self))
def chunked(self):
return chunked(self)
def constituents(self, pnp=False):
""" Returns an in-order list of mixed Chunk and Word objects.
With pnp=True, also contains PNPChunk objects whenever possible.
"""
a = []
for word in self.words:
if pnp and word.pnp is not None:
if len(a) == 0 or a[-1] != word.pnp:
a.append(word.pnp)
elif word.chunk is not None:
if len(a) == 0 or a[-1] != word.chunk:
a.append(word.chunk)
else:
a.append(word)
return a
# Sentence.string and unicode(Sentence) are Unicode strings.
# repr(Sentence) is a Python strings (with Unicode characters encoded).
@property
def string(self):
return " ".join(word.string for word in self)
def __str__(self):
return self.string
def __repr__(self):
return "Sentence(%s)" % repr(" ".join(["/".join(word.tags) for word in self.words]))
def __eq__(self, other):
if not isinstance(other, Sentence):
return False
return len(self) == len(other) and repr(self) == repr(other)
# This is required because we overwrite the parent's __eq__() method.
# Otherwise objects will be unhashable in Python 3.
# More information: http://docs.python.org/3.6/reference/datamodel.html#object.__hash__
__hash__ = object.__hash__
@property
def xml(self):
""" Yields the sentence as an XML-formatted string (plain bytestring, UTF-8 encoded).
"""
return parse_xml(self, tab="\t", id=self.id or "")
@classmethod
def from_xml(cls, xml):
""" Returns a new Text from the given XML string.
"""
s = parse_string(xml)
return Sentence(s.split("\n")[0], token=s.tags, language=s.language)
fromxml = from_xml
def nltk_tree(self):
""" The sentence as an nltk.tree object.
"""
return nltk_tree(self)
class Slice(Sentence):
def __init__(self, *args, **kwargs):
""" A portion of the sentence returned by Sentence.slice().
"""
self._start = kwargs.pop("start", 0)
Sentence.__init__(self, *args, **kwargs)
@property
def start(self):
return self._start
@property
def stop(self):
return self._start + len(self.words)
#---------------------------------------------------------------------------------------------------
# s = Sentence(parse("black cats and white dogs"))
# s.words => [Word('black/JJ'), Word('cats/NNS'), Word('and/CC'), Word('white/JJ'), Word('dogs/NNS')]
# s.chunks => [Chunk('black cats/NP'), Chunk('white dogs/NP')]
# s.constituents() => [Chunk('black cats/NP'), Word('and/CC'), Chunk('white dogs/NP')]
# s.chunked(s) => [Chunk('black cats/NP'), Chink('and/O'), Chunk('white dogs/NP')]
def chunked(sentence):
""" Returns a list of Chunk and Chink objects from the given sentence.
Chink is a subclass of Chunk used for words that have Word.chunk == None
(e.g., punctuation marks, conjunctions).
"""
# For example, to construct a training vector with the head of previous chunks as a feature.
# Doing this with Sentence.chunks would discard the punctuation marks and conjunctions
# (Sentence.chunks only yields Chunk objects), which amy be useful features.
chunks = []
for word in sentence:
if word.chunk is not None:
if len(chunks) == 0 or chunks[-1] != word.chunk:
chunks.append(word.chunk)
else:
ch = Chink(sentence)
ch.append(word.copy(ch))
chunks.append(ch)
return chunks
#--- TEXT ------------------------------------------------------------------------------------------
class Text(list):
def __init__(self, string, token=[WORD, POS, CHUNK, PNP, REL, ANCHOR, LEMMA], language="en", encoding="utf-8"):
""" A list of Sentence objects parsed from the given string.
The string is the Unicode return value from parse().
"""
self.encoding = encoding
# Extract token format from TokenString if possible.
if _is_tokenstring(string):
token, language = string.tags, getattr(string, "language", language)
if string:
# From a string.
if isinstance(string, str):
string = string.splitlines()
# From an iterable (e.g., string.splitlines(), open('parsed.txt')).
self.extend(Sentence(s, token, language) for s in string)
def insert(self, index, sentence):
list.insert(self, index, sentence)
sentence.text = self
def append(self, sentence):
list.append(self, sentence)
sentence.text = self
def extend(self, sentences):
list.extend(self, sentences)
for s in sentences:
s.text = self
def remove(self, sentence):
list.remove(self, sentence)
sentence.text = None
def pop(self, index):
sentence = list.pop(self, index)
sentence.text = None
return sentence
@property
def sentences(self):
return list(self)
@property
def words(self):
return list(chain(*self))
def copy(self):
t = Text("", encoding=self.encoding)
for sentence in self:
t.append(sentence.copy())
return t
# Text.string and unicode(Text) are Unicode strings.
@property
def string(self):
return "\n".join(sentence.string for sentence in self)
def __str__(self):
return self.string
#def __repr__(self):
# return "\n".join([repr(sentence) for sentence in self])
@property
def xml(self):
""" Yields the sentence as an XML-formatted string (plain bytestring, UTF-8 encoded).
All the sentences in the XML are wrapped in a <text> element.
"""
xml = []
xml.append('<?xml version="1.0" encoding="%s"?>' % XML_ENCODING.get(self.encoding, self.encoding))
xml.append("<%s>" % XML_TEXT)
xml.extend([sentence.xml for sentence in self])
xml.append("</%s>" % XML_TEXT)
return "\n".join(xml)
@classmethod
def from_xml(cls, xml):
""" Returns a new Text from the given XML string.
"""
return Text(parse_string(xml))
fromxml = from_xml
Tree = Text
def tree(string, token=[WORD, POS, CHUNK, PNP, REL, ANCHOR, LEMMA]):
""" Transforms the output of parse() into a Text object.
The token parameter lists the order of tags in each token in the input string.
"""
return Text(string, token)
split = tree # Backwards compatibility.
def xml(string, token=[WORD, POS, CHUNK, PNP, REL, ANCHOR, LEMMA]):
""" Transforms the output of parse() into XML.
The token parameter lists the order of tags in each token in the input string.
"""
return Text(string, token).xml
### XML ############################################################################################
# Elements:
XML_TEXT = "text" # <text>, corresponds to Text object.
XML_SENTENCE = "sentence" # <sentence>, corresponds to Sentence object.
XML_CHINK = "chink" # <chink>, where word.chunk.type=None.
XML_CHUNK = "chunk" # <chunk>, corresponds to Chunk object.
XML_PNP = "chunk" # <chunk type="PNP">, corresponds to PNP chunk object.
XML_WORD = "word" # <word>, corresponds to Word object
# Attributes:
XML_LANGUAGE = "language" # <sentence language="">, defines the language used.
XML_TOKEN = "token" # <sentence token="">, defines the order of tags in a token.
XML_TYPE = "type" # <word type="">, <chunk type="">
XML_RELATION = "relation" # <chunk relation="">
XML_ID = "id" # <chunk id="">
XML_OF = "of" # <chunk of=""> corresponds to id-attribute.
XML_ANCHOR = "anchor" # <chunk anchor=""> corresponds to id-attribute.
XML_LEMMA = "lemma" # <word lemma="">
XML_ENCODING = {
'utf8' : 'UTF-8',
'utf-8' : 'UTF-8',
'utf16' : 'UTF-16',
'utf-16' : 'UTF-16',
'latin' : 'ISO-8859-1',
'latin1' : 'ISO-8859-1',
'latin-1' : 'ISO-8859-1',
'cp1252' : 'windows-1252',
'windows-1252' : 'windows-1252'
}
def xml_encode(string):
""" Returns the string with XML-safe special characters.
"""
string = string.replace("&", "&amp;")
string = string.replace("<", "&lt;")
string = string.replace(">", "&gt;")
string = string.replace("\"", "&quot;")
string = string.replace(SLASH, "/")
return string
def xml_decode(string):
""" Returns the string with special characters decoded.
"""
string = string.replace("&amp;", "&")
string = string.replace("&lt;", "<")
string = string.replace("&gt;", ">")
string = string.replace("&quot;", "\"")
string = string.replace("/", SLASH)
return string
#--- SENTENCE TO XML -------------------------------------------------------------------------------
# Relation id's in the XML output are relative to the sentence id,
# so relation 1 in sentence 2 = "2.1".
_UID_SEPARATOR = "."
def parse_xml(sentence, tab="\t", id=""):
""" Returns the given Sentence object as an XML-string (plain bytestring, UTF-8 encoded).
The tab delimiter is used as indendation for nested elements.
The id can be used as a unique identifier per sentence for chunk id's and anchors.
For example: "I eat pizza with a fork." =>
<sentence token="word, part-of-speech, chunk, preposition, relation, anchor, lemma" language="en">
<chunk type="NP" relation="SBJ" of="1">
<word type="PRP" lemma="i">I</word>
</chunk>
<chunk type="VP" relation="VP" id="1" anchor="A1">
<word type="VBP" lemma="eat">eat</word>
</chunk>
<chunk type="NP" relation="OBJ" of="1">
<word type="NN" lemma="pizza">pizza</word>
</chunk>
<chunk type="PNP" of="A1">
<chunk type="PP">
<word type="IN" lemma="with">with</word>
</chunk>
<chunk type="NP">
<word type="DT" lemma="a">a</word>
<word type="NN" lemma="fork">fork</word>
</chunk>
</chunk>
<chink>
<word type="." lemma=".">.</word>
</chink>
</sentence>
"""
uid = lambda *parts: "".join([str(id), _UID_SEPARATOR] + [str(x) for x in parts]).lstrip(_UID_SEPARATOR)
push = lambda indent: indent + tab # push() increases the indentation.
pop = lambda indent: indent[:-len(tab)] # pop() decreases the indentation.
indent = tab
xml = []
# Start the sentence element:
# <sentence token="word, part-of-speech, chunk, preposition, relation, anchor, lemma">
xml.append('<%s%s %s="%s" %s="%s">' % (
XML_SENTENCE,
XML_ID and " %s=\"%s\"" % (XML_ID, str(id)) or "",
XML_TOKEN, ", ".join(sentence.token),
XML_LANGUAGE, sentence.language
))
# Collect chunks that are PNP anchors and assign id.
anchors = {}
for chunk in sentence.chunks:
if chunk.attachments:
anchors[chunk.start] = len(anchors) + 1
# Traverse all words in the sentence.
for word in sentence.words:
chunk = word.chunk
pnp = word.chunk and word.chunk.pnp or None
# Start the PNP element if the chunk is the first chunk in PNP:
# <chunk type="PNP" of="A1">
if pnp and pnp.start == chunk.start and pnp.start == word.index:
a = pnp.anchor and ' %s="%s"' % (XML_OF, uid("A", anchors.get(pnp.anchor.start, ""))) or ""
xml.append(indent + '<%s %s="PNP"%s>' % (XML_CHUNK, XML_TYPE, a))
indent = push(indent)
# Start the chunk element if the word is the first word in the chunk:
# <chunk type="VP" relation="VP" id="1" anchor="A1">
if chunk and chunk.start == word.index:
if chunk.relations:
# Create the shortest possible attribute values for multiple relations,
# e.g., [(1,"OBJ"),(2,"OBJ")]) => relation="OBJ" id="1|2"
r1 = unzip(0, chunk.relations) # Relation id's.
r2 = unzip(1, chunk.relations) # Relation roles.
r1 = [x is None and "-" or uid(x) for x in r1]
r2 = [x is None and "-" or x for x in r2]
r1 = not len(unique(r1)) == 1 and "|".join(r1) or (r1 + [None])[0]
r2 = not len(unique(r2)) == 1 and "|".join(r2) or (r2 + [None])[0]
xml.append(indent + '<%s%s%s%s%s%s>' % (
XML_CHUNK,
chunk.type and ' %s="%s"' % (XML_TYPE, chunk.type) or "",
chunk.relations and chunk.role is not None and ' %s="%s"' % (XML_RELATION, r2) or "",
chunk.relation and chunk.type == "VP" and ' %s="%s"' % (XML_ID, uid(chunk.relation)) or "",
chunk.relation and chunk.type != "VP" and ' %s="%s"' % (XML_OF, r1) or "",
chunk.attachments and ' %s="%s"' % (XML_ANCHOR, uid("A", anchors[chunk.start])) or ""
))
indent = push(indent)
# Words outside of a chunk are wrapped in a <chink> tag:
# <chink>
if not chunk:
xml.append(indent + '<%s>' % XML_CHINK)
indent = push(indent)
# Add the word element:
# <word type="VBP" lemma="eat">eat</word>
xml.append(indent + '<%s%s%s%s>%s</%s>' % (
XML_WORD,
word.type and ' %s="%s"' % (XML_TYPE, xml_encode(word.type)) or '',
word.lemma and ' %s="%s"' % (XML_LEMMA, xml_encode(word.lemma)) or '',
(" " + " ".join(['%s="%s"' % (k, v) for k, v in word.custom_tags.items() if v is not None])).rstrip(),
xml_encode(word.string),
XML_WORD
))
if not chunk:
# Close the <chink> element if outside of a chunk.
indent = pop(indent)
xml.append(indent + "</%s>" % XML_CHINK)
if chunk and chunk.stop - 1 == word.index:
# Close the <chunk> element if this is the last word in the chunk.
indent = pop(indent)
xml.append(indent + "</%s>" % XML_CHUNK)
if pnp and pnp.stop - 1 == word.index:
# Close the PNP element if this is the last word in the PNP.
indent = pop(indent)
xml.append(indent + "</%s>" % XML_CHUNK)
xml.append("</%s>" % XML_SENTENCE)
# Return as a plain str.
return "\n".join(xml)
#--- XML TO SENTENCE(S) ----------------------------------------------------------------------------
# Classes XML and XMLNode provide an abstract interface to cElementTree.
# The advantage is that we can switch to a faster parser in the future
# (as we did when switching from xml.dom.minidom to xml.etree).
# cElemenTree is fast; but the fastest way is to simply store and reload the parsed Unicode string.
# The disadvantage is that we need to remember the token format, see (1) below:
# s = "..."
# s = parse(s, lemmata=True)
# open("parsed.txt", "w", encoding="utf-8").write(s)
# s = open("parsed.txt", encoding="utf-8")
# s = Text(s, token=[WORD, POS, CHUNK, PNP, LEMMA]) # (1)
class XML(object):
def __init__(self, string):
from xml.etree import cElementTree
self.root = cElementTree.fromstring(string)
def __call__(self, tag):
return self.root.tag == tag \
and [XMLNode(self.root)] \
or [XMLNode(e) for e in self.root.findall(tag)]
class XMLNode(object):
def __init__(self, element):
self.element = element
@property
def tag(self):
return self.element.tag
@property
def value(self):
return self.element.text
def __iter__(self):
return iter(XMLNode(e) for e in self.element)
def __getitem__(self, k):
return self.element.attrib[k]
def get(self, k, default=""):
return self.element.attrib.get(k, default)
# The structure of linked anchor chunks and PNP attachments
# is collected from _parse_token() calls.
_anchors = {} # {'A1': [['eat', 'VBP', 'B-VP', 'O', 'VP-1', 'O', 'eat', 'O']]}
_attachments = {} # {'A1': [[['with', 'IN', 'B-PP', 'B-PNP', 'PP', 'O', 'with', 'O'],
# ['a', 'DT', 'B-NP', 'I-PNP', 'NP', 'O', 'a', 'O'],
# ['fork', 'NN', 'I-NP', 'I-PNP', 'NP', 'O', 'fork', 'O']]]}
# This is a fallback if for some reason we fail to import MBSP.TokenString,
# e.g., when tree.py is part of another project.
class TaggedString(str):
def __new__(cls, string, tags=["word"], language="en"):
if isinstance(string, str) and hasattr(string, "tags"):
tags, language = string.tags, getattr(string, "language", language)
s = str.__new__(cls, string)
s.tags = list(tags)
s.language = language
return s
def parse_string(xml):
""" Returns a slash-formatted string from the given XML representation.
The return value is a TokenString (for MBSP) or TaggedString (for Pattern).
"""
string = ""
# Traverse all the <sentence> elements in the XML.
dom = XML(xml)
for sentence in dom(XML_SENTENCE):
_anchors.clear() # Populated by calling _parse_tokens().
_attachments.clear() # Populated by calling _parse_tokens().
# Parse the language from <sentence language="">.
language = sentence.get(XML_LANGUAGE, "en")
# Parse the token tag format from <sentence token="">.
# This information is returned in TokenString.tags,
# so the format and order of the token tags is retained when exporting/importing as XML.
format = sentence.get(XML_TOKEN, [WORD, POS, CHUNK, PNP, REL, ANCHOR, LEMMA])
format = not isinstance(format, str) and format or format.replace(" ", "").split(",")
# Traverse all <chunk> and <chink> elements in the sentence.
# Find the <word> elements inside and create tokens.
tokens = []
for chunk in sentence:
tokens.extend(_parse_tokens(chunk, format))
# Attach PNP's to their anchors.
# Keys in _anchors have linked anchor chunks (each chunk is a list of tokens).
# The keys correspond to the keys in _attachments, which have linked PNP chunks.
if ANCHOR in format:
A, P, a, i = _anchors, _attachments, 1, format.index(ANCHOR)
for id in sorted(A.keys()):
for token in A[id]:
token[i] += "-" + "-".join(["A" + str(a + p) for p in range(len(P[id]))])
token[i] = token[i].strip("O-")
for p, pnp in enumerate(P[id]):
for token in pnp:
token[i] += "-" + "P" + str(a + p)
token[i] = token[i].strip("O-")
a += len(P[id])
# Collapse the tokens to string.
# Separate multiple sentences with a new line.
tokens = ["/".join([tag for tag in token]) for token in tokens]
tokens = " ".join(tokens)
string += tokens + "\n"
# Return a TokenString, which is a unicode string that transforms easily
# into a plain str, a list of tokens, or a Sentence.
try:
if MBSP:
from mbsp import TokenString
return TokenString(string.strip(), tags=format, language=language)
except:
return TaggedString(string.strip(), tags=format, language=language)
def _parse_tokens(chunk, format=[WORD, POS, CHUNK, PNP, REL, ANCHOR, LEMMA]):
""" Parses tokens from <word> elements in the given XML <chunk> element.
Returns a flat list of tokens, in which each token is [WORD, POS, CHUNK, PNP, RELATION, ANCHOR, LEMMA].
If a <chunk type="PNP"> is encountered, traverses all of the chunks in the PNP.
"""
tokens = []
# Only process <chunk> and <chink> elements,
# text nodes in between return an empty list.
if not (chunk.tag == XML_CHUNK or chunk.tag == XML_CHINK):
return []
type = chunk.get(XML_TYPE, "O")
if type == "PNP":
# For, <chunk type="PNP">, recurse all the child chunks inside the PNP.
for ch in chunk:
tokens.extend(_parse_tokens(ch, format))
# Tag each of them as part of the PNP.
if PNP in format:
i = format.index(PNP)
for j, token in enumerate(tokens):
token[i] = (j == 0 and "B-" or "I-") + "PNP"
# Store attachments so we can construct anchor id's in parse_string().
# This has to be done at the end, when all the chunks have been found.
a = chunk.get(XML_OF).split(_UID_SEPARATOR)[-1]
if a:
_attachments.setdefault(a, [])
_attachments[a].append(tokens)
return tokens
# For <chunk type-"VP" id="1">, the relation is VP-1.
# For <chunk type="NP" relation="OBJ" of="1">, the relation is NP-OBJ-1.
relation = _parse_relation(chunk, type)
# Process all of the <word> elements in the chunk, for example:
# <word type="NN" lemma="pizza">pizza</word> => [pizza, NN, I-NP, O, NP-OBJ-1, O, pizza]
for word in filter(lambda n: n.tag == XML_WORD, chunk):
tokens.append(_parse_token(word, chunk=type, relation=relation, format=format))
# Add the IOB chunk tags:
# words at the start of a chunk are marked with B-, words inside with I-.
if CHUNK in format:
i = format.index(CHUNK)
for j, token in enumerate(tokens):
token[i] = token[i] != "O" and ((j == 0 and "B-" or "I-") + token[i]) or "O"
# The chunk can be the anchor of one or more PNP chunks.
# Store anchors so we can construct anchor id's in parse_string().
a = chunk.get(XML_ANCHOR, "").split(_UID_SEPARATOR)[-1]
if a:
_anchors[a] = tokens
return tokens
def _parse_relation(chunk, type="O"):
""" Returns a string of the roles and relations parsed from the given <chunk> element.
The chunk type (which is part of the relation string) can be given as parameter.
"""
r1 = chunk.get(XML_RELATION)
r2 = chunk.get(XML_ID, chunk.get(XML_OF))
r1 = [x != "-" and x or None for x in r1.split("|")] or [None]
r2 = [x != "-" and x or None for x in r2.split("|")] or [None]
r2 = [x is not None and x.split(_UID_SEPARATOR)[-1] or x for x in r2]
if len(r1) < len(r2):
r1 = r1 + r1 * (len(r2) - len(r1)) # [1] ["SBJ", "OBJ"] => "SBJ-1;OBJ-1"
if len(r2) < len(r1):
r2 = r2 + r2 * (len(r1) - len(r2)) # [2,4] ["OBJ"] => "OBJ-2;OBJ-4"
return ";".join(["-".join([x for x in (type, r1, r2) if x]) for r1, r2 in zip(r1, r2)])
def _parse_token(word, chunk="O", pnp="O", relation="O", anchor="O",
format=[WORD, POS, CHUNK, PNP, REL, ANCHOR, LEMMA]):
""" Returns a list of token tags parsed from the given <word> element.
Tags that are not attributes in a <word> (e.g., relation) can be given as parameters.
"""
tags = []
for tag in format:
if tag == WORD:
tags.append(xml_decode(word.value))
elif tag == POS:
tags.append(xml_decode(word.get(XML_TYPE, "O")))
elif tag == CHUNK:
tags.append(chunk)
elif tag == PNP:
tags.append(pnp)
elif tag == REL:
tags.append(relation)
elif tag == ANCHOR:
tags.append(anchor)
elif tag == LEMMA:
tags.append(xml_decode(word.get(XML_LEMMA, "")))
else:
# Custom tags when the parser has been extended, see also Word.custom_tags{}.
tags.append(xml_decode(word.get(tag, "O")))
return tags
### NLTK TREE ######################################################################################
def nltk_tree(sentence):
""" Returns an NLTK nltk.tree.Tree object from the given Sentence.
The NLTK module should be on the search path somewhere.
"""
from nltk import tree
def do_pnp(pnp):
# Returns the PNPChunk (and the contained Chunk objects) in NLTK bracket format.
s = ' '.join([do_chunk(ch) for ch in pnp.chunks])
return '(PNP %s)' % s
def do_chunk(ch):
# Returns the Chunk in NLTK bracket format. Recurse attached PNP's.
s = ' '.join(['(%s %s)' % (w.pos, w.string) for w in ch.words])
s += ' '.join([do_pnp(pnp) for pnp in ch.attachments])
return '(%s %s)' % (ch.type, s)
T = ['(S']
v = [] # PNP's already visited.
for ch in sentence.chunked():
if not ch.pnp and isinstance(ch, Chink):
T.append('(%s %s)' % (ch.words[0].pos, ch.words[0].string))
elif not ch.pnp:
T.append(do_chunk(ch))
#elif ch.pnp not in v:
elif ch.pnp.anchor is None and ch.pnp not in v:
# The chunk is part of a PNP without an anchor.
T.append(do_pnp(ch.pnp))
v.append(ch.pnp)
T.append(')')
return tree.bracket_parse(' '.join(T))
### GRAPHVIZ DOT ###################################################################################
BLUE = {
'' : ("#f0f5ff", "#000000"),
'VP' : ("#e6f0ff", "#000000"),
'SBJ' : ("#64788c", "#ffffff"),
'OBJ' : ("#64788c", "#ffffff"),
}
def _colorize(x, colors):
s = ''
if isinstance(x, Word):
x = x.chunk
if isinstance(x, Chunk):
s = ',style=filled, fillcolor="%s", fontcolor="%s"' % ( \
colors.get(x.role) or \
colors.get(x.type) or \
colors.get('') or ("none", "black"))
return s
def graphviz_dot(sentence, font="Arial", colors=BLUE):
""" Returns a dot-formatted string that can be visualized as a graph in GraphViz.
"""
s = 'digraph sentence {\n'
s += '\tranksep=0.75;\n'
s += '\tnodesep=0.15;\n'
s += '\tnode [penwidth=1, fontname="%s", shape=record, margin=0.1, height=0.35];\n' % font
s += '\tedge [penwidth=1];\n'
s += '\t{ rank=same;\n'
# Create node groups for words, chunks and PNP chunks.
for w in sentence.words:
s += '\t\tword%s [label="<f0>%s|<f1>%s"%s];\n' % (w.index, w.string, w.type, _colorize(w, colors))
for w in sentence.words[:-1]:
# Invisible edges forces the words into the right order:
s += '\t\tword%s -> word%s [color=none];\n' % (w.index, w.index + 1)
s += '\t}\n'
s += '\t{ rank=same;\n'
for i, ch in enumerate(sentence.chunks):
s += '\t\tchunk%s [label="<f0>%s"%s];\n' % (i + 1, "-".join([x for x in (
ch.type, ch.role, str(ch.relation or '')) if x]) or '-', _colorize(ch, colors))
for i, ch in enumerate(sentence.chunks[:-1]):
# Invisible edges forces the chunks into the right order:
s += '\t\tchunk%s -> chunk%s [color=none];\n' % (i + 1, i + 2)
s += '}\n'
s += '\t{ rank=same;\n'
for i, ch in enumerate(sentence.pnp):
s += '\t\tpnp%s [label="<f0>PNP"%s];\n' % (i + 1, _colorize(ch, colors))
s += '\t}\n'
s += '\t{ rank=same;\n S [shape=circle, margin=0.25, penwidth=2]; }\n'
# Connect words to chunks.
# Connect chunks to PNP or S.
for i, ch in enumerate(sentence.chunks):
for w in ch:
s += '\tword%s -> chunk%s;\n' % (w.index, i + 1)
if ch.pnp:
s += '\tchunk%s -> pnp%s;\n' % (i + 1, sentence.pnp.index(ch.pnp) + 1)
else:
s += '\tchunk%s -> S;\n' % (i + 1)
if ch.type == 'VP':
# Indicate related chunks with a dotted
for r in ch.related:
s += '\tchunk%s -> chunk%s [style=dotted, arrowhead=none];\n' % (
i + 1, sentence.chunks.index(r) + 1)
# Connect PNP to anchor chunk or S.
for i, ch in enumerate(sentence.pnp):
if ch.anchor:
s += '\tpnp%s -> chunk%s;\n' % (i + 1, sentence.chunks.index(ch.anchor) + 1)
s += '\tpnp%s -> S [color=none];\n' % (i + 1)
else:
s += '\tpnp%s -> S;\n' % (i + 1)
s += "}"
return s
### STDOUT TABLE ###################################################################################
def table(sentence, fill=1, placeholder="-"):
""" Returns a string where the tags of tokens in the sentence are organized in outlined columns.
"""
tags = [WORD, POS, IOB, CHUNK, ROLE, REL, PNP, ANCHOR, LEMMA]
tags += [tag for tag in sentence.token if tag not in tags]
def format(token, tag):
# Returns the token tag as a string.
if tag == WORD:
s = token.string
elif tag == POS:
s = token.type
elif tag == IOB:
s = token.chunk and (token.index == token.chunk.start and "B" or "I")
elif tag == CHUNK:
s = token.chunk and token.chunk.type
elif tag == ROLE:
s = token.chunk and token.chunk.role
elif tag == REL:
s = token.chunk and token.chunk.relation and str(token.chunk.relation)
elif tag == PNP:
s = token.chunk and token.chunk.pnp and token.chunk.pnp.type
elif tag == ANCHOR:
s = token.chunk and token.chunk.anchor_id
elif tag == LEMMA:
s = token.lemma
else:
s = token.custom_tags.get(tag)
return s or placeholder
def outline(column, fill=1, padding=3, align="left"):
# Add spaces to each string in the column so they line out to the highest width.
n = max([len(x) for x in column] + [fill])
if align == "left":
return [x + " " * (n - len(x)) + " " * padding for x in column]
if align == "right":
return [" " * (n - len(x)) + x + " " * padding for x in column]
# Gather the tags of the tokens in the sentece per column.
# If the IOB-tag is I-, mark the chunk tag with "^".
# Add the tag names as headers in each column.
columns = [[format(token, tag) for token in sentence] for tag in tags]
columns[3] = [columns[3][i] + (iob == "I" and " ^" or "") for i, iob in enumerate(columns[2])]
del columns[2]
for i, header in enumerate(['word', 'tag', 'chunk', 'role', 'id', 'pnp', 'anchor', 'lemma'] + tags[9:]):
columns[i].insert(0, "")
columns[i].insert(0, header.upper())
# The left column (the word itself) is outlined to the right,
# and has extra spacing so that words across sentences line out nicely below each other.
for i, column in enumerate(columns):
columns[i] = outline(column, fill + 10 * (i == 0), align=("left", "right")[i == 0])
# Anchor column is useful in MBSP but not in pattern.en.
if not MBSP:
del columns[6]
# Create a string with one row (i.e., one token) per line.
return "\n".join(["".join([x[i] for x in columns]) for i in range(len(columns[0]))])