You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
312 lines
12 KiB
Python
312 lines
12 KiB
Python
5 years ago
|
#### PATTERN | COMMONSENSE #########################################################################
|
||
|
# Copyright (c) 2010 University of Antwerp, Belgium
|
||
|
# Author: Tom De Smedt <tom@organisms.be>
|
||
|
# License: BSD (see LICENSE.txt for details).
|
||
|
# http://www.clips.ua.ac.be/pages/pattern
|
||
|
|
||
|
####################################################################################################
|
||
|
|
||
|
from __future__ import print_function
|
||
|
from __future__ import absolute_import
|
||
|
from __future__ import unicode_literals
|
||
|
from __future__ import division
|
||
|
|
||
|
from builtins import str, bytes, dict, int
|
||
|
from builtins import map, zip, filter
|
||
|
from builtins import object, range
|
||
|
|
||
|
from codecs import BOM_UTF8
|
||
|
from itertools import chain
|
||
|
from functools import cmp_to_key
|
||
|
|
||
|
from io import open
|
||
|
|
||
|
try:
|
||
|
# Python 2
|
||
|
from urllib import urlopen
|
||
|
except ImportError:
|
||
|
# Python 3
|
||
|
from urllib.request import urlopen
|
||
|
|
||
|
from .__init__ import Graph, Node, Edge, bfs
|
||
|
from .__init__ import WEIGHT, CENTRALITY, EIGENVECTOR, BETWEENNESS
|
||
|
|
||
|
import os
|
||
|
import sys
|
||
|
|
||
|
try:
|
||
|
MODULE = os.path.dirname(os.path.realpath(__file__))
|
||
|
except:
|
||
|
MODULE = ""
|
||
|
|
||
|
if sys.version > "3":
|
||
|
BOM_UTF8 = str(BOM_UTF8.decode("utf-8"))
|
||
|
else:
|
||
|
BOM_UTF8 = BOM_UTF8.decode("utf-8")
|
||
|
|
||
|
#### COMMONSENSE SEMANTIC NETWORK ##################################################################
|
||
|
|
||
|
#--- CONCEPT ---------------------------------------------------------------------------------------
|
||
|
|
||
|
|
||
|
class Concept(Node):
|
||
|
|
||
|
def __init__(self, *args, **kwargs):
|
||
|
""" A concept in the sematic network.
|
||
|
"""
|
||
|
Node.__init__(self, *args, **kwargs)
|
||
|
self._properties = None
|
||
|
|
||
|
@property
|
||
|
def halo(self, depth=2):
|
||
|
""" Returns the concept halo: a list with this concept + surrounding concepts.
|
||
|
This is useful to reason more fluidly about the concept,
|
||
|
since the halo will include latent properties linked to nearby concepts.
|
||
|
"""
|
||
|
return self.flatten(depth=depth)
|
||
|
|
||
|
@property
|
||
|
def properties(self):
|
||
|
""" Returns the top properties in the concept halo, sorted by betweenness centrality.
|
||
|
The return value is a list of concept id's instead of Concepts (for performance).
|
||
|
"""
|
||
|
if self._properties is None:
|
||
|
g = self.graph.copy(nodes=self.halo)
|
||
|
p = (n for n in g.nodes if n.id in self.graph.properties)
|
||
|
p = [n.id for n in reversed(sorted(p, key=lambda n: n.centrality))]
|
||
|
self._properties = p
|
||
|
return self._properties
|
||
|
|
||
|
|
||
|
def halo(concept, depth=2):
|
||
|
return concept.flatten(depth=depth)
|
||
|
|
||
|
|
||
|
def properties(concept, depth=2, centrality=BETWEENNESS):
|
||
|
g = concept.graph.copy(nodes=halo(concept, depth))
|
||
|
p = (n for n in g.nodes if n.id in concept.graph.properties)
|
||
|
p = [n.id for n in reversed(sorted(p, key=lambda n: getattr(n, centrality)))]
|
||
|
return p
|
||
|
|
||
|
#--- RELATION --------------------------------------------------------------------------------------
|
||
|
|
||
|
|
||
|
class Relation(Edge):
|
||
|
|
||
|
def __init__(self, *args, **kwargs):
|
||
|
""" A relation between two concepts, with an optional context.
|
||
|
For example, "Felix is-a cat" is in the "media" context, "tiger is-a cat" in "nature".
|
||
|
"""
|
||
|
self.context = kwargs.pop("context", None)
|
||
|
Edge.__init__(self, *args, **kwargs)
|
||
|
|
||
|
#--- HEURISTICS ------------------------------------------------------------------------------------
|
||
|
# Similarity between concepts is measured using a featural approach:
|
||
|
# a comparison of the features/properties that are salient in each concept's halo.
|
||
|
# Commonsense.similarity() takes an optional "heuristic" parameter to tweak this behavior.
|
||
|
# It is a tuple of two functions:
|
||
|
# 1) function(concept) returns a list of salient properties (or other),
|
||
|
# 2) function(concept1, concept2) returns the cost to traverse this edge (0.0-1.0).
|
||
|
|
||
|
COMMONALITY = (
|
||
|
# Similarity heuristic that only traverses relations between properties.
|
||
|
lambda concept: concept.properties,
|
||
|
lambda edge: 1 - int(edge.context == "properties" and \
|
||
|
edge.type != "is-opposite-of"))
|
||
|
|
||
|
#--- COMMONSENSE -----------------------------------------------------------------------------------
|
||
|
|
||
|
|
||
|
class Commonsense(Graph):
|
||
|
|
||
|
def __init__(self, data=os.path.join(MODULE, "commonsense.csv"), **kwargs):
|
||
|
""" A semantic network of commonsense, using different relation types:
|
||
|
- is-a,
|
||
|
- is-part-of,
|
||
|
- is-opposite-of,
|
||
|
- is-property-of,
|
||
|
- is-related-to,
|
||
|
- is-same-as,
|
||
|
- is-effect-of.
|
||
|
"""
|
||
|
Graph.__init__(self, **kwargs)
|
||
|
self._properties = None
|
||
|
# Load data from the given path,
|
||
|
# a CSV-file of (concept1, relation, concept2, context, weight)-items.
|
||
|
if data is not None:
|
||
|
s = open(data, encoding = 'utf-8').read()
|
||
|
s = s.strip(BOM_UTF8)
|
||
|
s = ((v.strip("\"") for v in r.split(",")) for r in s.splitlines())
|
||
|
for concept1, relation, concept2, context, weight in s:
|
||
|
self.add_edge(concept1, concept2,
|
||
|
type = relation,
|
||
|
context = context,
|
||
|
weight = min(int(weight) * 0.1, 1.0))
|
||
|
|
||
|
@property
|
||
|
def concepts(self):
|
||
|
return self.nodes
|
||
|
|
||
|
@property
|
||
|
def relations(self):
|
||
|
return self.edges
|
||
|
|
||
|
@property
|
||
|
def properties(self):
|
||
|
""" Yields all concepts that are properties (i.e., adjectives).
|
||
|
For example: "cold is-property-of winter" => "cold".
|
||
|
"""
|
||
|
if self._properties is None:
|
||
|
#self._properties = set(e.node1.id for e in self.edges if e.type == "is-property-of")
|
||
|
self._properties = (e for e in self.edges if e.context == "properties")
|
||
|
self._properties = set(chain(*((e.node1.id, e.node2.id) for e in self._properties)))
|
||
|
return self._properties
|
||
|
|
||
|
def add_node(self, id, *args, **kwargs):
|
||
|
""" Returns a Concept (Node subclass).
|
||
|
"""
|
||
|
self._properties = None
|
||
|
kwargs.setdefault("base", Concept)
|
||
|
return Graph.add_node(self, id, *args, **kwargs)
|
||
|
|
||
|
def add_edge(self, id1, id2, *args, **kwargs):
|
||
|
""" Returns a Relation between two concepts (Edge subclass).
|
||
|
"""
|
||
|
self._properties = None
|
||
|
kwargs.setdefault("base", Relation)
|
||
|
return Graph.add_edge(self, id1, id2, *args, **kwargs)
|
||
|
|
||
|
def remove(self, x):
|
||
|
self._properties = None
|
||
|
Graph.remove(self, x)
|
||
|
|
||
|
def similarity(self, concept1, concept2, k=3, heuristic=COMMONALITY):
|
||
|
""" Returns the similarity of the given concepts,
|
||
|
by cross-comparing shortest path distance between k concept properties.
|
||
|
A given concept can also be a flat list of properties, e.g. ["creepy"].
|
||
|
The given heuristic is a tuple of two functions:
|
||
|
1) function(concept) returns a list of salient properties,
|
||
|
2) function(edge) returns the cost for traversing this edge (0.0-1.0).
|
||
|
"""
|
||
|
if isinstance(concept1, str):
|
||
|
concept1 = self[concept1]
|
||
|
if isinstance(concept2, str):
|
||
|
concept2 = self[concept2]
|
||
|
if isinstance(concept1, Node):
|
||
|
concept1 = heuristic[0](concept1)
|
||
|
if isinstance(concept2, Node):
|
||
|
concept2 = heuristic[0](concept2)
|
||
|
if isinstance(concept1, list):
|
||
|
concept1 = [isinstance(n, Node) and n or self[n] for n in concept1]
|
||
|
if isinstance(concept2, list):
|
||
|
concept2 = [isinstance(n, Node) and n or self[n] for n in concept2]
|
||
|
h = lambda id1, id2: heuristic[1](self.edge(id1, id2))
|
||
|
w = 0.0
|
||
|
for p1 in concept1[:k]:
|
||
|
for p2 in concept2[:k]:
|
||
|
p = self.shortest_path(p1, p2, heuristic=h)
|
||
|
w += 1.0 / (p is None and 1e10 or len(p))
|
||
|
return w / k
|
||
|
|
||
|
def nearest_neighbors(self, concept, concepts=[], k=3):
|
||
|
""" Returns the k most similar concepts from the given list.
|
||
|
"""
|
||
|
return sorted(concepts, key=lambda candidate: self.similarity(concept, candidate, k), reverse=True)
|
||
|
|
||
|
similar = neighbors = nn = nearest_neighbors
|
||
|
|
||
|
def taxonomy(self, concept, depth=3, fringe=2):
|
||
|
""" Returns a list of concepts that are descendants of the given concept, using "is-a" relations.
|
||
|
Creates a subgraph of "is-a" related concepts up to the given depth,
|
||
|
then takes the fringe (i.e., leaves) of the subgraph.
|
||
|
"""
|
||
|
def traversable(node, edge):
|
||
|
# Follow parent-child edges.
|
||
|
return edge.node2 == node and edge.type == "is-a"
|
||
|
if not isinstance(concept, Node):
|
||
|
concept = self[concept]
|
||
|
g = self.copy(nodes=concept.flatten(depth, traversable))
|
||
|
g = g.fringe(depth=fringe)
|
||
|
g = [self[n.id] for n in g if n != concept]
|
||
|
return g
|
||
|
|
||
|
field = semantic_field = taxonomy
|
||
|
|
||
|
#g = Commonsense()
|
||
|
#print(g.nn("party", g.field("animal")))
|
||
|
#print(g.nn("creepy", g.field("animal")))
|
||
|
|
||
|
#### COMMONSENSE DATA ##############################################################################
|
||
|
|
||
|
#--- NODEBOX.NET/PERCEPTION ------------------------------------------------------------------------
|
||
|
|
||
|
|
||
|
def download(path=os.path.join(MODULE, "commonsense.csv"), threshold=50):
|
||
|
""" Downloads commonsense data from http://nodebox.net/perception.
|
||
|
Saves the data as commonsense.csv which can be the input for Commonsense.load().
|
||
|
"""
|
||
|
s = "http://nodebox.net/perception?format=txt&robots=1"
|
||
|
s = urlopen(s).read()
|
||
|
s = s.decode("utf-8")
|
||
|
s = s.replace("\\'", "'")
|
||
|
# Group relations by author.
|
||
|
a = {}
|
||
|
for r in ([v.strip("'") for v in r.split(", ")] for r in s.split("\n")):
|
||
|
if len(r) == 7:
|
||
|
a.setdefault(r[-2], []).append(r)
|
||
|
# Iterate authors sorted by number of contributions.
|
||
|
# 1) Authors with 50+ contributions can define new relations and context.
|
||
|
# 2) Authors with 50- contributions (or robots) can only reinforce existing relations.
|
||
|
a = sorted(a.items(), key=cmp_to_key(lambda v1, v2: len(v2[1]) - len(v1[1])))
|
||
|
r = {}
|
||
|
for author, relations in a:
|
||
|
if author == "" or author.startswith("robots@"):
|
||
|
continue
|
||
|
if len(relations) < threshold:
|
||
|
break
|
||
|
# Sort latest-first (we prefer more recent relation types).
|
||
|
relations = sorted(relations, key=cmp_to_key(lambda r1, r2: r1[-1] > r2[-1]))
|
||
|
# 1) Define new relations.
|
||
|
for concept1, relation, concept2, context, weight, author, date in relations:
|
||
|
id = (concept1, relation, concept2)
|
||
|
if id not in r:
|
||
|
r[id] = [None, 0]
|
||
|
if r[id][0] is None and context is not None:
|
||
|
r[id][0] = context
|
||
|
for author, relations in a:
|
||
|
# 2) Reinforce existing relations.
|
||
|
for concept1, relation, concept2, context, weight, author, date in relations:
|
||
|
id = (concept1, relation, concept2)
|
||
|
if id in r:
|
||
|
r[id][1] += int(weight)
|
||
|
# Export CSV-file.
|
||
|
s = []
|
||
|
for (concept1, relation, concept2), (context, weight) in r.items():
|
||
|
s.append("\"%s\",\"%s\",\"%s\",\"%s\",%s" % (
|
||
|
concept1, relation, concept2, context, weight))
|
||
|
f = open(path, "w", encoding = 'utf-8')
|
||
|
f.write(BOM_UTF8)
|
||
|
f.write("\n".join(s))
|
||
|
f.close()
|
||
|
|
||
|
|
||
|
def json():
|
||
|
""" Returns a JSON-string with the data from commonsense.csv.
|
||
|
Each relation is encoded as a [concept1, relation, concept2, context, weight] list.
|
||
|
"""
|
||
|
f = lambda s: s.replace("'", "\\'").encode("utf-8")
|
||
|
s = []
|
||
|
g = Commonsense()
|
||
|
for e in g.edges:
|
||
|
s.append("\n\t['%s', '%s', '%s', '%s', %.2f]" % (
|
||
|
f(e.node1.id),
|
||
|
f(e.type),
|
||
|
f(e.node2.id),
|
||
|
f(e.context),
|
||
|
e.weight
|
||
|
))
|
||
|
return "commonsense = [%s];" % ", ".join(s)
|
||
|
|
||
|
#download("commonsense.csv", threshold=50)
|
||
|
#open("commonsense.js", "w", encoding = 'utf-8').write(json())
|