You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1716 lines
64 KiB
Python
1716 lines
64 KiB
Python
5 years ago
|
#### PATTERN | GRAPH ###############################################################################
|
||
|
# Copyright (c) 2010 University of Antwerp, Belgium
|
||
|
# Author: Tom De Smedt <tom@organisms.be>
|
||
|
# License: BSD (see LICENSE.txt for details).
|
||
|
# http://www.clips.ua.ac.be/pages/pattern
|
||
|
|
||
|
####################################################################################################
|
||
|
|
||
|
from __future__ import unicode_literals
|
||
|
from __future__ import division
|
||
|
|
||
|
from builtins import str, bytes, dict, int
|
||
|
from builtins import map, zip, filter
|
||
|
from builtins import object, range, next
|
||
|
|
||
|
import os
|
||
|
import sys
|
||
|
|
||
|
from math import sqrt, pow
|
||
|
from math import sin, cos, atan2, degrees, radians, pi
|
||
|
from random import random
|
||
|
from heapq import heappush, heappop
|
||
|
from warnings import warn
|
||
|
from shutil import rmtree
|
||
|
|
||
|
from io import open
|
||
|
|
||
|
from functools import cmp_to_key
|
||
|
|
||
|
try:
|
||
|
MODULE = os.path.dirname(os.path.realpath(__file__))
|
||
|
except:
|
||
|
MODULE = ""
|
||
|
|
||
|
# float("inf") doesn't work on windows.
|
||
|
INFINITE = 1e20
|
||
|
|
||
|
#--- LIST FUNCTIONS --------------------------------------------------------------------------------
|
||
|
|
||
|
|
||
|
def unique(iterable):
|
||
|
""" Returns a list copy in which each item occurs only once (in-order).
|
||
|
"""
|
||
|
seen = set()
|
||
|
return [x for x in iterable if x not in seen and not seen.add(x)]
|
||
|
|
||
|
#--- DRAWING FUNCTIONS -----------------------------------------------------------------------------
|
||
|
# This module is standalone (i.e., it is not a graph rendering package).
|
||
|
# If you want to call Graph.draw() then line(), ellipse() and Text.draw() must be implemented.
|
||
|
|
||
|
|
||
|
def line(x1, y1, x2, y2, stroke=(0, 0, 0, 1), strokewidth=1):
|
||
|
""" Draws a line from (x1, y1) to (x2, y2) using the given stroke color and stroke width.
|
||
|
"""
|
||
|
pass
|
||
|
|
||
|
|
||
|
def ellipse(x, y, width, height, fill=(0, 0, 0, 1), stroke=None, strokewidth=1):
|
||
|
""" Draws an ellipse at (x, y) with given fill and stroke color and stroke width.
|
||
|
"""
|
||
|
pass
|
||
|
|
||
|
|
||
|
class Text(object):
|
||
|
|
||
|
def __init__(self, string, **kwargs):
|
||
|
""" Draws the node label.
|
||
|
Optional properties include width, fill, font, fontsize, fontweight.
|
||
|
"""
|
||
|
self.string = string
|
||
|
self.__dict__.update(kwargs)
|
||
|
|
||
|
def copy(self):
|
||
|
k = self.__dict__.copy()
|
||
|
k.pop("string")
|
||
|
return Text(self.string, **k)
|
||
|
|
||
|
def draw(self):
|
||
|
pass
|
||
|
|
||
|
|
||
|
class Vector(object):
|
||
|
|
||
|
def __init__(self, x=0, y=0):
|
||
|
self.x = x
|
||
|
self.y = y
|
||
|
|
||
|
|
||
|
def coordinates(x, y, distance, angle):
|
||
|
return (
|
||
|
(x + distance * cos(radians(angle))),
|
||
|
(y + distance * sin(radians(angle)))
|
||
|
)
|
||
|
|
||
|
#--- DEEPCOPY --------------------------------------------------------------------------------------
|
||
|
|
||
|
|
||
|
def deepcopy(o):
|
||
|
""" Returns a deep (recursive) copy of the given object.
|
||
|
"""
|
||
|
if o is None:
|
||
|
return o
|
||
|
if hasattr(o, "copy"):
|
||
|
return o.copy()
|
||
|
if isinstance(o, (str, bool, int, float, complex)):
|
||
|
return o
|
||
|
if isinstance(o, (list, tuple, set)):
|
||
|
return o.__class__(deepcopy(v) for v in o)
|
||
|
if isinstance(o, dict):
|
||
|
return dict((deepcopy(k), deepcopy(v)) for k, v in o.items())
|
||
|
raise Exception("don't know how to copy %s" % o.__class__.__name__)
|
||
|
|
||
|
#### NODE ##########################################################################################
|
||
|
|
||
|
#--- NODE ------------------------------------------------------------------------------------------
|
||
|
|
||
|
|
||
|
class Node(object):
|
||
|
|
||
|
def __init__(self, id="", radius=5, **kwargs):
|
||
|
""" A node with a unique id in the graph.
|
||
|
Node.id is drawn as a text label, unless optional parameter text=False.
|
||
|
Optional parameters include: fill, stroke, strokewidth, text, font, fontsize, fontweight.
|
||
|
"""
|
||
|
self.graph = None
|
||
|
self.links = Links()
|
||
|
self.id = id
|
||
|
self._x = 0.0 # Calculated by Graph.layout.update().
|
||
|
self._y = 0.0 # Calculated by Graph.layout.update().
|
||
|
self.force = Vector(0.0, 0.0)
|
||
|
self.radius = radius
|
||
|
self.fixed = kwargs.pop("fixed", False)
|
||
|
self.fill = kwargs.pop("fill", None)
|
||
|
self.stroke = kwargs.pop("stroke", (0, 0, 0, 1))
|
||
|
self.strokewidth = kwargs.pop("strokewidth", 1)
|
||
|
self.text = kwargs.get("text", True) and \
|
||
|
Text(isinstance(id, str) and id or str(id),
|
||
|
width = 85,
|
||
|
fill = kwargs.pop("text", (0, 0, 0, 1)),
|
||
|
fontsize = kwargs.pop("fontsize", 11), **kwargs) or None
|
||
|
self._weight = None # Calculated by Graph.eigenvector_centrality().
|
||
|
self._centrality = None # Calculated by Graph.betweenness_centrality().
|
||
|
|
||
|
@property
|
||
|
def _distance(self):
|
||
|
# Graph.distance controls the (x,y) spacing between nodes.
|
||
|
return self.graph and float(self.graph.distance) or 1.0
|
||
|
|
||
|
def _get_x(self):
|
||
|
return self._x * self._distance
|
||
|
|
||
|
def _get_y(self):
|
||
|
return self._y * self._distance
|
||
|
|
||
|
def _set_x(self, v):
|
||
|
self._x = v / self._distance
|
||
|
|
||
|
def _set_y(self, v):
|
||
|
self._y = v / self._distance
|
||
|
|
||
|
x = property(_get_x, _set_x)
|
||
|
y = property(_get_y, _set_y)
|
||
|
|
||
|
@property
|
||
|
def edges(self):
|
||
|
""" Yields a list of edges from/to the node.
|
||
|
"""
|
||
|
return self.graph is not None \
|
||
|
and [e for e in self.graph.edges if self.id in (e.node1.id, e.node2.id)] \
|
||
|
or []
|
||
|
|
||
|
@property
|
||
|
def edge(self, node, reverse=False):
|
||
|
""" Yields the Edge from this node to the given node, or None.
|
||
|
"""
|
||
|
if not isinstance(node, Node):
|
||
|
node = self.graph and self.graph.get(node) or node
|
||
|
if reverse:
|
||
|
return node.links.edge(self)
|
||
|
return self.links.edge(node)
|
||
|
|
||
|
@property
|
||
|
def weight(self):
|
||
|
""" Yields eigenvector centrality as a number between 0.0-1.0.
|
||
|
"""
|
||
|
if self.graph and self._weight is None:
|
||
|
self.graph.eigenvector_centrality()
|
||
|
return self._weight
|
||
|
|
||
|
@property
|
||
|
def centrality(self):
|
||
|
""" Yields betweenness centrality as a number between 0.0-1.0.
|
||
|
"""
|
||
|
if self.graph and self._centrality is None:
|
||
|
self.graph.betweenness_centrality()
|
||
|
return self._centrality
|
||
|
|
||
|
eigenvector = eigenvector_centrality = weight
|
||
|
betweenness = betweenness_centrality = centrality
|
||
|
|
||
|
@property
|
||
|
def degree(self):
|
||
|
""" Yields degree centrality as a number between 0.0-1.0.
|
||
|
"""
|
||
|
return self.graph and (1.0 * len(self.links) / len(self.graph)) or 0.0
|
||
|
|
||
|
def flatten(self, depth=1, traversable=lambda node, edge: True, _visited=None):
|
||
|
""" Recursively lists the node and nodes linked to it.
|
||
|
Depth 0 returns a list with the node.
|
||
|
Depth 1 returns a list with the node and all the directly linked nodes.
|
||
|
Depth 2 includes the linked nodes' links, and so on.
|
||
|
"""
|
||
|
_visited = _visited or {}
|
||
|
_visited[self.id] = (self, depth)
|
||
|
if depth >= 1:
|
||
|
for n in self.links:
|
||
|
if n.id not in _visited or _visited[n.id][1] < depth - 1:
|
||
|
if traversable(self, self.links.edges[n.id]):
|
||
|
n.flatten(depth - 1, traversable, _visited)
|
||
|
return [n for n, d in _visited.values()] # Fast, but not order-preserving.
|
||
|
|
||
|
def draw(self, weighted=False):
|
||
|
""" Draws the node as a circle with the given radius, fill, stroke and strokewidth.
|
||
|
Draws the node centrality as a shadow effect when weighted=True.
|
||
|
Draws the node text label.
|
||
|
Override this method in a subclass for custom drawing.
|
||
|
"""
|
||
|
# Draw the node weight as a shadow (based on node betweenness centrality).
|
||
|
if weighted is not False and self.centrality > (weighted and -1 or weighted):
|
||
|
w = self.centrality * 35
|
||
|
ellipse(
|
||
|
self.x,
|
||
|
self.y,
|
||
|
self.radius * 2 + w,
|
||
|
self.radius * 2 + w, fill=(0, 0, 0, 0.2), stroke=None)
|
||
|
# Draw the node.
|
||
|
ellipse(
|
||
|
self.x,
|
||
|
self.y,
|
||
|
self.radius * 2,
|
||
|
self.radius * 2, fill=self.fill, stroke=self.stroke, strokewidth=self.strokewidth)
|
||
|
# Draw the node text label.
|
||
|
if self.text:
|
||
|
self.text.draw(
|
||
|
self.x + self.radius,
|
||
|
self.y + self.radius)
|
||
|
|
||
|
def contains(self, x, y):
|
||
|
""" Returns True if the given coordinates (x, y) are inside the node radius.
|
||
|
"""
|
||
|
return abs(self.x - x) < self.radius * 2 and \
|
||
|
abs(self.y - y) < self.radius * 2
|
||
|
|
||
|
def __repr__(self):
|
||
|
return "%s(id=%s)" % (self.__class__.__name__, repr(self.id))
|
||
|
|
||
|
def __eq__(self, node):
|
||
|
return isinstance(node, Node) and self.id == node.id
|
||
|
|
||
|
def __ne__(self, node):
|
||
|
return not self.__eq__(node)
|
||
|
|
||
|
# This is required because we overwrite the parent's __eq__() method.
|
||
|
# Otherwise objects will be unhashable in Python 3.
|
||
|
# More information: http://docs.python.org/3.6/reference/datamodel.html#object.__hash__
|
||
|
__hash__ = object.__hash__
|
||
|
|
||
|
#--- NODE LINKS ------------------------------------------------------------------------------------
|
||
|
|
||
|
|
||
|
class Links(list):
|
||
|
|
||
|
def __init__(self):
|
||
|
""" A list in which each node has an associated edge.
|
||
|
The Links.edge() method returns the edge for a given node id.
|
||
|
"""
|
||
|
self.edges = dict()
|
||
|
|
||
|
def append(self, node, edge=None):
|
||
|
if node.id not in self.edges:
|
||
|
list.append(self, node)
|
||
|
self.edges[node.id] = edge
|
||
|
|
||
|
def remove(self, node):
|
||
|
list.remove(self, node)
|
||
|
self.edges.pop(node.id, None)
|
||
|
|
||
|
def edge(self, node):
|
||
|
return self.edges.get(isinstance(node, Node) and node.id or node)
|
||
|
|
||
|
#### EDGE ##########################################################################################
|
||
|
|
||
|
|
||
|
class Edge(object):
|
||
|
|
||
|
def __init__(self, node1, node2, weight=0.0, length=1.0, type=None, stroke=(0, 0, 0, 1), strokewidth=1):
|
||
|
""" A connection between two nodes.
|
||
|
Its weight indicates the importance (not the cost) of the connection.
|
||
|
Its type is useful in a semantic network (e.g. "is-a", "is-part-of", ...)
|
||
|
"""
|
||
|
self.node1 = node1
|
||
|
self.node2 = node2
|
||
|
self._weight = weight
|
||
|
self.length = length
|
||
|
self.type = type
|
||
|
self.stroke = stroke
|
||
|
self.strokewidth = strokewidth
|
||
|
|
||
|
def _get_weight(self):
|
||
|
return self._weight
|
||
|
|
||
|
def _set_weight(self, v):
|
||
|
self._weight = v
|
||
|
# Clear cached adjacency map in the graph, since edge weights have changed.
|
||
|
if self.node1.graph is not None:
|
||
|
self.node1.graph._adjacency = None
|
||
|
if self.node2.graph is not None:
|
||
|
self.node2.graph._adjacency = None
|
||
|
|
||
|
weight = property(_get_weight, _set_weight)
|
||
|
|
||
|
def draw(self, weighted=False, directed=False):
|
||
|
""" Draws the edge as a line with the given stroke and strokewidth (increased with Edge.weight).
|
||
|
Override this method in a subclass for custom drawing.
|
||
|
"""
|
||
|
w = weighted and self.weight or 0
|
||
|
line(
|
||
|
self.node1.x,
|
||
|
self.node1.y,
|
||
|
self.node2.x,
|
||
|
self.node2.y, stroke=self.stroke, strokewidth=self.strokewidth + w)
|
||
|
if directed:
|
||
|
self.draw_arrow(stroke=self.stroke, strokewidth=self.strokewidth + w)
|
||
|
|
||
|
def draw_arrow(self, **kwargs):
|
||
|
""" Draws the direction of the edge as an arrow on the rim of the receiving node.
|
||
|
"""
|
||
|
x0, y0 = self.node1.x, self.node1.y
|
||
|
x1, y1 = self.node2.x, self.node2.y
|
||
|
# Find the edge's angle based on node1 and node2 position.
|
||
|
a = degrees(atan2(y1 - y0, x1 - x0))
|
||
|
# The arrow points to node2's rim instead of it's center.
|
||
|
r = self.node2.radius
|
||
|
d = sqrt(pow(x1 - x0, 2) + pow(y1 - y0, 2))
|
||
|
x01, y01 = coordinates(x0, y0, d - r - 1, a)
|
||
|
# Find the two other arrow corners under the given angle.
|
||
|
r = max(kwargs.get("strokewidth", 1) * 3, 6)
|
||
|
dx1, dy1 = coordinates(x01, y01, -r, a - 20)
|
||
|
dx2, dy2 = coordinates(x01, y01, -r, a + 20)
|
||
|
line(x01, y01, dx1, dy1, **kwargs)
|
||
|
line(x01, y01, dx2, dy2, **kwargs)
|
||
|
line(dx1, dy1, dx2, dy2, **kwargs)
|
||
|
|
||
|
def __repr__(self):
|
||
|
return "%s(id1=%s, id2=%s)" % (self.__class__.__name__, repr(self.node1.id), repr(self.node2.id))
|
||
|
|
||
|
#### GRAPH #########################################################################################
|
||
|
|
||
|
#--- GRAPH NODE DICTIONARY -------------------------------------------------------------------------
|
||
|
|
||
|
|
||
|
class nodedict(dict):
|
||
|
|
||
|
def __init__(self, graph, *args, **kwargs):
|
||
|
""" Graph.shortest_paths() and Graph.eigenvector_centrality() return a nodedict,
|
||
|
where dictionary values can be accessed by Node as well as by node id.
|
||
|
"""
|
||
|
dict.__init__(self, *args, **kwargs)
|
||
|
self.graph = graph
|
||
|
|
||
|
def __contains__(self, node):
|
||
|
return dict.__contains__(self, self.graph.get(node, node))
|
||
|
|
||
|
def __getitem__(self, node):
|
||
|
return dict.__getitem__(self, isinstance(node, Node) and node or self.graph[node])
|
||
|
|
||
|
def get(self, node, default=None):
|
||
|
return dict.get(self, self.graph.get(node, node), default)
|
||
|
|
||
|
#--- GRAPH -----------------------------------------------------------------------------------------
|
||
|
|
||
|
# Graph layouts:
|
||
|
SPRING = "spring"
|
||
|
|
||
|
# Graph node centrality:
|
||
|
EIGENVECTOR = "eigenvector"
|
||
|
BETWEENNESS = "betweenness"
|
||
|
DEGREE = "degree"
|
||
|
|
||
|
# Graph node sort order:
|
||
|
WEIGHT, CENTRALITY = "weight", "centrality"
|
||
|
|
||
|
ALL = "all"
|
||
|
|
||
|
|
||
|
class Graph(dict):
|
||
|
|
||
|
def __init__(self, layout=SPRING, distance=10.0):
|
||
|
""" A network of nodes connected by edges that can be drawn with a given layout.
|
||
|
"""
|
||
|
self.nodes = [] # List of Node objects.
|
||
|
self.edges = [] # List of Edge objects.
|
||
|
self.root = None
|
||
|
self._adjacency = None # Cached adjacency() dict.
|
||
|
self.layout = layout == SPRING and GraphSpringLayout(self) or GraphLayout(self)
|
||
|
self.distance = distance
|
||
|
|
||
|
def __getitem__(self, id):
|
||
|
try:
|
||
|
return dict.__getitem__(self, id)
|
||
|
except KeyError:
|
||
|
raise KeyError("no node with id '%s' in graph" % id)
|
||
|
|
||
|
def append(self, base, *args, **kwargs):
|
||
|
""" Appends a Node or Edge to the graph: Graph.append(Node, id="rabbit").
|
||
|
"""
|
||
|
kwargs["base"] = base
|
||
|
if issubclass(base, Node):
|
||
|
return self.add_node(*args, **kwargs)
|
||
|
if issubclass(base, Edge):
|
||
|
return self.add_edge(*args, **kwargs)
|
||
|
|
||
|
def add_node(self, id, *args, **kwargs):
|
||
|
""" Appends a new Node to the graph.
|
||
|
An optional base parameter can be used to pass a subclass of Node.
|
||
|
"""
|
||
|
n = kwargs.pop("base", Node)
|
||
|
n = isinstance(id, Node) and id or self.get(id) or n(id, *args, **kwargs)
|
||
|
if n.id not in self:
|
||
|
self.nodes.append(n)
|
||
|
self[n.id] = n
|
||
|
n.graph = self
|
||
|
self.root = kwargs.get("root", False) and n or self.root
|
||
|
# Clear adjacency cache.
|
||
|
self._adjacency = None
|
||
|
return n
|
||
|
|
||
|
def add_edge(self, id1, id2, *args, **kwargs):
|
||
|
""" Appends a new Edge to the graph.
|
||
|
An optional base parameter can be used to pass a subclass of Edge:
|
||
|
Graph.add_edge("cold", "winter", base=IsPropertyOf)
|
||
|
"""
|
||
|
# Create nodes that are not yet part of the graph.
|
||
|
n1 = self.add_node(id1)
|
||
|
n2 = self.add_node(id2)
|
||
|
# Creates an Edge instance.
|
||
|
# If an edge (in the same direction) already exists, yields that edge instead.
|
||
|
e1 = n1.links.edge(n2)
|
||
|
if e1 and e1.node1 == n1 and e1.node2 == n2:
|
||
|
return e1
|
||
|
e2 = kwargs.pop("base", Edge)
|
||
|
e2 = e2(n1, n2, *args, **kwargs)
|
||
|
self.edges.append(e2)
|
||
|
# Synchronizes Node.links:
|
||
|
# A.links.edge(B) yields edge A->B
|
||
|
# B.links.edge(A) yields edge B->A
|
||
|
n1.links.append(n2, edge=e2)
|
||
|
n2.links.append(n1, edge=e1 or e2)
|
||
|
# Clear adjacency cache.
|
||
|
self._adjacency = None
|
||
|
return e2
|
||
|
|
||
|
def remove(self, x):
|
||
|
""" Removes the given Node (and all its edges) or Edge from the graph.
|
||
|
Note: removing Edge a->b does not remove Edge b->a.
|
||
|
"""
|
||
|
if isinstance(x, Node) and x.id in self:
|
||
|
self.pop(x.id)
|
||
|
self.nodes.remove(x)
|
||
|
x.graph = None
|
||
|
# Remove all edges involving the given node.
|
||
|
for e in list(self.edges):
|
||
|
if x in (e.node1, e.node2):
|
||
|
if x in e.node1.links:
|
||
|
e.node1.links.remove(x)
|
||
|
if x in e.node2.links:
|
||
|
e.node2.links.remove(x)
|
||
|
self.edges.remove(e)
|
||
|
if isinstance(x, Edge):
|
||
|
self.edges.remove(x)
|
||
|
# Clear adjacency cache.
|
||
|
self._adjacency = None
|
||
|
|
||
|
def node(self, id):
|
||
|
""" Returns the node in the graph with the given id.
|
||
|
"""
|
||
|
if isinstance(id, Node) and id.graph == self:
|
||
|
return id
|
||
|
return self.get(id, None)
|
||
|
|
||
|
def edge(self, id1, id2):
|
||
|
""" Returns the edge between the nodes with given id1 and id2.
|
||
|
"""
|
||
|
if isinstance(id1, Node) and id1.graph == self:
|
||
|
id1 = id1.id
|
||
|
if isinstance(id2, Node) and id2.graph == self:
|
||
|
id2 = id2.id
|
||
|
return id1 in self and id2 in self and self[id1].links.edge(id2) or None
|
||
|
|
||
|
def paths(self, node1, node2, length=4, path=[]):
|
||
|
""" Returns a list of paths (shorter than or equal to given length) connecting the two nodes.
|
||
|
"""
|
||
|
if not isinstance(node1, Node):
|
||
|
node1 = self[node1]
|
||
|
if not isinstance(node2, Node):
|
||
|
node2 = self[node2]
|
||
|
return [[self[id] for id in p] for p in paths(self, node1.id, node2.id, length, path)]
|
||
|
|
||
|
def shortest_path(self, node1, node2, heuristic=None, directed=False):
|
||
|
""" Returns a list of nodes connecting the two nodes.
|
||
|
"""
|
||
|
if not isinstance(node1, Node):
|
||
|
node1 = self[node1]
|
||
|
if not isinstance(node2, Node):
|
||
|
node2 = self[node2]
|
||
|
try:
|
||
|
p = dijkstra_shortest_path(self, node1.id, node2.id, heuristic, directed)
|
||
|
p = [self[id] for id in p]
|
||
|
return p
|
||
|
except IndexError:
|
||
|
return None
|
||
|
|
||
|
def shortest_paths(self, node, heuristic=None, directed=False):
|
||
|
""" Returns a dictionary of nodes, each linked to a list of nodes (shortest path).
|
||
|
"""
|
||
|
if not isinstance(node, Node):
|
||
|
node = self[node]
|
||
|
p = nodedict(self)
|
||
|
for id, path in dijkstra_shortest_paths(self, node.id, heuristic, directed).items():
|
||
|
p[self[id]] = path and [self[id] for id in path] or None
|
||
|
return p
|
||
|
|
||
|
def eigenvector_centrality(self, normalized=True, reversed=True, rating={}, iterations=100, tolerance=0.0001):
|
||
|
""" Calculates eigenvector centrality and returns a node => weight dictionary.
|
||
|
Node.weight is updated in the process.
|
||
|
Node.weight is higher for nodes with a lot of (indirect) incoming traffic.
|
||
|
"""
|
||
|
ec = eigenvector_centrality(self, normalized, reversed, rating, iterations, tolerance)
|
||
|
ec = nodedict(self, ((self[id], w) for id, w in ec.items()))
|
||
|
for n, w in ec.items():
|
||
|
n._weight = w
|
||
|
return ec
|
||
|
|
||
|
def betweenness_centrality(self, normalized=True, directed=False):
|
||
|
""" Calculates betweenness centrality and returns a node => weight dictionary.
|
||
|
Node.centrality is updated in the process.
|
||
|
Node.centrality is higher for nodes with a lot of passing traffic.
|
||
|
"""
|
||
|
bc = brandes_betweenness_centrality(self, normalized, directed)
|
||
|
bc = nodedict(self, ((self[id], w) for id, w in bc.items()))
|
||
|
for n, w in bc.items():
|
||
|
n._centrality = w
|
||
|
return bc
|
||
|
|
||
|
def sorted(self, order=WEIGHT, threshold=0.0):
|
||
|
""" Returns a list of nodes sorted by WEIGHT or CENTRALITY.
|
||
|
Nodes with a lot of traffic will be at the start of the list.
|
||
|
"""
|
||
|
o = lambda node: getattr(node, order)
|
||
|
nodes = sorted(self.nodes, key = o, reverse = True)
|
||
|
return list([node for node in nodes if o(node) >= threshold])
|
||
|
|
||
|
def prune(self, depth=0):
|
||
|
""" Removes all nodes with less or equal links than depth.
|
||
|
"""
|
||
|
for n in (n for n in self.nodes if len(n.links) <= depth):
|
||
|
self.remove(n)
|
||
|
|
||
|
def fringe(self, depth=0, traversable=lambda node, edge: True):
|
||
|
""" For depth=0, returns the list of leaf nodes (nodes with only one connection).
|
||
|
For depth=1, returns the list of leaf nodes and their connected nodes, and so on.
|
||
|
"""
|
||
|
u = []
|
||
|
[u.extend(n.flatten(depth, traversable)) for n in self.nodes if len(n.links) == 1]
|
||
|
return unique(u)
|
||
|
|
||
|
@property
|
||
|
def density(self):
|
||
|
""" Yields the number of edges vs. the maximum number of possible edges.
|
||
|
For example, <0.35 => sparse, >0.65 => dense, 1.0 => complete.
|
||
|
"""
|
||
|
return 2.0 * len(self.edges) / (len(self.nodes) * (len(self.nodes) - 1))
|
||
|
|
||
|
@property
|
||
|
def is_complete(self):
|
||
|
return self.density == 1.0
|
||
|
|
||
|
@property
|
||
|
def is_dense(self):
|
||
|
return self.density > 0.65
|
||
|
|
||
|
@property
|
||
|
def is_sparse(self):
|
||
|
return self.density < 0.35
|
||
|
|
||
|
def split(self):
|
||
|
""" Returns the list of unconnected subgraphs.
|
||
|
"""
|
||
|
return partition(self)
|
||
|
|
||
|
def update(self, iterations=10, **kwargs):
|
||
|
""" Graph.layout.update() is called the given number of iterations.
|
||
|
"""
|
||
|
for i in range(iterations):
|
||
|
self.layout.update(**kwargs)
|
||
|
|
||
|
def draw(self, weighted=False, directed=False):
|
||
|
""" Draws all nodes and edges.
|
||
|
"""
|
||
|
for e in self.edges:
|
||
|
e.draw(weighted, directed)
|
||
|
for n in reversed(self.nodes): # New nodes (with Node._weight=None) first.
|
||
|
n.draw(weighted)
|
||
|
|
||
|
def node_at(self, x, y):
|
||
|
""" Returns the node at (x,y) or None.
|
||
|
"""
|
||
|
for n in self.nodes:
|
||
|
if n.contains(x, y):
|
||
|
return n
|
||
|
|
||
|
def _add_node_copy(self, n, **kwargs):
|
||
|
# Magical fairy dust to copy subclasses of Node.
|
||
|
# We assume that the subclass constructor takes an optional "text" parameter
|
||
|
# (Text objects in NodeBox for OpenGL's implementation are expensive).
|
||
|
try:
|
||
|
new = self.add_node(n.id, root=kwargs.get("root", False), text=False)
|
||
|
except TypeError:
|
||
|
new = self.add_node(n.id, root=kwargs.get("root", False))
|
||
|
new.__class__ = n.__class__
|
||
|
new.__dict__.update((k, deepcopy(v)) for k, v in n.__dict__.items()
|
||
|
if k not in ("graph", "links", "_x", "_y", "force", "_weight", "_centrality"))
|
||
|
|
||
|
def _add_edge_copy(self, e, **kwargs):
|
||
|
if kwargs.get("node1", e.node1).id not in self \
|
||
|
or kwargs.get("node2", e.node2).id not in self:
|
||
|
return
|
||
|
new = self.add_edge(
|
||
|
kwargs.get("node1", self[e.node1.id]),
|
||
|
kwargs.get("node2", self[e.node2.id]))
|
||
|
new.__class__ = e.__class__
|
||
|
new.__dict__.update((k, deepcopy(v)) for k, v in e.__dict__.items()
|
||
|
if k not in ("node1", "node2"))
|
||
|
|
||
|
def copy(self, nodes=ALL):
|
||
|
""" Returns a copy of the graph with the given list of nodes (and connecting edges).
|
||
|
The layout will be reset.
|
||
|
"""
|
||
|
g = Graph(layout=None, distance=self.distance)
|
||
|
g.layout = self.layout.copy(graph=g)
|
||
|
for n in (nodes == ALL and self.nodes or (isinstance(n, Node) and n or self[n] for n in nodes)):
|
||
|
g._add_node_copy(n, root=self.root == n)
|
||
|
for e in self.edges:
|
||
|
g._add_edge_copy(e)
|
||
|
return g
|
||
|
|
||
|
def export(self, *args, **kwargs):
|
||
|
export(self, *args, **kwargs)
|
||
|
|
||
|
def write(self, *args, **kwargs):
|
||
|
write(self, *args, **kwargs)
|
||
|
|
||
|
def serialize(self, *args, **kwargs):
|
||
|
return render(self, *args, **kwargs)
|
||
|
|
||
|
#--- GRAPH LAYOUT ----------------------------------------------------------------------------------
|
||
|
# Graph drawing or graph layout, as a branch of graph theory,
|
||
|
# applies topology and geometry to derive two-dimensional representations of graphs.
|
||
|
|
||
|
|
||
|
class GraphLayout(object):
|
||
|
|
||
|
def __init__(self, graph):
|
||
|
""" Calculates node positions iteratively when GraphLayout.update() is called.
|
||
|
"""
|
||
|
self.graph = graph
|
||
|
self.iterations = 0
|
||
|
|
||
|
def update(self):
|
||
|
self.iterations += 1
|
||
|
|
||
|
def reset(self):
|
||
|
self.iterations = 0
|
||
|
for n in self.graph.nodes:
|
||
|
n._x = 0.0
|
||
|
n._y = 0.0
|
||
|
n.force = Vector(0.0, 0.0)
|
||
|
|
||
|
@property
|
||
|
def bounds(self):
|
||
|
""" Returns a (x, y, width, height)-tuple of the approximate layout dimensions.
|
||
|
"""
|
||
|
x0, y0 = +INFINITE, +INFINITE
|
||
|
x1, y1 = -INFINITE, -INFINITE
|
||
|
for n in self.graph.nodes:
|
||
|
if (n.x < x0):
|
||
|
x0 = n.x
|
||
|
if (n.y < y0):
|
||
|
y0 = n.y
|
||
|
if (n.x > x1):
|
||
|
x1 = n.x
|
||
|
if (n.y > y1):
|
||
|
y1 = n.y
|
||
|
return (x0, y0, x1 - x0, y1 - y0)
|
||
|
|
||
|
def copy(self, graph):
|
||
|
return GraphLayout(self, graph)
|
||
|
|
||
|
#--- GRAPH LAYOUT: FORCE-BASED ---------------------------------------------------------------------
|
||
|
|
||
|
|
||
|
class GraphSpringLayout(GraphLayout):
|
||
|
|
||
|
def __init__(self, graph):
|
||
|
""" A force-based layout in which edges are regarded as springs.
|
||
|
The forces are applied to the nodes, pulling them closer or pushing them apart.
|
||
|
"""
|
||
|
# Based on: http://snipplr.com/view/1950/graph-javascript-framework-version-001/
|
||
|
GraphLayout.__init__(self, graph)
|
||
|
self.k = 4.0 # Force constant.
|
||
|
self.force = 0.01 # Force multiplier.
|
||
|
self.repulsion = 50 # Maximum repulsive force radius.
|
||
|
|
||
|
def _distance(self, node1, node2):
|
||
|
# Yields a tuple with distances (dx, dy, d, d**2).
|
||
|
# Ensures that the distance is never zero (which deadlocks the animation).
|
||
|
dx = node2._x - node1._x
|
||
|
dy = node2._y - node1._y
|
||
|
d2 = dx * dx + dy * dy
|
||
|
if d2 < 0.01:
|
||
|
dx = random() * 0.1 + 0.1
|
||
|
dy = random() * 0.1 + 0.1
|
||
|
d2 = dx * dx + dy * dy
|
||
|
return dx, dy, sqrt(d2), d2
|
||
|
|
||
|
def _repulse(self, node1, node2):
|
||
|
# Updates Node.force with the repulsive force.
|
||
|
dx, dy, d, d2 = self._distance(node1, node2)
|
||
|
if d < self.repulsion:
|
||
|
f = self.k ** 2 / d2
|
||
|
node2.force.x += f * dx
|
||
|
node2.force.y += f * dy
|
||
|
node1.force.x -= f * dx
|
||
|
node1.force.y -= f * dy
|
||
|
|
||
|
def _attract(self, node1, node2, weight=0, length=1.0):
|
||
|
# Updates Node.force with the attractive edge force.
|
||
|
dx, dy, d, d2 = self._distance(node1, node2)
|
||
|
d = min(d, self.repulsion)
|
||
|
f = (d2 - self.k ** 2) / self.k * length
|
||
|
f *= weight * 0.5 + 1
|
||
|
f /= d
|
||
|
node2.force.x -= f * dx
|
||
|
node2.force.y -= f * dy
|
||
|
node1.force.x += f * dx
|
||
|
node1.force.y += f * dy
|
||
|
|
||
|
def update(self, weight=10.0, limit=0.5):
|
||
|
""" Updates the position of nodes in the graph.
|
||
|
The weight parameter determines the impact of edge weight.
|
||
|
The limit parameter determines the maximum movement each update().
|
||
|
"""
|
||
|
GraphLayout.update(self)
|
||
|
# Forces on all nodes due to node-node repulsions.
|
||
|
for i, n1 in enumerate(self.graph.nodes):
|
||
|
for j, n2 in enumerate(self.graph.nodes[i + 1:]):
|
||
|
self._repulse(n1, n2)
|
||
|
# Forces on nodes due to edge attractions.
|
||
|
for e in self.graph.edges:
|
||
|
self._attract(e.node1, e.node2, weight * e.weight, 1.0 / (e.length or 0.01))
|
||
|
# Move nodes by given force.
|
||
|
for n in self.graph.nodes:
|
||
|
if not n.fixed:
|
||
|
n._x += max(-limit, min(self.force * n.force.x, limit))
|
||
|
n._y += max(-limit, min(self.force * n.force.y, limit))
|
||
|
n.force.x = 0
|
||
|
n.force.y = 0
|
||
|
|
||
|
def copy(self, graph):
|
||
|
g = GraphSpringLayout(graph)
|
||
|
g.k, g.force, g.repulsion = self.k, self.force, self.repulsion
|
||
|
return g
|
||
|
|
||
|
#### GRAPH ANALYSIS ################################################################################
|
||
|
|
||
|
#--- GRAPH SEARCH ----------------------------------------------------------------------------------
|
||
|
|
||
|
|
||
|
def depth_first_search(node, visit=lambda node: False, traversable=lambda node, edge: True, _visited=None):
|
||
|
""" Visits all the nodes connected to the given root node, depth-first.
|
||
|
The visit function is called on each node.
|
||
|
Recursion will stop if it returns True, and subsequently dfs() will return True.
|
||
|
The traversable function takes the current node and edge,
|
||
|
and returns True if we are allowed to follow this connection to the next node.
|
||
|
For example, the traversable for directed edges is follows:
|
||
|
lambda node, edge: node == edge.node1
|
||
|
"""
|
||
|
stop = visit(node)
|
||
|
_visited = _visited or {}
|
||
|
_visited[node.id] = True
|
||
|
for n in node.links:
|
||
|
if stop:
|
||
|
return True
|
||
|
if traversable(node, node.links.edge(n)) is False:
|
||
|
continue
|
||
|
if n.id not in _visited:
|
||
|
stop = depth_first_search(n, visit, traversable, _visited)
|
||
|
return stop
|
||
|
|
||
|
dfs = depth_first_search
|
||
|
|
||
|
|
||
|
def breadth_first_search(node, visit=lambda node: False, traversable=lambda node, edge: True):
|
||
|
""" Visits all the nodes connected to the given root node, breadth-first.
|
||
|
"""
|
||
|
q = [node]
|
||
|
_visited = {}
|
||
|
while q:
|
||
|
node = q.pop(0)
|
||
|
if node.id not in _visited:
|
||
|
if visit(node):
|
||
|
return True
|
||
|
q.extend((n for n in node.links if traversable(node, node.links.edge(n)) is not False))
|
||
|
_visited[node.id] = True
|
||
|
return False
|
||
|
|
||
|
bfs = breadth_first_search
|
||
|
|
||
|
|
||
|
def paths(graph, id1, id2, length=4, path=[], _root=True):
|
||
|
""" Returns a list of paths from node with id1 to node with id2.
|
||
|
Only paths shorter than or equal to the given length are included.
|
||
|
Uses a brute-force DFS approach (performance drops exponentially for longer paths).
|
||
|
"""
|
||
|
if len(path) >= length:
|
||
|
return []
|
||
|
if id1 not in graph:
|
||
|
return []
|
||
|
if id1 == id2:
|
||
|
return [path + [id1]]
|
||
|
path = path + [id1]
|
||
|
p = []
|
||
|
s = set(path) # 5% speedup.
|
||
|
for node in graph[id1].links:
|
||
|
if node.id not in s:
|
||
|
p.extend(paths(graph, node.id, id2, length, path, False))
|
||
|
return _root and sorted(p, key=len) or p
|
||
|
|
||
|
|
||
|
def edges(path):
|
||
|
""" Returns an iterator of Edge objects for the given list of nodes.
|
||
|
It yields None where two successive nodes are not connected.
|
||
|
"""
|
||
|
# For example, the distance (i.e., edge weight sum) of a path:
|
||
|
# sum(e.weight for e in edges(path))
|
||
|
return len(path) > 1 and (n.links.edge(path[i + 1]) for i, n in enumerate(path[:-1])) or iter(())
|
||
|
|
||
|
#--- GRAPH ADJACENCY -------------------------------------------------------------------------------
|
||
|
|
||
|
|
||
|
def adjacency(graph, directed=False, reversed=False, stochastic=False, heuristic=None):
|
||
|
""" Returns a dictionary indexed by node id1's,
|
||
|
in which each value is a dictionary of connected node id2's linking to the edge weight.
|
||
|
If directed=True, edges go from id1 to id2, but not the other way.
|
||
|
If stochastic=True, all the weights for the neighbors of a given node sum to 1.
|
||
|
A heuristic function can be given that takes two node id's and returns
|
||
|
an additional cost for movement between the two nodes.
|
||
|
"""
|
||
|
# Caching a heuristic from a method won't work.
|
||
|
# Bound method objects are transient,
|
||
|
# i.e., id(object.method) returns a new value each time.
|
||
|
if graph._adjacency is not None and \
|
||
|
graph._adjacency[1:] == (directed, reversed, stochastic, heuristic and heuristic.__code__):
|
||
|
return graph._adjacency[0]
|
||
|
map = {}
|
||
|
for n in graph.nodes:
|
||
|
map[n.id] = {}
|
||
|
for e in graph.edges:
|
||
|
id1, id2 = not reversed and (e.node1.id, e.node2.id) or (e.node2.id, e.node1.id)
|
||
|
map[id1][id2] = 1.0 - 0.5 * e.weight
|
||
|
if heuristic:
|
||
|
map[id1][id2] += heuristic(id1, id2)
|
||
|
if not directed:
|
||
|
map[id2][id1] = map[id1][id2]
|
||
|
if stochastic:
|
||
|
for id1 in map:
|
||
|
n = sum(map[id1].values())
|
||
|
for id2 in map[id1]:
|
||
|
map[id1][id2] /= n
|
||
|
# Cache the adjacency map: this makes dijkstra_shortest_path() 2x faster in repeated use.
|
||
|
graph._adjacency = (map, directed, reversed, stochastic, heuristic and heuristic.__code__)
|
||
|
return map
|
||
|
|
||
|
|
||
|
def dijkstra_shortest_path(graph, id1, id2, heuristic=None, directed=False):
|
||
|
""" Dijkstra algorithm for finding the shortest path between two nodes.
|
||
|
Returns a list of node id's, starting with id1 and ending with id2.
|
||
|
Raises an IndexError between nodes on unconnected graphs.
|
||
|
"""
|
||
|
# Based on: Connelly Barnes, http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/119466
|
||
|
def flatten(list):
|
||
|
# Flattens a linked list of the form [0,[1,[2,[]]]]
|
||
|
while len(list) > 0:
|
||
|
yield list[0]
|
||
|
list = list[1]
|
||
|
G = adjacency(graph, directed=directed, heuristic=heuristic)
|
||
|
q = [(0, id1, ())] # Heap of (cost, path_head, path_rest).
|
||
|
visited = set() # Visited nodes.
|
||
|
while True:
|
||
|
(cost1, n1, path) = heappop(q)
|
||
|
if n1 not in visited:
|
||
|
visited.add(n1)
|
||
|
if n1 == id2:
|
||
|
return list(flatten(path))[::-1] + [n1]
|
||
|
path = (n1, path)
|
||
|
for (n2, cost2) in G[n1].items():
|
||
|
if n2 not in visited:
|
||
|
heappush(q, (cost1 + cost2, n2, path))
|
||
|
|
||
|
|
||
|
def dijkstra_shortest_paths(graph, id, heuristic=None, directed=False):
|
||
|
""" Dijkstra algorithm for finding the shortest paths from the given node to all other nodes.
|
||
|
Returns a dictionary of node id's, each linking to a list of node id's (i.e., the path).
|
||
|
"""
|
||
|
# Based on: Dijkstra's algorithm for shortest paths modified from Eppstein.
|
||
|
# Based on: NetworkX 1.4.1: Aric Hagberg, Dan Schult and Pieter Swart.
|
||
|
# This is 5x faster than:
|
||
|
# for n in g: dijkstra_shortest_path(g, id, n.id)
|
||
|
W = adjacency(graph, directed=directed, heuristic=heuristic)
|
||
|
Q = [] # Use Q as a heap with (distance, node id)-tuples.
|
||
|
D = {} # Dictionary of final distances.
|
||
|
P = {} # Dictionary of paths.
|
||
|
P[id] = [id]
|
||
|
seen = {id: 0}
|
||
|
heappush(Q, (0, id))
|
||
|
while Q:
|
||
|
(dist, v) = heappop(Q)
|
||
|
if v in D:
|
||
|
continue
|
||
|
D[v] = dist
|
||
|
for w in W[v].keys():
|
||
|
vw_dist = D[v] + W[v][w]
|
||
|
if w not in D and (w not in seen or vw_dist < seen[w]):
|
||
|
seen[w] = vw_dist
|
||
|
heappush(Q, (vw_dist, w))
|
||
|
P[w] = P[v] + [w]
|
||
|
for n in graph:
|
||
|
if n not in P:
|
||
|
P[n] = None
|
||
|
return P
|
||
|
|
||
|
|
||
|
def floyd_warshall_all_pairs_distance(graph, heuristic=None, directed=False):
|
||
|
""" Floyd-Warshall's algorithm for finding the path length for all pairs for nodes.
|
||
|
Returns a dictionary of node id's,
|
||
|
each linking to a dictionary of node id's linking to path length.
|
||
|
"""
|
||
|
from collections import defaultdict
|
||
|
g = graph.keys()
|
||
|
d = defaultdict(lambda: defaultdict(lambda: 1e30)) # float('inf')
|
||
|
p = defaultdict(dict) # Predecessors.
|
||
|
for e in graph.edges:
|
||
|
u = e.node1.id
|
||
|
v = e.node2.id
|
||
|
w = 1.0 - 0.5 * e.weight
|
||
|
w = heuristic and heuristic(u, v) + w or w
|
||
|
d[u][v] = min(w, d[u][v])
|
||
|
d[u][u] = 0
|
||
|
p[u][v] = u
|
||
|
if not directed:
|
||
|
d[v][u] = min(w, d[v][u])
|
||
|
p[v][u] = v
|
||
|
for w in g:
|
||
|
dw = d[w]
|
||
|
for u in g:
|
||
|
du, duw = d[u], d[u][w]
|
||
|
for v in g:
|
||
|
# Performance optimization, assumes d[w][v] > 0.
|
||
|
#if du[v] > duw + dw[v]:
|
||
|
if du[v] > duw and du[v] > duw + dw[v]:
|
||
|
d[u][v] = duw + dw[v]
|
||
|
p[u][v] = p[w][v]
|
||
|
|
||
|
class pdict(dict):
|
||
|
def __init__(self, predecessors, *args, **kwargs):
|
||
|
dict.__init__(self, *args, **kwargs)
|
||
|
self.predecessors = predecessors
|
||
|
return pdict(p, ((u, dict((v, w) for v, w in d[u].items() if w < 1e30)) for u in d))
|
||
|
|
||
|
|
||
|
def predecessor_path(tree, u, v):
|
||
|
""" Returns the path between node u and node v as a list of node id's.
|
||
|
The given tree is the return value of floyd_warshall_all_pairs_distance().predecessors.
|
||
|
"""
|
||
|
def _traverse(u, v):
|
||
|
w = tree[u][v]
|
||
|
if w == u:
|
||
|
return []
|
||
|
return _traverse(u, w) + [w] + _traverse(w, v)
|
||
|
return [u] + _traverse(u, v) + [v]
|
||
|
|
||
|
#--- GRAPH CENTRALITY ------------------------------------------------------------------------------
|
||
|
|
||
|
|
||
|
def brandes_betweenness_centrality(graph, normalized=True, directed=False):
|
||
|
""" Betweenness centrality for nodes in the graph.
|
||
|
Betweenness centrality is a measure of the number of shortests paths that pass through a node.
|
||
|
Nodes in high-density areas will get a good score.
|
||
|
"""
|
||
|
# Ulrik Brandes, A Faster Algorithm for Betweenness Centrality,
|
||
|
# Journal of Mathematical Sociology 25(2):163-177, 2001,
|
||
|
# http://www.inf.uni-konstanz.de/algo/publications/b-fabc-01.pdf
|
||
|
# Based on: Dijkstra's algorithm for shortest paths modified from Eppstein.
|
||
|
# Based on: NetworkX 1.0.1: Aric Hagberg, Dan Schult and Pieter Swart.
|
||
|
# http://python-networkx.sourcearchive.com/documentation/1.0.1/centrality_8py-source.html
|
||
|
W = adjacency(graph, directed=directed)
|
||
|
b = dict.fromkeys(graph, 0.0)
|
||
|
for id in graph:
|
||
|
Q = [] # Use Q as a heap with (distance, node id)-tuples.
|
||
|
D = {} # Dictionary of final distances.
|
||
|
P = {} # Dictionary of paths.
|
||
|
for n in graph:
|
||
|
P[n] = []
|
||
|
seen = {id: 0}
|
||
|
heappush(Q, (0, id, id))
|
||
|
S = []
|
||
|
E = dict.fromkeys(graph, 0) # sigma
|
||
|
E[id] = 1.0
|
||
|
while Q:
|
||
|
(dist, pred, v) = heappop(Q)
|
||
|
if v in D:
|
||
|
continue
|
||
|
D[v] = dist
|
||
|
S.append(v)
|
||
|
E[v] += E[pred]
|
||
|
for w in W[v]:
|
||
|
vw_dist = D[v] + W[v][w]
|
||
|
if w not in D and (w not in seen or vw_dist < seen[w]):
|
||
|
seen[w] = vw_dist
|
||
|
heappush(Q, (vw_dist, v, w))
|
||
|
P[w] = [v]
|
||
|
E[w] = 0.0
|
||
|
elif vw_dist == seen[w]: # Handle equal paths.
|
||
|
P[w].append(v)
|
||
|
E[w] += E[v]
|
||
|
d = dict.fromkeys(graph, 0.0)
|
||
|
for w in reversed(S):
|
||
|
for v in P[w]:
|
||
|
d[v] += (1.0 + d[w]) * E[v] / E[w]
|
||
|
if w != id:
|
||
|
b[w] += d[w]
|
||
|
# Normalize between 0.0 and 1.0.
|
||
|
m = normalized and max(b.values()) or 1
|
||
|
b = dict((id, w / m) for id, w in b.items())
|
||
|
return b
|
||
|
|
||
|
|
||
|
def eigenvector_centrality(graph, normalized=True, reversed=True, rating={}, iterations=100, tolerance=0.0001):
|
||
|
""" Eigenvector centrality for nodes in the graph (cfr. Google's PageRank).
|
||
|
Eigenvector centrality is a measure of the importance of a node in a directed network.
|
||
|
It rewards nodes with a high potential of (indirectly) connecting to high-scoring nodes.
|
||
|
Nodes with no incoming connections have a score of zero.
|
||
|
If you want to measure outgoing connections, reversed should be False.
|
||
|
"""
|
||
|
# Based on: NetworkX, Aric Hagberg (hagberg@lanl.gov)
|
||
|
# http://python-networkx.sourcearchive.com/documentation/1.0.1/centrality_8py-source.html
|
||
|
# Note: much faster than betweenness centrality (which grows exponentially).
|
||
|
def normalize(vector):
|
||
|
w = 1.0 / (sum(vector.values()) or 1)
|
||
|
for node in vector:
|
||
|
vector[node] *= w
|
||
|
return vector
|
||
|
G = adjacency(graph, directed=True, reversed=reversed)
|
||
|
v = normalize(dict([(n, random()) for n in graph])) # Node ID => weight vector.
|
||
|
# Eigenvector calculation using the power iteration method: y = Ax.
|
||
|
# It has no guarantee of convergence.
|
||
|
for i in range(iterations):
|
||
|
v0 = v
|
||
|
v = dict.fromkeys(v0.keys(), 0)
|
||
|
for n1 in v:
|
||
|
for n2 in G[n1]:
|
||
|
v[n1] += 0.01 + v0[n2] * G[n1][n2] * rating.get(n1, 1)
|
||
|
normalize(v)
|
||
|
e = sum([abs(v[n] - v0[n]) for n in v]) # Check for convergence.
|
||
|
if e < len(G) * tolerance:
|
||
|
# Normalize between 0.0 and 1.0.
|
||
|
m = normalized and max(v.values()) or 1
|
||
|
v = dict((id, w / m) for id, w in v.items())
|
||
|
return v
|
||
|
warn("node weight is 0 because eigenvector_centrality() did not converge.", Warning)
|
||
|
return dict((n, 0) for n in G)
|
||
|
|
||
|
#--- GRAPH PARTITIONING ----------------------------------------------------------------------------
|
||
|
|
||
|
# a | b => all elements from a and all the elements from b.
|
||
|
# a & b => elements that appear in a as well as in b.
|
||
|
# a - b => elements that appear in a but not in b.
|
||
|
|
||
|
|
||
|
def union(a, b):
|
||
|
return list(set(a) | set(b))
|
||
|
|
||
|
|
||
|
def intersection(a, b):
|
||
|
return list(set(a) & set(b))
|
||
|
|
||
|
|
||
|
def difference(a, b):
|
||
|
return list(set(a) - set(b))
|
||
|
|
||
|
|
||
|
def partition(graph):
|
||
|
""" Returns a list of unconnected subgraphs.
|
||
|
"""
|
||
|
# Creates clusters of nodes and directly connected nodes.
|
||
|
# Iteratively merges two clusters if they overlap.
|
||
|
g = []
|
||
|
for n in graph.nodes:
|
||
|
g.append(dict.fromkeys((n.id for n in n.flatten()), True))
|
||
|
for i in reversed(list(range(len(g)))):
|
||
|
for j in reversed(list(range(i + 1, len(g)))):
|
||
|
if g[i] and g[j] and len(intersection(g[i], g[j])) > 0:
|
||
|
g[i] = union(g[i], g[j])
|
||
|
g[j] = []
|
||
|
g = [graph.copy(nodes=[graph[id] for id in n]) for n in g if n]
|
||
|
g.sort(key = cmp_to_key(lambda a, b: len(b) - len(a)))
|
||
|
return g
|
||
|
|
||
|
|
||
|
def is_clique(graph):
|
||
|
""" A clique is a set of nodes in which each node is connected to all other nodes.
|
||
|
"""
|
||
|
#for n1 in graph.nodes:
|
||
|
# for n2 in graph.nodes:
|
||
|
# if n1 != n2 and graph.edge(n1.id, n2.id) is None:
|
||
|
# return False
|
||
|
return graph.density == 1.0
|
||
|
|
||
|
|
||
|
def clique(graph, id):
|
||
|
""" Returns the largest possible clique for the node with given id.
|
||
|
"""
|
||
|
if isinstance(id, Node):
|
||
|
id = id.id
|
||
|
a = [id]
|
||
|
for n in graph.nodes:
|
||
|
try:
|
||
|
# Raises StopIteration if all nodes in the clique are connected to n:
|
||
|
next(id for id in a if n.id == id or graph.edge(n.id, id) is None)
|
||
|
except StopIteration:
|
||
|
a.append(n.id)
|
||
|
return a
|
||
|
|
||
|
|
||
|
def cliques(graph, threshold=3):
|
||
|
""" Returns all cliques in the graph with at least the given number of nodes.
|
||
|
"""
|
||
|
a = []
|
||
|
for n in graph.nodes:
|
||
|
c = clique(graph, n.id)
|
||
|
if len(c) >= threshold:
|
||
|
c.sort()
|
||
|
if c not in a:
|
||
|
a.append(c)
|
||
|
return a
|
||
|
|
||
|
#### GRAPH UTILITY FUNCTIONS #######################################################################
|
||
|
# Utility functions for safely linking and unlinking of nodes,
|
||
|
# with respect for the surrounding nodes.
|
||
|
|
||
|
|
||
|
def unlink(graph, node1, node2=None):
|
||
|
""" Removes the edges between node1 and node2.
|
||
|
If only node1 is given, removes all edges to and from it.
|
||
|
This does not remove node1 from the graph.
|
||
|
"""
|
||
|
if not isinstance(node1, Node):
|
||
|
node1 = graph[node1]
|
||
|
if not isinstance(node2, Node) and node2 is not None:
|
||
|
node2 = graph[node2]
|
||
|
for e in list(graph.edges):
|
||
|
if node1 in (e.node1, e.node2) and node2 in (e.node1, e.node2, None):
|
||
|
graph.edges.remove(e)
|
||
|
try:
|
||
|
node1.links.remove(node2)
|
||
|
node2.links.remove(node1)
|
||
|
except: # 'NoneType' object has no attribute 'links'
|
||
|
pass
|
||
|
|
||
|
|
||
|
def redirect(graph, node1, node2):
|
||
|
""" Connects all of node1's edges to node2 and unlinks node1.
|
||
|
"""
|
||
|
if not isinstance(node1, Node):
|
||
|
node1 = graph[node1]
|
||
|
if not isinstance(node2, Node):
|
||
|
node2 = graph[node2]
|
||
|
for e in graph.edges:
|
||
|
if node1 in (e.node1, e.node2):
|
||
|
if e.node1 == node1 and e.node2 != node2:
|
||
|
graph._add_edge_copy(e, node1=node2, node2=e.node2)
|
||
|
if e.node2 == node1 and e.node1 != node2:
|
||
|
graph._add_edge_copy(e, node1=e.node1, node2=node2)
|
||
|
unlink(graph, node1)
|
||
|
|
||
|
|
||
|
def cut(graph, node):
|
||
|
""" Unlinks the given node, but keeps edges intact by connecting the surrounding nodes.
|
||
|
If A, B, C, D are nodes and A->B, B->C, B->D, if we then cut B: A->C, A->D.
|
||
|
"""
|
||
|
if not isinstance(node, Node):
|
||
|
node = graph[node]
|
||
|
for e in graph.edges:
|
||
|
if node in (e.node1, e.node2):
|
||
|
for n in node.links:
|
||
|
if e.node1 == node and e.node2 != n:
|
||
|
graph._add_edge_copy(e, node1=n, node2=e.node2)
|
||
|
if e.node2 == node and e.node1 != n:
|
||
|
graph._add_edge_copy(e, node1=e.node1, node2=n)
|
||
|
unlink(graph, node)
|
||
|
|
||
|
|
||
|
def insert(graph, node, a, b):
|
||
|
""" Inserts the given node between node a and node b.
|
||
|
If A, B, C are nodes and A->B, if we then insert C: A->C, C->B.
|
||
|
"""
|
||
|
if not isinstance(node, Node):
|
||
|
node = graph[node]
|
||
|
if not isinstance(a, Node):
|
||
|
a = graph[a]
|
||
|
if not isinstance(b, Node):
|
||
|
b = graph[b]
|
||
|
for e in graph.edges:
|
||
|
if e.node1 == a and e.node2 == b:
|
||
|
graph._add_edge_copy(e, node1=a, node2=node)
|
||
|
graph._add_edge_copy(e, node1=node, node2=b)
|
||
|
if e.node1 == b and e.node2 == a:
|
||
|
graph._add_edge_copy(e, node1=b, node2=node)
|
||
|
graph._add_edge_copy(e, node1=node, node2=a)
|
||
|
unlink(graph, a, b)
|
||
|
|
||
|
#### GRAPH EXPORT ##################################################################################
|
||
|
|
||
|
|
||
|
class GraphRenderer(object):
|
||
|
|
||
|
def __init__(self, graph):
|
||
|
self.graph = graph
|
||
|
|
||
|
def serialize(self, *args, **kwargs):
|
||
|
pass
|
||
|
|
||
|
def export(self, path, *args, **kwargs):
|
||
|
pass
|
||
|
|
||
|
#--- GRAPH EXPORT: HTML5 <CANVAS> ELEMENT ---------------------------------------------------------
|
||
|
# Exports graphs to interactive web pages using graph.js.
|
||
|
|
||
|
|
||
|
def minify(js):
|
||
|
""" Returns a compressed Javascript string with comments and whitespace removed.
|
||
|
"""
|
||
|
import re
|
||
|
W = (
|
||
|
"\(\[\{\,\;\=\-\+\*\/",
|
||
|
"\)\]\}\,\;\=\-\+\*\/"
|
||
|
)
|
||
|
for a, b in (
|
||
|
(re.compile(r"\/\*.*?\*\/", re.S), ""), # multi-line comments /**/
|
||
|
(re.compile(r"\/\/.*"), ""), # singe line comments //
|
||
|
(re.compile(r";\n"), "; "), # statements (correctly) terminated with ;
|
||
|
(re.compile(r"[ \t]+"), " "), # spacing and indentation
|
||
|
(re.compile(r"[ \t]([\(\[\{\,\;\=\-\+\*\/])"), "\\1"),
|
||
|
(re.compile(r"([\)\]\}\,\;\=\-\+\*\/])[ \t]"), "\\1"),
|
||
|
(re.compile(r"\s+\n"), "\n"),
|
||
|
(re.compile(r"\n+"), "\n")):
|
||
|
js = a.sub(b, js)
|
||
|
return js.strip()
|
||
|
|
||
|
DEFAULT, INLINE = "default", "inline"
|
||
|
HTML, CANVAS, STYLE, CSS, SCRIPT, DATA = \
|
||
|
"html", "canvas", "style", "css", "script", "data"
|
||
|
|
||
|
|
||
|
class HTMLCanvasRenderer(GraphRenderer):
|
||
|
|
||
|
def __init__(self, graph, **kwargs):
|
||
|
self.graph = graph
|
||
|
self._source = \
|
||
|
"<!doctype html>\n" \
|
||
|
"<html>\n" \
|
||
|
"<head>\n" \
|
||
|
"\t<title>%s</title>\n" \
|
||
|
"\t<meta charset=\"utf-8\">\n" \
|
||
|
"\t%s\n" \
|
||
|
"\t<script type=\"text/javascript\" src=\"%scanvas.js\"></script>\n" \
|
||
|
"\t<script type=\"text/javascript\" src=\"%sgraph.js\"></script>\n" \
|
||
|
"</head>\n" \
|
||
|
"<body>\n" \
|
||
|
"\t<div id=\"%s\" style=\"width:%spx; height:%spx;\">\n" \
|
||
|
"\t\t<script type=\"text/canvas\">\n" \
|
||
|
"\t\t%s\n" \
|
||
|
"\t\t</script>\n" \
|
||
|
"\t</div>\n" \
|
||
|
"</body>\n" \
|
||
|
"</html>"
|
||
|
# HTML
|
||
|
self.title = "Graph" # <title>Graph</title>
|
||
|
self.javascript = None # Path to canvas.js + graph.js.
|
||
|
self.stylesheet = INLINE # Either None, INLINE, DEFAULT (style.css) or a custom path.
|
||
|
self.id = "graph" # <div id="graph">
|
||
|
self.ctx = "canvas.element"
|
||
|
self.width = 700 # Canvas width in pixels.
|
||
|
self.height = 500 # Canvas height in pixels.
|
||
|
# JS Graph
|
||
|
self.frames = 500 # Number of frames of animation.
|
||
|
self.fps = 30 # Frames per second.
|
||
|
self.ipf = 2 # Iterations per frame.
|
||
|
self.weighted = False # Indicate betweenness centrality as a shadow?
|
||
|
self.directed = False # Indicate edge direction with an arrow?
|
||
|
self.prune = None # None or int, calls Graph.prune() in Javascript.
|
||
|
self.pack = True # Shortens leaf edges, adds eigenvector weight to node radius.
|
||
|
# JS GraphLayout
|
||
|
self.distance = graph.distance # Node spacing.
|
||
|
self.k = graph.layout.k # Force constant.
|
||
|
self.force = graph.layout.force # Force dampener.
|
||
|
self.repulsion = graph.layout.repulsion # Repulsive force radius.
|
||
|
# Data
|
||
|
self.weight = [DEGREE, WEIGHT, CENTRALITY]
|
||
|
self.href = {} # Dictionary of Node.id => URL.
|
||
|
self.css = {} # Dictionary of Node.id => CSS classname.
|
||
|
# Default options.
|
||
|
# If a Node or Edge has one of these settings,
|
||
|
# it is not passed to Javascript to save bandwidth.
|
||
|
self.default = {
|
||
|
"radius": 5,
|
||
|
"fixed": False,
|
||
|
"fill": None,
|
||
|
"stroke": (0, 0, 0, 1),
|
||
|
"strokewidth": 1,
|
||
|
"text": (0, 0, 0, 1),
|
||
|
"fontsize": 11,
|
||
|
}
|
||
|
# Override settings from keyword arguments.
|
||
|
self.default.update(kwargs.pop("default", {}))
|
||
|
for k, v in kwargs.items():
|
||
|
setattr(self, k, v)
|
||
|
|
||
|
def _escape(self, s):
|
||
|
if isinstance(s, str):
|
||
|
return "\"%s\"" % s.replace("\"", "\\\"")
|
||
|
return s
|
||
|
|
||
|
def _rgba(self, clr):
|
||
|
# Color or tuple to a CSS "rgba(255,255,255,1.0)" string.
|
||
|
return "\"rgba(%s,%s,%s,%.2f)\"" % (int(clr[0] * 255), int(clr[1] * 255), int(clr[2] * 255), clr[3])
|
||
|
|
||
|
@property
|
||
|
def data(self):
|
||
|
""" Yields a string of Javascript code that loads the nodes and edges into variable g,
|
||
|
which is a Javascript Graph object (see graph.js).
|
||
|
This can be the response of an XMLHttpRequest, after wich you move g into your own variable.
|
||
|
"""
|
||
|
return "".join(self._data())
|
||
|
|
||
|
def _data(self):
|
||
|
s = []
|
||
|
s.append("g = new Graph(%s, %s);\n" % (self.ctx, self.distance))
|
||
|
s.append("var n = {")
|
||
|
if len(self.graph.nodes) > 0:
|
||
|
s.append("\n")
|
||
|
# Translate node properties to Javascript dictionary (var n).
|
||
|
for n in self.graph.nodes:
|
||
|
p = []
|
||
|
if n._x != 0:
|
||
|
p.append("x:%i" % n._x) # 0
|
||
|
if n._y != 0:
|
||
|
p.append("y:%i" % n._y) # 0
|
||
|
if n.radius != self.default["radius"]:
|
||
|
p.append("radius:%.1f" % n.radius) # 5.0
|
||
|
if n.fixed != self.default["fixed"]:
|
||
|
p.append("fixed:%s" % repr(n.fixed).lower()) # false
|
||
|
if n.fill != self.default["fill"]:
|
||
|
p.append("fill:%s" % self._rgba(n.fill)) # [0,0,0,1.0]
|
||
|
if n.stroke != self.default["stroke"]:
|
||
|
p.append("stroke:%s" % self._rgba(n.stroke)) # [0,0,0,1.0]
|
||
|
if n.strokewidth != self.default["strokewidth"]:
|
||
|
p.append("strokewidth:%.1f" % n.strokewidth) # 0.5
|
||
|
if n.text is None:
|
||
|
p.append("text:false")
|
||
|
if n.text and n.text.fill != self.default["text"]:
|
||
|
p.append("text:%s" % self._rgba(n.text.fill)) # [0,0,0,1.0]
|
||
|
if n.text and "font" in n.text.__dict__:
|
||
|
p.append("font:\"%s\"" % n.text.__dict__["font"]) # "sans-serif"
|
||
|
if n.text and n.text.__dict__.get("fontsize", self.default["fontsize"]) != self.default["fontsize"]:
|
||
|
p.append("fontsize:%i" % int(max(1, n.text.fontsize)))
|
||
|
if n.text and "fontweight" in n.text.__dict__: # "bold"
|
||
|
p.append("fontweight:\"%s\"" % n.text.__dict__["fontweight"])
|
||
|
if n.text and n.text.string != n.id:
|
||
|
p.append("label:\"%s\"" % n.text.string)
|
||
|
if n.id in self.href:
|
||
|
p.append("href:\"%s\"" % self.href[n.id])
|
||
|
if n.id in self.css:
|
||
|
p.append("css:\"%s\"" % self.css[n.id])
|
||
|
s.append("\t%s: {%s},\n" % (self._escape(n.id), ", ".join(p)))
|
||
|
s[-1] = s[-1].rstrip(",\n") # Trailing comma breaks in IE.
|
||
|
s.append("\n};\n")
|
||
|
s.append("var e = [")
|
||
|
if len(self.graph.edges) > 0:
|
||
|
s.append("\n")
|
||
|
# Translate edge properties to Javascript dictionary (var e).
|
||
|
for e in self.graph.edges:
|
||
|
id1, id2 = self._escape(e.node1.id), self._escape(e.node2.id)
|
||
|
p = []
|
||
|
if e.weight != 0:
|
||
|
p.append("weight:%.2f" % e.weight) # 0.00
|
||
|
if e.length != 1:
|
||
|
p.append("length:%.2f" % e.length) # 1.00
|
||
|
if e.type is not None:
|
||
|
p.append("type:\"%s\"" % e.type) # "is-part-of"
|
||
|
if e.stroke != self.default["stroke"]:
|
||
|
p.append("stroke:%s" % self._rgba(e.stroke)) # [0,0,0,1.0]
|
||
|
if e.strokewidth != self.default["strokewidth"]:
|
||
|
p.append("strokewidth:%.2f" % e.strokewidth) # 0.5
|
||
|
s.append("\t[%s, %s, {%s}],\n" % (id1, id2, ", ".join(p)))
|
||
|
s[-1] = s[-1].rstrip(",\n") # Trailing comma breaks in IE.
|
||
|
s.append("\n];\n")
|
||
|
# Append the nodes to graph g.
|
||
|
s.append("for (var id in n) {\n"
|
||
|
"\tg.addNode(id, n[id]);\n"
|
||
|
"}\n")
|
||
|
# Append the edges to graph g.
|
||
|
s.append("for (var i=0; i < e.length; i++) {\n"
|
||
|
"\tvar n1 = g.nodeset[e[i][0]];\n"
|
||
|
"\tvar n2 = g.nodeset[e[i][1]];\n"
|
||
|
"\tg.addEdge(n1, n2, e[i][2]);\n"
|
||
|
"}")
|
||
|
return s
|
||
|
|
||
|
@property
|
||
|
def script(self):
|
||
|
""" Yields a string of canvas.js code.
|
||
|
A setup() function loads the nodes and edges into variable g (Graph),
|
||
|
A draw() function starts the animation and updates the layout of g.
|
||
|
"""
|
||
|
return "".join(self._script())
|
||
|
|
||
|
def _script(self):
|
||
|
s = []
|
||
|
s.append("function setup(canvas) {\n")
|
||
|
s.append("\tcanvas.size(%s, %s);\n" % (self.width, self.height))
|
||
|
s.append("\tcanvas.fps = %s;\n" % (self.fps))
|
||
|
s.append("\t" + "".join(self._data()).replace("\n", "\n\t"))
|
||
|
s.append("\n")
|
||
|
# Apply the layout settings.
|
||
|
s.append("\tg.layout.k = %s; // Force constant (= edge length).\n"
|
||
|
"\tg.layout.force = %s; // Repulsive strength.\n"
|
||
|
"\tg.layout.repulsion = %s; // Repulsive radius.\n" % (
|
||
|
self.k,
|
||
|
self.force,
|
||
|
self.repulsion))
|
||
|
# Apply eigenvector, betweenness and degree centrality.
|
||
|
if self.weight is True:
|
||
|
s.append(
|
||
|
"\tg.eigenvectorCentrality();\n"
|
||
|
"\tg.betweennessCentrality();\n"
|
||
|
"\tg.degreeCentrality();\n")
|
||
|
if isinstance(self.weight, (list, tuple)):
|
||
|
if WEIGHT in self.weight:
|
||
|
s.append(
|
||
|
"\tg.eigenvectorCentrality();\n")
|
||
|
if CENTRALITY in self.weight:
|
||
|
s.append(
|
||
|
"\tg.betweennessCentrality();\n")
|
||
|
if DEGREE in self.weight:
|
||
|
s.append(
|
||
|
"\tg.degreeCentrality();\n")
|
||
|
# Apply node weight to node radius.
|
||
|
if self.pack:
|
||
|
s.append(
|
||
|
"\t// Apply Node.weight to Node.radius.\n"
|
||
|
"\tfor (var i=0; i < g.nodes.length; i++) {\n"
|
||
|
"\t\tvar n = g.nodes[i];\n"
|
||
|
"\t\tn.radius = n.radius + n.radius * n.weight;\n"
|
||
|
"\t}\n")
|
||
|
# Apply edge length (leaves get shorter edges).
|
||
|
if self.pack:
|
||
|
s.append(
|
||
|
"\t// Apply Edge.length (leaves get shorter edges).\n"
|
||
|
"\tfor (var i=0; i < g.nodes.length; i++) {\n"
|
||
|
"\t\tvar e = g.nodes[i].edges();\n"
|
||
|
"\t\tif (e.length == 1) {\n"
|
||
|
"\t\t\te[0].length *= 0.2;\n"
|
||
|
"\t\t}\n"
|
||
|
"\t}\n")
|
||
|
# Apply pruning.
|
||
|
if self.prune is not None:
|
||
|
s.append(
|
||
|
"\tg.prune(%s);\n" % self.prune)
|
||
|
# Implement <canvas> draw().
|
||
|
s.append("}\n")
|
||
|
s.append("function draw(canvas) {\n"
|
||
|
"\tif (g.layout.iterations <= %s) {\n"
|
||
|
"\t\tcanvas.clear();\n"
|
||
|
"\t\t//shadow();\n"
|
||
|
"\t\tstroke(0);\n"
|
||
|
"\t\tfill(0,0);\n"
|
||
|
"\t\tg.update(%s);\n"
|
||
|
"\t\tg.draw(%s, %s);\n"
|
||
|
"\t}\n"
|
||
|
"\tg.drag(canvas.mouse);\n"
|
||
|
"}" % (
|
||
|
int(self.frames),
|
||
|
int(self.ipf),
|
||
|
str(self.weighted).lower(),
|
||
|
str(self.directed).lower()))
|
||
|
return s
|
||
|
|
||
|
@property
|
||
|
def canvas(self):
|
||
|
""" Yields a string of HTML with a <div id="graph"> containing a <script type="text/canvas">.
|
||
|
The <div id="graph"> wrapper is required as a container for the node labels.
|
||
|
"""
|
||
|
s = [
|
||
|
"<div id=\"%s\" style=\"width:%spx; height:%spx;\">\n" % (self.id, self.width, self.height),
|
||
|
"\t<script type=\"text/canvas\">\n",
|
||
|
"\t\t%s\n" % self.script.replace("\n", "\n\t\t"),
|
||
|
"\t</script>\n",
|
||
|
"</div>"
|
||
|
]
|
||
|
return "".join(s)
|
||
|
|
||
|
@property
|
||
|
def style(self):
|
||
|
""" Yields a string of CSS for <div id="graph">.
|
||
|
"""
|
||
|
return \
|
||
|
"body { font: 11px sans-serif; }\n" \
|
||
|
"a { color: dodgerblue; }\n" \
|
||
|
"#%s canvas { }\n" \
|
||
|
"#%s .node-label { font-size: 11px; }\n" \
|
||
|
"#%s {\n" \
|
||
|
"\tdisplay: inline-block;\n" \
|
||
|
"\tposition: relative;\n" \
|
||
|
"\toverflow: hidden;\n" \
|
||
|
"\tborder: 1px solid #ccc;\n" \
|
||
|
"}" % (self.id, self.id, self.id)
|
||
|
|
||
|
@property
|
||
|
def html(self):
|
||
|
""" Yields a string of HTML to visualize the graph using a force-based spring layout.
|
||
|
The js parameter sets the path to graph.js and canvas.js.
|
||
|
"""
|
||
|
js = self.javascript or ""
|
||
|
if self.stylesheet == INLINE:
|
||
|
css = self.style.replace("\n", "\n\t\t").rstrip("\t")
|
||
|
css = "<style type=\"text/css\">\n\t\t%s\n\t</style>" % css
|
||
|
elif self.stylesheet == DEFAULT:
|
||
|
css = "<link rel=\"stylesheet\" href=\"style.css\" type=\"text/css\" media=\"screen\" />"
|
||
|
elif self.stylesheet is not None:
|
||
|
css = "<link rel=\"stylesheet\" href=\"%s\" type=\"text/css\" media=\"screen\" />" % self.stylesheet
|
||
|
else:
|
||
|
css = ""
|
||
|
s = self._script()
|
||
|
s = "".join(s)
|
||
|
s = "\t" + s.replace("\n", "\n\t\t\t")
|
||
|
s = s.rstrip()
|
||
|
s = self._source % (
|
||
|
self.title,
|
||
|
css,
|
||
|
js,
|
||
|
js,
|
||
|
self.id,
|
||
|
self.width,
|
||
|
self.height,
|
||
|
s)
|
||
|
return s
|
||
|
|
||
|
def serialize(self, type=HTML):
|
||
|
if type == HTML:
|
||
|
return self.html
|
||
|
if type == CANVAS:
|
||
|
return self.canvas
|
||
|
if type in (STYLE, CSS):
|
||
|
return self.style
|
||
|
if type == SCRIPT:
|
||
|
return self.script
|
||
|
if type == DATA:
|
||
|
return self.data
|
||
|
|
||
|
# Backwards compatibility.
|
||
|
render = serialize
|
||
|
|
||
|
def export(self, path, encoding="utf-8"):
|
||
|
""" Generates a folder at the given path containing an index.html
|
||
|
that visualizes the graph using the HTML5 <canvas> tag.
|
||
|
"""
|
||
|
if os.path.exists(path):
|
||
|
rmtree(path)
|
||
|
os.mkdir(path)
|
||
|
# Copy compressed graph.js + canvas.js (unless a custom path is given.)
|
||
|
if self.javascript is None:
|
||
|
for p, f in (("..", "canvas.js"), (".", "graph.js")):
|
||
|
a = open(os.path.join(MODULE, p, f), "r")
|
||
|
b = open(os.path.join(path, f), "w")
|
||
|
b.write(minify(a.read()))
|
||
|
b.close()
|
||
|
# Create style.css.
|
||
|
if self.stylesheet == DEFAULT:
|
||
|
f = open(os.path.join(path, "style.css"), "w")
|
||
|
f.write(self.style)
|
||
|
f.close()
|
||
|
# Create index.html.
|
||
|
f = open(os.path.join(path, "index.html"), "w", encoding=encoding)
|
||
|
f.write(self.html)
|
||
|
f.close()
|
||
|
|
||
|
#--- GRAPH EXPORT: GRAPHML ------------------------------------------------------------------------
|
||
|
# Exports graphs as GraphML XML, which can be read by Gephi (https://gephi.org).
|
||
|
# Author: Frederik Elwert <frederik.elwert@web.de>, 2014.
|
||
|
|
||
|
GRAPHML = "graphml"
|
||
|
|
||
|
|
||
|
class GraphMLRenderer(GraphRenderer):
|
||
|
|
||
|
def serialize(self, directed=False):
|
||
|
p = "tmp.graphml"
|
||
|
self.export(p, directed, encoding="utf-8")
|
||
|
s = open(p, encoding="utf-8").read()
|
||
|
os.unlink(p)
|
||
|
return s
|
||
|
|
||
|
def export(self, path, directed=False, encoding="utf-8"):
|
||
|
""" Generates a GraphML XML file at the given path.
|
||
|
"""
|
||
|
import xml.etree.ElementTree as etree
|
||
|
ns = "{http://graphml.graphdrawing.org/xmlns}"
|
||
|
etree.register_namespace("", ns.strip("{}"))
|
||
|
# Define type for node labels (string).
|
||
|
# Define type for node edges (float).
|
||
|
root = etree.Element(ns + "graphml")
|
||
|
root.insert(0, etree.Element(ns + "key", **{
|
||
|
"id": "node_label", "for": "node", "attr.name": "label", "attr.type": "string"
|
||
|
}))
|
||
|
root.insert(0, etree.Element(ns + "key", **{
|
||
|
"id": "edge_weight", "for": "edge", "attr.name": "weight", "attr.type": "double"
|
||
|
}))
|
||
|
# Map Node.id => GraphML node id.
|
||
|
m = {}
|
||
|
g = etree.SubElement(root, ns + "graph", id="g", edgedefault=directed and "directed" or "undirected")
|
||
|
# Export nodes.
|
||
|
for i, n in enumerate(self.graph.nodes):
|
||
|
m[n.id] = "node%s" % i
|
||
|
x = etree.SubElement(g, ns + "node", id=m[n.id])
|
||
|
x = etree.SubElement(x, ns + "data", key="node_label")
|
||
|
if n.text and n.text.string != n.id:
|
||
|
x.text = n.text.string
|
||
|
# Export edges.
|
||
|
for i, e in enumerate(self.graph.edges):
|
||
|
x = etree.SubElement(g, ns + "edge", id="edge%s" % i, source=m[e.node1.id], target=m[e.node2.id])
|
||
|
x = etree.SubElement(x, ns + "data", key="edge_weight")
|
||
|
x.text = "%.3f" % e.weight
|
||
|
# Export graph with pretty indented XML.
|
||
|
# http://effbot.org/zone/element-lib.htm#prettyprint
|
||
|
|
||
|
def indent(e, level=0):
|
||
|
w = "\n" + level * " "
|
||
|
if len(e):
|
||
|
if not e.text or not e.text.strip():
|
||
|
e.text = w + " "
|
||
|
if not e.tail or not e.tail.strip():
|
||
|
e.tail = w
|
||
|
for e in e:
|
||
|
indent(e, level + 1)
|
||
|
if not e.tail or not e.tail.strip():
|
||
|
e.tail = w
|
||
|
else:
|
||
|
if level and (not e.tail or not e.tail.strip()):
|
||
|
e.tail = w
|
||
|
indent(root)
|
||
|
tree = etree.ElementTree(root)
|
||
|
tree.write(path, encoding=encoding)
|
||
|
|
||
|
#--------------------------------------------------------------------------------------------------
|
||
|
# The export() and serialize() function are called from Graph.export() and Graph.serialize(),
|
||
|
# and are expected to handle any GraphRenderer by specifying an optional type=HTML|GRAPHML.
|
||
|
|
||
|
|
||
|
def export(graph, path, encoding="utf-8", **kwargs):
|
||
|
type = kwargs.pop("type", HTML)
|
||
|
# Export to GraphML.
|
||
|
if type == GRAPHML or path.endswith(".graphml"):
|
||
|
r = GraphMLRenderer(graph)
|
||
|
return r.export(path, directed=kwargs.get("directed", False), encoding=encoding)
|
||
|
# Export to HTML with <canvas>.
|
||
|
if type == HTML:
|
||
|
kwargs.setdefault("stylesheet", DEFAULT)
|
||
|
r = HTMLCanvasRenderer(graph, **kwargs)
|
||
|
return r.export(path, encoding)
|
||
|
|
||
|
|
||
|
def serialize(graph, type=HTML, **kwargs):
|
||
|
# Return GraphML string.
|
||
|
if type == GRAPHML:
|
||
|
r = GraphMLRenderer(graph)
|
||
|
return r.serialize(directed=kwargs.get("directed", False))
|
||
|
# Return HTML string.
|
||
|
if type in (HTML, CANVAS, STYLE, CSS, SCRIPT, DATA):
|
||
|
kwargs.setdefault("stylesheet", INLINE)
|
||
|
r = HTMLCanvasRenderer(graph, **kwargs)
|
||
|
return r.serialize(type)
|
||
|
|
||
|
# Backwards compatibility.
|
||
|
write, render = export, serialize
|