|
|
|
|
Spin Transport and Accumulation in a 2D Weyl Fermion System
|
|
|
|
|
|
|
|
|
|
T. Tzen Ong1, 2 and Naoto Nagaosa1, 2
|
|
|
|
|
1RIKEN Center for Emergent Matter Science (CEMS), Saitama 351-0198, Japan 2Department of Applied Physics, University of Tokyo, Tokyo 113-8656, Japan (Dated: October 19, 2017)
|
|
|
|
|
|
|
|
|
|
In this work, we study the spin Hall effect and Rashba-Edelstein effect of a 2D Weyl fermion
|
|
|
|
|
|
|
|
|
|
system in the clean limit using the Kubo formalism. Spin transport is solely due to the spin-torque
|
|
|
|
|
|
|
|
|
|
current in this strongly spin-orbit coupled (SOC) system, and chiral spin-flip scattering off non-SOC
|
|
|
|
|
|
|
|
|
|
scalar impurities, with potential strength V and size a, gives rise to a skew-scattering mechanism
|
|
|
|
|
|
|
|
|
|
for the spin Hall effect. The key result is that the resultant spin-Hall angle has a fixed sign, with
|
|
|
|
|
|
|
|
|
|
SH O
|
|
|
|
|
|
|
|
|
|
V2 vF2 /a2
|
|
|
|
|
|
|
|
|
|
(kF
|
|
|
|
|
|
|
|
|
|
a)4
|
|
|
|
|
|
|
|
|
|
being a strongly-dependent function of kF a, with kF and vF being the
|
|
|
|
|
|
|
|
|
|
Fermi wave-vector and Fermi velocity respectively. This, therefore, allows for the possibility of
|
|
|
|
|
|
|
|
|
|
tuning the SHE by adjusting the Fermi energy or impurity size.
|
|
|
|
|
|
|
|
|
|
arXiv:1701.00074v3 [cond-mat.mes-hall] 18 Oct 2017
|
|
|
|
|
|
|
|
|
|
The spin Hall effect (SHE) has a long and rich history,
|
|
|
|
|
|
|
|
|
|
starting with the initial proposal of asymmetric Mott
|
|
|
|
|
|
|
|
|
|
scattering by Dyakonov and Perel [1, 2]. This extrin-
|
|
|
|
|
|
|
|
|
|
sic mechanism was re-introduced in 1999[3, 4], while an
|
|
|
|
|
|
|
|
|
|
intrinsic SHE was first proposed in 2003[5, 6]. The pro-
|
|
|
|
|
|
|
|
|
|
posal of a two-dimensional (2D) Z2-protected Quantum Spin Hall (QSH) state[7], and its successful prediction
|
|
|
|
|
|
|
|
|
|
in HgTe/CdTe quantum well [8] quickly followed; thus
|
|
|
|
|
|
|
|
|
|
giving rise to a new field of topological materials[9, 10],
|
|
|
|
|
|
|
|
|
|
which now include 2D QSH states [11], 3D topological in-
|
|
|
|
|
|
|
|
|
|
sulators (TI)[12, 13], topological Kondo insulators[14, 15]
|
|
|
|
|
|
|
|
|
|
and Weyl semi-metals[16].
|
|
|
|
|
|
|
|
|
|
One of the most striking characteristic of 3D TI ma-
|
|
|
|
|
|
|
|
|
|
terials is the existence of spin-momentum locked chiral
|
|
|
|
|
|
|
|
|
|
Weyl fermions on the surfaces, which are expected to
|
|
|
|
|
|
|
|
|
|
provide highly efficient spin-charge conversion[17, 18], via
|
|
|
|
|
|
|
|
|
|
the spin Hall effect or spin accumulation in the Rashba-
|
|
|
|
|
|
|
|
|
|
Edelsten effect[19]. Hence, there is a strong interest
|
|
|
|
|
|
|
|
|
|
in spintronic TI heterostructures, with many theoret-
|
|
|
|
|
|
|
|
|
|
ical works[20<32>25], discussing a plethora of spin-charge
|
|
|
|
|
|
|
|
|
|
phenomena, including magnetoresistance effects, inverse
|
|
|
|
|
|
|
|
|
|
spin-galvanic effect, and spin-transfer torque, which have
|
|
|
|
|
|
|
|
|
|
stimulated a flurry of experimental efforts[18, 26<32>30].
|
|
|
|
|
|
|
|
|
|
In heavy-metal/ ferromagnet systems, e.g. FePt/Au,
|
|
|
|
|
|
|
|
|
|
a giant spin Hall angle (SHA) of 0.1 has been
|
|
|
|
|
|
|
|
|
|
reported[31], which has been interpreted as resonant
|
|
|
|
|
|
|
|
|
|
skew-scattering off the Fe impurities[32]. However, re-
|
|
|
|
|
|
|
|
|
|
cent experiments on TI heterostructures[26, 29] have reported values of tan SH > 100%, with combined sur-
|
|
|
|
|
|
|
|
|
|
face and bulk contributions. In order to disentangle the
|
|
|
|
|
|
|
|
|
|
surface Weyl fermion contribution from the bulk bands,
|
|
|
|
|
|
|
|
|
|
a Cu-layer inserted TI/Cu/ferromagnet heterostructure has recently been engineered, with tan SH 50% [30].
|
|
|
|
|
|
|
|
|
|
Similar to the anomalous Hall effect, there are both
|
|
|
|
|
|
|
|
|
|
intrinsic Berry curvature and extrinsic scattering contri-
|
|
|
|
|
|
|
|
|
|
butions to the SHE. For systems with weak spin-orbit
|
|
|
|
|
|
|
|
|
|
coupling (SOC), it has been shown[33] that the extrinsic
|
|
|
|
|
|
|
|
|
|
skew scattering mechanism dominates in the clean limit;
|
|
|
|
|
|
|
|
|
|
hence, the spin Hall conductivity xzy scales with the lon-
|
|
|
|
|
|
|
|
|
|
gitudinal conductivity yy, and the SHA, SH
|
|
|
|
|
|
|
|
|
|
=
|
|
|
|
|
|
|
|
|
|
xzy yy
|
|
|
|
|
|
|
|
|
|
is
|
|
|
|
|
|
|
|
|
|
a well-defined measure of the SHE. The Rasha-Edelstein
|
|
|
|
|
|
|
|
|
|
effect is a closely related transport-driven spin accumula-
|
|
|
|
|
|
|
|
|
|
tion phenomena, which also scales with yy in the clean limit; the spin accumulation Si = i E is proportional to the applied electric field E (along -direction) with a coefficient i . For the strongly SOC-coupled Weyl system considered here, the main results are that due
|
|
|
|
|
|
|
|
|
|
to spin-momentum locking, chiral spin-flip scattering off
|
|
|
|
|
|
|
|
|
|
non-magnetic
|
|
|
|
|
|
|
|
|
|
impurities
|
|
|
|
|
|
|
|
|
|
drives
|
|
|
|
|
|
|
|
|
|
an
|
|
|
|
|
|
|
|
|
|
O(
|
|
|
|
|
|
|
|
|
|
1 ni
|
|
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
skew-scattering
|
|
|
|
|
|
|
|
|
|
mechanism,
|
|
|
|
|
|
|
|
|
|
and
|
|
|
|
|
|
|
|
|
|
that
|
|
|
|
|
|
|
|
|
|
Rashba-Edelstein
|
|
|
|
|
|
|
|
|
|
is
|
|
|
|
|
|
|
|
|
|
an
|
|
|
|
|
|
|
|
|
|
O(
|
|
|
|
|
|
|
|
|
|
1 t
|
|
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
ef-
|
|
|
|
|
|
|
|
|
|
fect; here, ni is the impurity concentration and t is the
|
|
|
|
|
|
|
|
|
|
transport scattering rate.
|
|
|
|
|
|
|
|
|
|
We adopt the Kubo formula framework for
|
|
|
|
|
|
|
|
|
|
calculating yy, xzy and yi , given by the retarded current-current correlation functions, yy =
|
|
|
|
|
|
|
|
|
|
-lim0
|
|
|
|
|
|
|
|
|
|
lim
|
|
|
|
|
k0
|
|
|
|
|
|
|
|
|
|
Im
|
|
|
|
|
|
|
|
|
|
yy (k,)
|
|
|
|
|
|
|
|
|
|
,
|
|
|
|
|
|
|
|
|
|
xzy
|
|
|
|
|
|
|
|
|
|
=
|
|
|
|
|
|
|
|
|
|
-lim0
|
|
|
|
|
|
|
|
|
|
lim
|
|
|
|
|
k0
|
|
|
|
|
|
|
|
|
|
I
|
|
|
|
|
|
|
|
|
|
m
|
|
|
|
|
|
|
|
|
|
xzy (k,)
|
|
|
|
|
|
|
|
|
|
,
|
|
|
|
|
|
|
|
|
|
and yi
|
|
|
|
|
|
|
|
|
|
=
|
|
|
|
|
|
|
|
|
|
-lim0
|
|
|
|
|
|
|
|
|
|
lim
|
|
|
|
|
k0
|
|
|
|
|
|
|
|
|
|
I
|
|
|
|
|
|
|
|
|
|
m
|
|
|
|
|
|
|
|
|
|
yi (k,)
|
|
|
|
|
|
|
|
|
|
;
|
|
|
|
|
|
|
|
|
|
where, yy(k, ),
|
|
|
|
|
|
|
|
|
|
xzy(k, ), and yi (k, ) are the current-current, spin current-current and spin accumulation-current correla-
|
|
|
|
|
tion functions respectively.
|
|
|
|
|
|
|
|
|
|
In spin-orbit coupled systems, the proper definition
|
|
|
|
|
|
|
|
|
|
of the spin current is more subtle as spin is not a
|
|
|
|
|
|
|
|
|
|
conserved quantity. Ref. [34] presented a bulk con-
|
|
|
|
|
|
|
|
|
|
served spin current that satisfies a continuity equation,
|
|
|
|
|
|
|
|
|
|
dSz dt
|
|
|
|
|
|
|
|
|
|
+
|
|
|
|
|
|
|
|
|
|
<EFBFBD>
|
|
|
|
|
|
|
|
|
|
(Js
|
|
|
|
|
|
|
|
|
|
+
|
|
|
|
|
|
|
|
|
|
P )
|
|
|
|
|
|
|
|
|
|
=
|
|
|
|
|
|
|
|
|
|
0,
|
|
|
|
|
|
|
|
|
|
with
|
|
|
|
|
|
|
|
|
|
an
|
|
|
|
|
|
|
|
|
|
additional
|
|
|
|
|
|
|
|
|
|
spin-torque
|
|
|
|
|
|
|
|
|
|
density term, <20> Pi = i [Si, H0], as well as the conven-
|
|
|
|
|
|
|
|
|
|
tional
|
|
|
|
|
|
|
|
|
|
spin
|
|
|
|
|
|
|
|
|
|
current
|
|
|
|
|
|
|
|
|
|
jsz
|
|
|
|
|
|
|
|
|
|
=
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 2
|
|
|
|
|
|
|
|
|
|
{v,
|
|
|
|
|
|
|
|
|
|
S
|
|
|
|
|
|
|
|
|
|
z
|
|
|
|
|
|
|
|
|
|
}.
|
|
|
|
|
|
|
|
|
|
Hence,
|
|
|
|
|
|
|
|
|
|
the
|
|
|
|
|
|
|
|
|
|
trans-
|
|
|
|
|
|
|
|
|
|
port spin current is the sum of a spin-polarized and a
|
|
|
|
|
|
|
|
|
|
spin-torque current, Jsi = jsi + Pi, succintly expressed as
|
|
|
|
|
|
|
|
|
|
the
|
|
|
|
|
|
|
|
|
|
time-derivative
|
|
|
|
|
|
|
|
|
|
of
|
|
|
|
|
|
|
|
|
|
a
|
|
|
|
|
|
|
|
|
|
spin-dipole
|
|
|
|
|
|
|
|
|
|
operator,
|
|
|
|
|
|
|
|
|
|
J^s
|
|
|
|
|
|
|
|
|
|
=
|
|
|
|
|
|
|
|
|
|
d(r^S^) dt
|
|
|
|
|
|
|
|
|
|
.
|
|
|
|
|
|
|
|
|
|
As pointed out by several groups[35<33>37], there is no fi-
|
|
|
|
|
|
|
|
|
|
nite conventional spin current for Weyl systems; hence,
|
|
|
|
|
|
|
|
|
|
spin transport for Weyl fermions is solely due to the spin-
|
|
|
|
|
|
|
|
|
|
torque density P coming from quantum-mechanical evolution of the electron spin.
|
|
|
|
|
|
|
|
|
|
We consider elastic scattering near the Fermi energy, EF , of 2D Weyl fermions (Dresselhaus-type vF k <20> sys-
|
|
|
|
|
|
|
|
|
|
2
|
|
|
|
|
|
|
|
|
|
(a)
|
|
|
|
|
ky
|
|
|
|
|
kF
|
|
|
|
|
|
|
|
|
|
(b) |k,
|
|
|
|
|
|
|
|
|
|
T (k, k)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
T (k, k)
|
|
|
|
|
|
|
|
|
|
kx
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|k,
|
|
|
|
|
|
|
|
|
|
x
|
|
|
|
|
|
|
|
|
|
x
|
|
|
|
|
|
|
|
|
|
x
|
|
|
|
|
|
|
|
|
|
=
|
|
|
|
|
|
|
|
|
|
+
|
|
|
|
|
|
|
|
|
|
+
|
|
|
|
|
|
|
|
|
|
+...
|
|
|
|
|
|
|
|
|
|
=
|
|
|
|
|
|
|
|
|
|
FIG. 1: Fig. (a) shows a colour density plot of the FS contribution to the Rashba-Edelstein effect yy (Eq. 15c). When the FS is shifted by ky = eEyt due to an external electric field Ey, the non-equilibrium distribution gives rise to a net Sy . Fig. (b) illus-
|
|
|
|
|
trates spin-dependent skew scattering, T , (k, k) and
|
|
|
|
|
T ,(k, k) having positive () and negative (-) chirality respectively, with the helical Weyl fermions defining positive () chirality.
|
|
|
|
|
|
|
|
|
|
tem) from a dilute (ni 1) random distribution of non-
|
|
|
|
|
|
|
|
|
|
magnetic impurities, with scattering off each impurity
|
|
|
|
|
|
|
|
|
|
given by Himp =
|
|
|
|
|
|
|
|
|
|
r
|
|
|
|
|
|
|
|
|
|
c (r)V
|
|
|
|
|
|
|
|
|
|
e-
|
|
|
|
|
|
|
|
|
|
|r|2 a2
|
|
|
|
|
|
|
|
|
|
c (r),
|
|
|
|
|
|
|
|
|
|
with
|
|
|
|
|
|
|
|
|
|
impurity
|
|
|
|
|
|
|
|
|
|
size a. Note that the results can be easily translated
|
|
|
|
|
|
|
|
|
|
into the Rashba-type vF z^ <20> k <20> case via rotation of the momentum by 90. Choosing the chemical potential <20>
|
|
|
|
|
|
|
|
|
|
to lie in the upper helical band, we obtain the following
|
|
|
|
|
|
|
|
|
|
Hamiltonian as,
|
|
|
|
|
|
|
|
|
|
H = H0 + Himp
|
|
|
|
|
|
|
|
|
|
(1)
|
|
|
|
|
|
|
|
|
|
H0 =
|
|
|
|
|
|
|
|
|
|
ck,vF k <20> , ck, - <20> ck,ck,
|
|
|
|
|
|
|
|
|
|
k,,
|
|
|
|
|
|
|
|
|
|
H imp =
|
|
|
|
|
|
|
|
|
|
c
|
|
|
|
|
k,
|
|
|
|
|
|
|
|
|
|
Vk
|
|
|
|
|
|
|
|
|
|
,k
|
|
|
|
|
|
|
|
|
|
ck
|
|
|
|
|
|
|
|
|
|
,
|
|
|
|
|
|
|
|
|
|
(2)
|
|
|
|
|
|
|
|
|
|
k,k
|
|
|
|
|
|
|
|
|
|
Here, Vk,k =
|
|
|
|
|
|
|
|
|
|
n Vnein(k-k ),
|
|
|
|
|
|
|
|
|
|
and
|
|
|
|
|
|
|
|
|
|
Vn
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
V a2 2
|
|
|
|
|
|
|
|
|
|
(kF 2n(
|
|
|
|
|
|
|
|
|
|
a)n n+1
|
|
|
|
|
2
|
|
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
,
|
|
|
|
|
|
|
|
|
|
while vF and i [1, ] are the Fermi velocity and spin
|
|
|
|
|
|
|
|
|
|
Pauli matrices, and kF a determines Vn, which will be
|
|
|
|
|
|
|
|
|
|
shown to control the skew scattering strength. Since the
|
|
|
|
|
|
|
|
|
|
impurity is non-magnetic, the system is invariant under time-reversal symmetry, T = Ki2, H = T HT -1. All
|
|
|
|
|
the scattering events from an impurity are summed up in
|
|
|
|
|
|
|
|
|
|
the T -matrix, and the spin-dependent skew scattering is captured by the <20> terms, illustrated in Fig. 1. The fol-
|
|
|
|
|
|
|
|
|
|
lowing Dyson equations, in operator formalism, give the effective Green's function, G^ eff = G^ 0 + G^ 0T^ G^ 0, and T matrix, T^ = V^ + V^ G^ 0T^ , with G^ 0 being the bare Green's
|
|
|
|
|
function, and Fig. 2 shows the Feynman diagram for the
|
|
|
|
|
|
|
|
|
|
effective Green's function.
|
|
|
|
|
|
|
|
|
|
FIG. 2: Feynman diagram for Geff (k, k, , ) that sums up the infinite set of scattering events from a sin-
|
|
|
|
|
gle impurity. This is captured by the T -matrix, which is represented by the diamond symbol in the second line above.
|
|
|
|
|
|
|
|
|
|
G0(k, in)
|
|
|
|
|
|
|
|
|
|
=
|
|
|
|
|
|
|
|
|
|
in
|
|
|
|
|
|
|
|
|
|
+
|
|
|
|
|
|
|
|
|
|
<EFBFBD>
|
|
|
|
|
|
|
|
|
|
1 -
|
|
|
|
|
|
|
|
|
|
vF k
|
|
|
|
|
|
|
|
|
|
<EFBFBD>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
(3a)
|
|
|
|
|
|
|
|
|
|
= g00(k, in)1 + g0a(k, in)(cos x + sin y)
|
|
|
|
|
|
|
|
|
|
T (k, k, in) = Tnim(|k|, |k|, in)eink e-imk i (3b)
|
|
|
|
|
|
|
|
|
|
nm
|
|
|
|
|
|
|
|
|
|
Rotational symmetry of the Hamiltonian allows us
|
|
|
|
|
|
|
|
|
|
to carry out a multipole expansion of G0(k, in) and
|
|
|
|
|
|
|
|
|
|
the T -matrix, where g00(k, in)
|
|
|
|
|
|
|
|
|
|
=
|
|
|
|
|
|
|
|
|
|
, in +<2B>
|
|
|
|
|
(in+<2B>)2-vF2 k2
|
|
|
|
|
|
|
|
|
|
and
|
|
|
|
|
|
|
|
|
|
g0a(k, in)
|
|
|
|
|
|
|
|
|
|
=
|
|
|
|
|
|
|
|
|
|
. vF k
|
|
|
|
|
(in+<2B>)2-vF2 k2
|
|
|
|
|
|
|
|
|
|
We assume the T -matrix
|
|
|
|
|
|
|
|
|
|
varies slowly near EF , i.e. absence of resonances, thereby
|
|
|
|
|
|
|
|
|
|
simplifying the radial integral and reducing the Dyson
|
|
|
|
|
|
|
|
|
|
equation to a set of coupled algebraic recurrence equa-
|
|
|
|
|
|
|
|
|
|
tions for the retarded T -matrix coefficients, Tnim(|k| = |k| = kF , = EF ).
|
|
|
|
|
|
|
|
|
|
Tnzm<EFBFBD> = n,m Vn 1 - Vn<56>1 g00(EF )
|
|
|
|
|
|
|
|
|
|
1 - Vn g00(EF )
|
|
|
|
|
|
|
|
|
|
<EFBFBD> 1 - Vn<56>1 g00(EF )
|
|
|
|
|
|
|
|
|
|
- VnVn<56>1
|
|
|
|
|
|
|
|
|
|
g01(EF )
|
|
|
|
|
|
|
|
|
|
2
|
|
|
|
|
|
|
|
|
|
-1
|
|
|
|
|
(4a)
|
|
|
|
|
|
|
|
|
|
Tn<EFBFBD>m
|
|
|
|
|
|
|
|
|
|
=
|
|
|
|
|
|
|
|
|
|
n1,m 2
|
|
|
|
|
|
|
|
|
|
VnVn1 g01(EF )
|
|
|
|
|
|
|
|
|
|
1 - Vn1 g00(EF )
|
|
|
|
|
|
|
|
|
|
<EFBFBD> 1 - Vn g00(EF ) - VnVn1 g01(EF ) 2 -1 (4b)
|
|
|
|
|
|
|
|
|
|
The T -coefficients reduce to two set of coupled equa-
|
|
|
|
|
|
|
|
|
|
tions for T z<> = Tn0m <20> Tn3m and T <20> = Tn1m <20> iTn2m,
|
|
|
|
|
|
|
|
|
|
given in terms of Vn and the momentum-averaged re-
|
|
|
|
|
|
|
|
|
|
tarded Green's functions, g0i,(R)() =
|
|
|
|
|
|
|
|
|
|
dk 2
|
|
|
|
|
|
|
|
|
|
kg0i,(R)(k,
|
|
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
(refer to SOM for calculation details). The arguments
|
|
|
|
|
|
|
|
|
|
of the T -matrix coefficients are dropped, understanding that they are evaluated at kF and EF . Defining the symmetric and asymmetric parts of the spin-flip scattering as T S/A = T1+0 <20> T--10, T03 T030, and T13 T131, we can now
|
|
|
|
|
write down the s and p-wave channels of the T -matrix.
|
|
|
|
|
|
|
|
|
|
T (k, k ) = T 01 + T03z + T13 ei(k-k ) - e-i(k-k ) z
|
|
|
|
|
|
|
|
|
|
+ T S + T A eik - + T S - T A e-ik +
|
|
|
|
|
|
|
|
|
|
2
|
|
|
|
|
|
|
|
|
|
2
|
|
|
|
|
|
|
|
|
|
+ T S + T A e-ik + + T S - T A eik -
|
|
|
|
|
|
|
|
|
|
(5)
|
|
|
|
|
|
|
|
|
|
2
|
|
|
|
|
|
|
|
|
|
2
|
|
|
|
|
|
|
|
|
|
3
|
|
|
|
|
|
|
|
|
|
with detailed expressions for the T -matrix coefficients
|
|
|
|
|
shown in the SOM. Charge-transport is dominated by the largest term, |T 0| V0, while spin-flip scatterings are captured by the T S/A<> terms. Upon projection
|
|
|
|
|
into the upper helical band, we obtain a chiral spin-flip scattering term, T S sin(k - k ), which comes from 3rd and higher orders in perturbation; T S V0V12N0(EF )2, in agreement with previous work [37]. Hence, the skew
|
|
|
|
|
scattering strength can be tuned by varying kF a, i.e. either the Fermi level or the impurity size a.
|
|
|
|
|
|
|
|
|
|
It is now straightforward to calculate the effective
|
|
|
|
|
|
|
|
|
|
Green's function in the dilute impurity limit (ni
|
|
|
|
|
|
|
|
|
|
(R)
|
|
|
|
|
|
|
|
|
|
(R)
|
|
|
|
|
|
|
|
|
|
-1
|
|
|
|
|
|
|
|
|
|
1)[38], G (k, ) = - vF k <20> - (k, ) ,
|
|
|
|
|
|
|
|
|
|
(R)
|
|
|
|
|
where the retarded self-energy is (k, ) =
|
|
|
|
|
|
|
|
|
|
(R)
|
|
|
|
|
|
|
|
|
|
(R)
|
|
|
|
|
|
|
|
|
|
ni k1 V (k, k1)Geff (k1, )T (k1, k, ). The appear-
|
|
|
|
|
|
|
|
|
|
(R)
|
|
|
|
|
|
|
|
|
|
(R)
|
|
|
|
|
|
|
|
|
|
ance of Geff (k, ) instead of G0 (k, ) reflects the pres-
|
|
|
|
|
|
|
|
|
|
ence of multiple impurities. We assume an average
|
|
|
|
|
|
|
|
|
|
quasi-particle scattering rate near the Fermi surface, i.e.
|
|
|
|
|
(R)
|
|
|
|
|
Im[ (kF , EF )], and take vF and EF to be exper-
|
|
|
|
|
imentally determined parameters, thereby dropping the
|
|
|
|
|
|
|
|
|
|
real part of the self-energy.
|
|
|
|
|
|
|
|
|
|
= 01 - a (cos x + sin y) - b(sin x - cos y) + i3 z
|
|
|
|
|
0 = niNe(f0)f (EF ) |T 0|2 + |T03|2 -2 |T13|2 + |T A|2 - |T S|2
|
|
|
|
|
a = 4niNe(f1)f (EF ) |T S |2 - |T A|2
|
|
|
|
|
|
|
|
|
|
(6a)
|
|
|
|
|
(6b) (6c)
|
|
|
|
|
|
|
|
|
|
We have carried out a multipole expansion of , and
|
|
|
|
|
|
|
|
|
|
the main quasi-particle scattering channels relevant to
|
|
|
|
|
|
|
|
|
|
transport are the s and p-wave 0 and a terms (re-
|
|
|
|
|
|
|
|
|
|
fer to SOM for complete expressions of all ). As we
|
|
|
|
|
|
|
|
|
|
shall show later, the transport scattering rate, t, will
|
|
|
|
|
|
|
|
|
|
be given in terms of 0 and a. The angular momentum resolved density of states (DOS) is defined as Ne(fi)f () =
|
|
|
|
|
|
|
|
|
|
kdk 2
|
|
|
|
|
|
|
|
|
|
I
|
|
|
|
|
|
|
|
|
|
m
|
|
|
|
|
|
|
|
|
|
geiff (k, ) , and Ne(f0)f (EF ) and Ne(f1)f (EF ) cor-
|
|
|
|
|
|
|
|
|
|
respond to the s and p-wave components respectively.
|
|
|
|
|
|
|
|
|
|
Since scattering events that result in a change of angular
|
|
|
|
|
|
|
|
|
|
momentum, i.e involving the l = 1 component Ne(f1)f (EF ), will also cause a spin-flip due to spin-orbit coupling, we
|
|
|
|
|
|
|
|
|
|
see that 0 and a are due to spin-independent and dependent scattering respectively.
|
|
|
|
|
|
|
|
|
|
The effective Green's function is therefore given by,
|
|
|
|
|
|
|
|
|
|
(R)
|
|
|
|
|
|
|
|
|
|
-1
|
|
|
|
|
|
|
|
|
|
Geff (k, ) = + <20> - vF k <20> - i(k, )
|
|
|
|
|
|
|
|
|
|
(7)
|
|
|
|
|
|
|
|
|
|
= ge0ff (k, )1 + geaff (k, ) (cos x + sin y) + gebff (k, ) (sin x - cos y) + ge3ff (k, )z
|
|
|
|
|
|
|
|
|
|
where,
|
|
|
|
|
|
|
|
|
|
ge0ff (k, )
|
|
|
|
|
|
|
|
|
|
=
|
|
|
|
|
|
|
|
|
|
((k)
|
|
|
|
|
|
|
|
|
|
+ i(k))( + <20> 2(k) + 2(k)
|
|
|
|
|
|
|
|
|
|
-
|
|
|
|
|
|
|
|
|
|
i0)
|
|
|
|
|
|
|
|
|
|
(8a)
|
|
|
|
|
|
|
|
|
|
geaff (k, )
|
|
|
|
|
|
|
|
|
|
=
|
|
|
|
|
|
|
|
|
|
((k)
|
|
|
|
|
|
|
|
|
|
+ i(k))(vF |k| + ia) 2(k) + 2(k)
|
|
|
|
|
|
|
|
|
|
(8b)
|
|
|
|
|
|
|
|
|
|
with (k) = ( + <20>)2 - vF2 |k|2 - 02 + a2 + b2 - 32, and (k) = 2 ( + <20>)0 + vF |k|a .
|
|
|
|
|
|
|
|
|
|
(R)
|
|
|
|
|
A similar multipole expansion of Geff (k, ) has been done, and we show here only the main s and p-wave
|
|
|
|
|
|
|
|
|
|
terms, ge0ff (k, ) and geaff (k, ), with complete expressions for the scattering-induced gebff (k, ) and ge3ff (k, ) terms relegated to the SOM for brevity. From Eqs. (8a)
|
|
|
|
|
|
|
|
|
|
& (8b), it is clear that Weyl fermions in the s and p-wave
|
|
|
|
|
|
|
|
|
|
channels pick up a 0 and a scattering rate respectively,
|
|
|
|
|
|
|
|
|
|
and we shall show later that it is chiral scattering between
|
|
|
|
|
|
|
|
|
|
the s and p-wave electrons that drive the SHE.
|
|
|
|
|
|
|
|
|
|
(R)
|
|
|
|
|
|
|
|
|
|
(R)
|
|
|
|
|
|
|
|
|
|
Geff (k, ) and (k, ) are determined self-
|
|
|
|
|
|
|
|
|
|
(R)
|
|
|
|
|
|
|
|
|
|
consistently by solving Eqns. 6a & 7, i.e. (k, ) is
|
|
|
|
|
|
|
|
|
|
calculated using the disorder-averaged density of states,
|
|
|
|
|
|
|
|
|
|
Ne(fi)f () =
|
|
|
|
|
|
|
|
|
|
kdk 2
|
|
|
|
|
|
|
|
|
|
I
|
|
|
|
|
|
|
|
|
|
m
|
|
|
|
|
|
|
|
|
|
geiff (k, )
|
|
|
|
|
|
|
|
|
|
.
|
|
|
|
|
|
|
|
|
|
However, in the dilute
|
|
|
|
|
|
|
|
|
|
impurity
|
|
|
|
|
|
|
|
|
|
limit,
|
|
|
|
|
|
|
|
|
|
Ne(f0)f/(1)(EF )
|
|
|
|
|
|
|
|
|
|
=
|
|
|
|
|
|
|
|
|
|
N0
|
|
|
|
|
|
|
|
|
|
(EF 2
|
|
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
(1
|
|
|
|
|
|
|
|
|
|
+
|
|
|
|
|
|
|
|
|
|
O( ))
|
|
|
|
|
|
|
|
|
|
[38];
|
|
|
|
|
|
|
|
|
|
allowing us to drop the O(ni) corrections.
|
|
|
|
|
|
|
|
|
|
As stated earlier, the DC longitudinal charge conduc-
|
|
|
|
|
|
|
|
|
|
tivity, spin-Hall conductivity and spin accumulation are
|
|
|
|
|
|
|
|
|
|
given by analytic continuation of the corresponding Mat-
|
|
|
|
|
|
|
|
|
|
subara correlation functions,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
yy(k, in) = - d e-in T jy(k, )jy(k, 0) (9a)
|
|
|
|
|
0
|
|
|
|
|
|
|
|
|
|
yi (k, in) = - d e-in T i(k, )jy(k, 0) (9b)
|
|
|
|
|
0
|
|
|
|
|
|
|
|
|
|
xzy(k, in) = - d e-in T Pxz(k, )jy(k, 0) (9c)
|
|
|
|
|
0
|
|
|
|
|
Note that yy and yi are equal up to a factor of evF for Weyl fermions due to spin-momentum locking, i.e. j^y = evF ^y. The spin torque current, Pxz, arises from the intrinsic quantum-mechanical evolution of the elec-
|
|
|
|
|
tron spin, and the z-component of the spin-torque cur-
|
|
|
|
|
rent along x^ is,
|
|
|
|
|
|
|
|
|
|
Pxz (k)
|
|
|
|
|
|
|
|
|
|
=
|
|
|
|
|
|
|
|
|
|
i kx
|
|
|
|
|
|
|
|
|
|
dS^z (k) dt
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
= 2vF ikx
|
|
|
|
|
|
|
|
|
|
cp,
|
|
|
|
|
p
|
|
|
|
|
|
|
|
|
|
p
|
|
|
|
|
|
|
|
|
|
+
|
|
|
|
|
|
|
|
|
|
k 2
|
|
|
|
|
|
|
|
|
|
x -
|
|
|
|
|
y
|
|
|
|
|
|
|
|
|
|
p
|
|
|
|
|
|
|
|
|
|
+
|
|
|
|
|
|
|
|
|
|
k 2
|
|
|
|
|
|
|
|
|
|
(10)
|
|
|
|
|
y cp+k,
|
|
|
|
|
x
|
|
|
|
|
|
|
|
|
|
The Feynman diagrams for these correlation functions are shown in Fig. 3, with chiral spin-flip scattering starting to contribute at third-order in perturbation theory. Fig. 3 shows the infinite subset of Feynman ladder diagrams summed up in the Bethe Salpeter equation for the scattering vertex,
|
|
|
|
|
|
|
|
|
|
4
|
|
|
|
|
|
|
|
|
|
y
|
|
|
|
|
(k
|
|
|
|
|
|
|
|
|
|
+
|
|
|
|
|
|
|
|
|
|
p,
|
|
|
|
|
|
|
|
|
|
p,
|
|
|
|
|
|
|
|
|
|
im
|
|
|
|
|
|
|
|
|
|
+
|
|
|
|
|
|
|
|
|
|
in,
|
|
|
|
|
|
|
|
|
|
in)
|
|
|
|
|
|
|
|
|
|
=
|
|
|
|
|
|
|
|
|
|
y
|
|
|
|
|
|
|
|
|
|
+
|
|
|
|
|
|
|
|
|
|
T (k + p, k + q, im + in)Geff (k + q, im + in)
|
|
|
|
|
|
|
|
|
|
q
|
|
|
|
|
|
|
|
|
|
y
|
|
|
|
|
|
|
|
|
|
<EFBFBD> (k + q, q, im + in, in)Geff (q, in)T (q, p, in)
|
|
|
|
|
|
|
|
|
|
(11)
|
|
|
|
|
|
|
|
|
|
x
|
|
|
|
|
|
|
|
|
|
+
|
|
|
|
|
|
|
|
|
|
x
|
|
|
|
|
|
|
|
|
|
+
|
|
|
|
|
|
|
|
|
|
x
|
|
|
|
|
|
|
|
|
|
=
|
|
|
|
|
|
|
|
|
|
+
|
|
|
|
|
|
|
|
|
|
+
|
|
|
|
|
|
|
|
|
|
=
|
|
|
|
|
|
|
|
|
|
FIG. 3: Feynman diagram for the effective scattering
|
|
|
|
|
y
|
|
|
|
|
vertex, (p, ), is shown in the second line. This includes an infinite subset of scattering events from the dilute concentration of impurities. The first line shows all the scattering events from a single impurity, and the second and third diagrams in the first line are the leading-order contributions to skew scattering.
|
|
|
|
|
|
|
|
|
|
Here, k and im are the external momentum and fre-
|
|
|
|
|
|
|
|
|
|
quency, and the uniform DC limit of the conductivities is
|
|
|
|
|
|
|
|
|
|
obtained by analytic continuation of im + i, and
|
|
|
|
|
|
|
|
|
|
taking the limit k 0 followed by 0. Hence, we
|
|
|
|
|
|
|
|
|
|
only need to calculate the on-shell component of the scat-
|
|
|
|
|
|
|
|
|
|
y
|
|
|
|
|
|
|
|
|
|
y
|
|
|
|
|
|
|
|
|
|
tering vertex (p, ) = (p, - i, + i). The Bethe-
|
|
|
|
|
|
|
|
|
|
y
|
|
|
|
|
|
|
|
|
|
Salpeter equation for (p, ) is solved self-consistently
|
|
|
|
|
|
|
|
|
|
y
|
|
|
|
|
by expanding (p, ) =
|
|
|
|
|
|
|
|
|
|
n ineini
|
|
|
|
|
|
|
|
|
|
in
|
|
|
|
|
y
|
|
|
|
|
|
|
|
|
|
multipole
|
|
|
|
|
|
|
|
|
|
terms, assuming that the T -matrix and (p, ) vary
|
|
|
|
|
|
|
|
|
|
slowly near EF (see SOM for details). Keeping only the
|
|
|
|
|
y
|
|
|
|
|
s- and p-wave channels, and evaluating (|p| = kF , =
|
|
|
|
|
|
|
|
|
|
EF ) at the Fermi surface, we obtain,
|
|
|
|
|
|
|
|
|
|
y
|
|
|
|
|
(kF
|
|
|
|
|
|
|
|
|
|
,
|
|
|
|
|
|
|
|
|
|
EF
|
|
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
=
|
|
|
|
|
|
|
|
|
|
(0px
|
|
|
|
|
|
|
|
|
|
cos
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
+
|
|
|
|
|
|
|
|
|
|
i0py
|
|
|
|
|
|
|
|
|
|
sin
|
|
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
1
|
|
|
|
|
|
|
|
|
|
(12)
|
|
|
|
|
|
|
|
|
|
+10(EF )x + 20(EF ) y +(3px (EF ) cos + i3py (EF ) sin ) z
|
|
|
|
|
|
|
|
|
|
where,
|
|
|
|
|
|
|
|
|
|
20
|
|
|
|
|
|
|
|
|
|
=
|
|
|
|
|
|
|
|
|
|
0 , t
|
|
|
|
|
|
|
|
|
|
3px
|
|
|
|
|
|
|
|
|
|
=
|
|
|
|
|
|
|
|
|
|
-
|
|
|
|
|
|
|
|
|
|
s t
|
|
|
|
|
|
|
|
|
|
.
|
|
|
|
|
|
|
|
|
|
(13)
|
|
|
|
|
|
|
|
|
|
After analytic continuation of the current-current correlation functions in Eq. (9a) - (9c), we find that the main contributions come from the 20 charge-transport and 3px spin-transport scattering vertices (refer to SOM for all
|
|
|
|
|
the -coefficients). We can therefore define a transport and chiral spin-flip scattering rate respectively as,
|
|
|
|
|
|
|
|
|
|
t
|
|
|
|
|
|
|
|
|
|
=
|
|
|
|
|
|
|
|
|
|
(
|
|
|
|
|
|
|
|
|
|
1 2
|
|
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
|
|
|
|
+
|
|
|
|
|
|
|
|
|
|
a),
|
|
|
|
|
|
|
|
|
|
s
|
|
|
|
|
|
|
|
|
|
=
|
|
|
|
|
|
|
|
|
|
niN0(EF 2
|
|
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|T
|
|
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
|
|
|
|
||T
|
|
|
|
|
|
|
|
|
|
S
|
|
|
|
|
|
|
|
|
|
|.
|
|
|
|
|
|
|
|
|
|
(14)
|
|
|
|
|
|
|
|
|
|
The main results of this paper are the charge and spin
|
|
|
|
|
|
|
|
|
|
conductivities, and the Rashba-Edelstein coefficient,
|
|
|
|
|
|
|
|
|
|
yy
|
|
|
|
|
|
|
|
|
|
=
|
|
|
|
|
|
|
|
|
|
(evF )2
|
|
|
|
|
|
|
|
|
|
N0(EF 2
|
|
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
1 t
|
|
|
|
|
|
|
|
|
|
xzy
|
|
|
|
|
|
|
|
|
|
=-
|
|
|
|
|
|
|
|
|
|
evF2
|
|
|
|
|
|
|
|
|
|
N0(EF 2
|
|
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
1 t
|
|
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
|
|
|
|
s +
|
|
|
|
|
|
|
|
|
|
a
|
|
|
|
|
|
|
|
|
|
yy =
|
|
|
|
|
|
|
|
|
|
evF
|
|
|
|
|
|
|
|
|
|
N0(EF 2
|
|
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
1 t
|
|
|
|
|
|
|
|
|
|
(15a) (15b) (15c)
|
|
|
|
|
|
|
|
|
|
Our
|
|
|
|
|
|
|
|
|
|
key
|
|
|
|
|
|
|
|
|
|
finding
|
|
|
|
|
|
|
|
|
|
is
|
|
|
|
|
|
|
|
|
|
Eq.
|
|
|
|
|
|
|
|
|
|
(15b),
|
|
|
|
|
|
|
|
|
|
which
|
|
|
|
|
|
|
|
|
|
shows
|
|
|
|
|
|
|
|
|
|
an
|
|
|
|
|
|
|
|
|
|
O(
|
|
|
|
|
|
|
|
|
|
1 ni
|
|
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
skew scattering contribution to the SHE. Explicitly writ-
|
|
|
|
|
|
|
|
|
|
ing out the spin and angular-momentum scattering chan-
|
|
|
|
|
|
|
|
|
|
nels for xzy = evF2 Re[3px(a0(EF ) - 0a(EF ))], where
|
|
|
|
|
|
|
|
|
|
ij() =
|
|
|
|
|
|
|
|
|
|
dp 2
|
|
|
|
|
|
|
|
|
|
p2
|
|
|
|
|
|
|
|
|
|
gei(fRf) (p,) p
|
|
|
|
|
|
|
|
|
|
gejf(Af )
|
|
|
|
|
|
|
|
|
|
(p,
|
|
|
|
|
|
|
|
|
|
),
|
|
|
|
|
|
|
|
|
|
we
|
|
|
|
|
|
|
|
|
|
see
|
|
|
|
|
|
|
|
|
|
that
|
|
|
|
|
|
|
|
|
|
chiral
|
|
|
|
|
|
|
|
|
|
spin-flip scattering between the s and p-wave electrons
|
|
|
|
|
|
|
|
|
|
is the cause of the skew-scattering mechanism, and the
|
|
|
|
|
|
|
|
|
|
strength of which is measured via the spin-Hall angle,
|
|
|
|
|
|
|
|
|
|
SH
|
|
|
|
|
|
|
|
|
|
=
|
|
|
|
|
|
|
|
|
|
-e
|
|
|
|
|
|
|
|
|
|
s 0 + a
|
|
|
|
|
|
|
|
|
|
(16)
|
|
|
|
|
|
|
|
|
|
Here, e < 0 is the electron charge, and power counting of
|
|
|
|
|
|
|
|
|
|
t 0 niV02N0(EF ) and s niV02V12N0(EF )3, gives
|
|
|
|
|
|
|
|
|
|
SH O
|
|
|
|
|
|
|
|
|
|
V2 vF2 /a2
|
|
|
|
|
|
|
|
|
|
(kF
|
|
|
|
|
|
|
|
|
|
a)4
|
|
|
|
|
|
|
|
|
|
. This is our key result: SH has
|
|
|
|
|
|
|
|
|
|
a fixed positive sign, and is a strongly-dependent function
|
|
|
|
|
|
|
|
|
|
of kF a; hence, the SHE can be tuned by EF .
|
|
|
|
|
|
|
|
|
|
Finally, we briefly discuss the effects of band bending in
|
|
|
|
|
|
|
|
|
|
Weyl
|
|
|
|
|
|
|
|
|
|
systems.
|
|
|
|
|
|
|
|
|
|
The
|
|
|
|
|
|
|
|
|
|
leading
|
|
|
|
|
|
|
|
|
|
O(
|
|
|
|
|
|
|
|
|
|
1 m
|
|
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
correction
|
|
|
|
|
|
|
|
|
|
comes
|
|
|
|
|
|
|
|
|
|
from
|
|
|
|
|
|
|
|
|
|
including
|
|
|
|
|
|
|
|
|
|
a
|
|
|
|
|
|
|
|
|
|
conventional
|
|
|
|
|
|
|
|
|
|
spin
|
|
|
|
|
|
|
|
|
|
current,
|
|
|
|
|
|
|
|
|
|
jsz
|
|
|
|
|
|
|
|
|
|
=
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 2
|
|
|
|
|
|
|
|
|
|
{v,
|
|
|
|
|
|
|
|
|
|
S
|
|
|
|
|
|
|
|
|
|
z},
|
|
|
|
|
|
|
|
|
|
with v =
|
|
|
|
|
|
|
|
|
|
k m
|
|
|
|
|
|
|
|
|
|
.
|
|
|
|
|
|
|
|
|
|
However, it has been pointed out[35<33>37]
|
|
|
|
|
|
|
|
|
|
that jsz y for Rashba-type systems; hence, up to
|
|
|
|
|
|
|
|
|
|
O(
|
|
|
|
|
|
|
|
|
|
1 m
|
|
|
|
|
|
|
|
|
|
),
|
|
|
|
|
|
|
|
|
|
band
|
|
|
|
|
|
|
|
|
|
bending
|
|
|
|
|
|
|
|
|
|
does
|
|
|
|
|
|
|
|
|
|
not
|
|
|
|
|
|
|
|
|
|
give
|
|
|
|
|
|
|
|
|
|
rise
|
|
|
|
|
|
|
|
|
|
to
|
|
|
|
|
|
|
|
|
|
a
|
|
|
|
|
|
|
|
|
|
spin
|
|
|
|
|
|
|
|
|
|
current
|
|
|
|
|
|
|
|
|
|
for Weyl fermion systems.
|
|
|
|
|
|
|
|
|
|
In conclusion, we have analysed both the spin Hall
|
|
|
|
|
|
|
|
|
|
and Rashba-Edelstein effects in a 2D Weyl electron sys-
|
|
|
|
|
|
|
|
|
|
tem. Our results show that strong spin-orbit coupling in the band-structure is sufficient to cause chiral spin-
|
|
|
|
|
|
|
|
|
|
flip scattering of the helical electrons off non-SOC scalar
|
|
|
|
|
|
|
|
|
|
impurities, resulting in a skew-scattering contribution to
|
|
|
|
|
|
|
|
|
|
the SHE. The strength of this mechanism is measured by
|
|
|
|
|
|
|
|
|
|
the
|
|
|
|
|
|
|
|
|
|
SHA,
|
|
|
|
|
|
|
|
|
|
SH
|
|
|
|
|
|
|
|
|
|
=
|
|
|
|
|
|
|
|
|
|
-e
|
|
|
|
|
|
|
|
|
|
s 0 +a
|
|
|
|
|
|
|
|
|
|
-e
|
|
|
|
|
|
|
|
|
|
O
|
|
|
|
|
|
|
|
|
|
V2 vF2 /a2
|
|
|
|
|
|
|
|
|
|
(kF
|
|
|
|
|
|
|
|
|
|
a)4
|
|
|
|
|
|
|
|
|
|
, and
|
|
|
|
|
|
|
|
|
|
we highlight the fact that the skew scattering strength
|
|
|
|
|
|
|
|
|
|
can be tuned by varying kF a, thereby providing an
|
|
|
|
|
|
|
|
|
|
experimentally-accessible parameter for controlling the
|
|
|
|
|
|
|
|
|
|
SHE.
|
|
|
|
|
|
|
|
|
|
In
|
|
|
|
|
|
|
|
|
|
addition,
|
|
|
|
|
|
|
|
|
|
we
|
|
|
|
|
|
|
|
|
|
have
|
|
|
|
|
|
|
|
|
|
also
|
|
|
|
|
|
|
|
|
|
found
|
|
|
|
|
|
|
|
|
|
an
|
|
|
|
|
|
|
|
|
|
O(
|
|
|
|
|
|
|
|
|
|
1 t
|
|
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
Rashba-
|
|
|
|
|
|
|
|
|
|
Edelstein effect due to spin-momentum locking of the
|
|
|
|
|
|
|
|
|
|
Weyl fermions. We gratefully acknowledge I. Mertig, K.
|
|
|
|
|
|
|
|
|
|
Kondou and Y. Tokura for helpful discussions, and this
|
|
|
|
|
|
|
|
|
|
work was supported by CREST, Japan Science and Tech-
|
|
|
|
|
|
|
|
|
|
nology Agency (JST).
|
|
|
|
|
|
|
|
|
|
5
|
|
|
|
|
|
|
|
|
|
[1] M. I. Dyakonov and V. I. Perel, Soviet Physics JETP-
|
|
|
|
|
|
|
|
|
|
USSR 33, 1053 (1971).
|
|
|
|
|
|
|
|
|
|
[2] M. I. Dyakonov and V. I. Perel,
|
|
|
|
|
|
|
|
|
|
Physics Letters A A 35, 459 (1971).
|
|
|
|
|
|
|
|
|
|
[3] J. E. Hirsch, Physical Review Letters 83, 1834 (1999).
|
|
|
|
|
|
|
|
|
|
[4] S. Zhang, Physical Review Letters 85, 393 (2000).
|
|
|
|
|
|
|
|
|
|
[5] S. Murakami, N. Nagaosa, and S.-C. Zhang,
|
|
|
|
|
|
|
|
|
|
Science 301, 1348 (2003).
|
|
|
|
|
|
|
|
|
|
[6] J. Sinova, D. Culcer, Q. Niu, N. A. Sinit-
|
|
|
|
|
|
|
|
|
|
syn, T. Jungwirth, and A. H. MacDonald,
|
|
|
|
|
|
|
|
|
|
Phys. Rev. Lett. 92, 126603 (2004).
|
|
|
|
|
|
|
|
|
|
[7] C. L. Kane and E. J. Mele,
|
|
|
|
|
|
|
|
|
|
Phys. Rev. Lett. 95, 146802 (2005).
|
|
|
|
|
|
|
|
|
|
[8] B. A. Bernevig, T. L. Hughes, and S.-C. Zhang,
|
|
|
|
|
|
|
|
|
|
Science 314, 1757 (2006).
|
|
|
|
|
|
|
|
|
|
[9] M. Z. Hasan and C. L. Kane,
|
|
|
|
|
|
|
|
|
|
Rev. Mod. Phys. 82, 3045 (2010).
|
|
|
|
|
|
|
|
|
|
[10] X.-L.
|
|
|
|
|
|
|
|
|
|
Qi
|
|
|
|
|
|
|
|
|
|
and
|
|
|
|
|
|
|
|
|
|
S.-C.
|
|
|
|
|
|
|
|
|
|
Zhang,
|
|
|
|
|
|
|
|
|
|
Rev. Mod. Phys. 83, 1057 (2011).
|
|
|
|
|
|
|
|
|
|
[11] For a review of SHE and QSHE, see S. Mu-
|
|
|
|
|
|
|
|
|
|
rakami and N. Nagaosa, "Spin hall effect," in
|
|
|
|
|
|
|
|
|
|
Comprehensive Semiconductor Science and Technology,
|
|
|
|
|
|
|
|
|
|
Vol. 1, edited by P. Bhattacharya, R. Fornari, and
|
|
|
|
|
|
|
|
|
|
H. Kamimura (Elsevier Science, 2011) Chap. 7, pp. 222
|
|
|
|
|
|
|
|
|
|
<EFBFBD> 278, 1st ed.
|
|
|
|
|
|
|
|
|
|
[12] L. Fu, C. L. Kane,
|
|
|
|
|
|
|
|
|
|
and E. J. Mele,
|
|
|
|
|
|
|
|
|
|
Phys. Rev. Lett. 98, 106803 (2007).
|
|
|
|
|
|
|
|
|
|
[13] J.
|
|
|
|
|
|
|
|
|
|
E.
|
|
|
|
|
|
|
|
|
|
Moore
|
|
|
|
|
|
|
|
|
|
and
|
|
|
|
|
|
|
|
|
|
L.
|
|
|
|
|
|
|
|
|
|
Balents,
|
|
|
|
|
|
|
|
|
|
Phys. Rev. B 75, 121306 (2007).
|
|
|
|
|
|
|
|
|
|
[14] M. Dzero, K. Sun, V. Galitski, and P. Coleman,
|
|
|
|
|
|
|
|
|
|
Phys. Rev. Lett. 104, 106408 (2010).
|
|
|
|
|
|
|
|
|
|
[15] N. Xu, P. K. Biswas, J. H. Dil, R. S. Dhaka, G. Landolt,
|
|
|
|
|
|
|
|
|
|
S. Muff, C. E. Matt, X. Shi, N. C. Plumb, M. Radovi<76>c,
|
|
|
|
|
|
|
|
|
|
E. Pomjakushina, K. Conder, A. Amato, S. V. Borisenko,
|
|
|
|
|
|
|
|
|
|
R. Yu, H. M. Weng, Z. Fang, X. Dai, J. Mesot, H. Ding,
|
|
|
|
|
|
|
|
|
|
and M. Shi, Nat Commun 5 (2014).
|
|
|
|
|
|
|
|
|
|
[16] X. Wan, A. M. Turner, A. Vishwanath, and S. Y.
|
|
|
|
|
|
|
|
|
|
Savrasov, Phys. Rev. B 83, 205101 (2011).
|
|
|
|
|
|
|
|
|
|
[17] J. C. R. S<>anchez, L. Vila, G. Desfonds, S. Gambarelli,
|
|
|
|
|
|
|
|
|
|
J. P. Attan<61>e, J. M. De Teresa, C. Mag<61>en, and A. Fert,
|
|
|
|
|
|
|
|
|
|
Nat Commun 4, 2944 (2013).
|
|
|
|
|
|
|
|
|
|
[18] Y. Shiomi, K. Nomura, Y. Kajiwara, K. Eto,
|
|
|
|
|
|
|
|
|
|
M. Novak, K. Segawa, Y. Ando, and E. Saitoh,
|
|
|
|
|
|
|
|
|
|
Physical Review Letters 113, 196601 (2014). [19] V. M. Edelstein, Solid State Commun 73, 233 (1990).
|
|
|
|
|
|
|
|
|
|
[20] S. Mondal, D. Sen, K. Sengupta, and R. Shankar, Phys. Rev. B 82, 045120 (2010).
|
|
|
|
|
|
|
|
|
|
[21] D. Culcer, E. H. Hwang, T. D. Stanescu, and S. Das Sarma, Physical Review B 82, 155457 (2010).
|
|
|
|
|
[22] A. A. Burkov and D. G. Hawthorn, Phys. Rev. Lett. 105, 066802 (2010).
|
|
|
|
|
|
|
|
|
|
[23] I.
|
|
|
|
|
|
|
|
|
|
Garate
|
|
|
|
|
|
|
|
|
|
and
|
|
|
|
|
|
|
|
|
|
M.
|
|
|
|
|
|
|
|
|
|
Phys. Rev. Lett. 104, 146802 (2010).
|
|
|
|
|
|
|
|
|
|
Franz,
|
|
|
|
|
|
|
|
|
|
[24] T. Yokoyama, J. Zang,
|
|
|
|
|
|
|
|
|
|
and N. Nagaosa,
|
|
|
|
|
|
|
|
|
|
Phys. Rev. B 81, 241410 (2010).
|
|
|
|
|
|
|
|
|
|
[25] F. Mahfouzi, N. Nagaosa, and B. K. Nikoli<6C>c,
|
|
|
|
|
|
|
|
|
|
Phys. Rev. Lett. 109, 166602 (2012).
|
|
|
|
|
|
|
|
|
|
[26] A. R. Mellnik, J. S. Lee, A. Richardella, J. L. Grab, P. J. Mintun, M. H. Fischer, A. Vaezi, A. Manchon, E. A. Kim, N. Samarth, and D. C. Ralph, Nature 511, 449 (2014).
|
|
|
|
|
|
|
|
|
|
[27] C. H. Li, O. M. J. van `t Erve, J. T. Robinson, Y. Liu,
|
|
|
|
|
|
|
|
|
|
L. Li, and B. T. Jonker, Nat Nano 9, 218 (2014). [28] Y. Ando, T. Hamasaki, T. Kurokawa, K. Ichiba, F. Yang,
|
|
|
|
|
M. Novak, S. Sasaki, K. Segawa, Y. Ando, and M. Shiraishi, Nano Letters 14, 6226 (2014).
|
|
|
|
|
|
|
|
|
|
[29] Y. Fan, P. Upadhyaya, X. Kou, M. Lang, S. Takei, Z. Wang, J. Tang, L. He, L.-T. Chang, M. Montazeri,
|
|
|
|
|
|
|
|
|
|
G. Yu, W. Jiang, T. Nie, R. N. Schwartz, Y. Tserkovnyak, and K. L. Wang, Nat Mater 13, 699 (2014). [30] K. Kondou, R. Yoshimi, A. Tsukazaki, Y. Fukuma, J. Matsuno, K. S. Takahashi, M. Kawasaki, Y. Tokura,
|
|
|
|
|
|
|
|
|
|
and Y. Otani, Nat Phys 12, 1027 (2016). [31] T. Seki, Y. Hasegawa, S. Mitani, S. Takahashi, H. Ima-
|
|
|
|
|
|
|
|
|
|
mura, S. Maekawa, J. Nitta, and K. Takanashi,
|
|
|
|
|
|
|
|
|
|
Nat Mater 7, 125 (2008).
|
|
|
|
|
|
|
|
|
|
[32] G.-Y. Guo, S. Maekawa,
|
|
|
|
|
|
|
|
|
|
and N. Nagaosa,
|
|
|
|
|
|
|
|
|
|
Phys. Rev. Lett. 102, 036401 (2009).
|
|
|
|
|
|
|
|
|
|
[33] H.-A. Engel, B. I. Halperin, and E. I. Rashba, Phys. Rev. Lett. 95, 166605 (2005).
|
|
|
|
|
|
|
|
|
|
[34] J. Shi, P. Zhang, D. Xiao, and Q. Niu, Phys. Rev. Lett. 96, 076604 (2006).
|
|
|
|
|
[35] J.-i. Inoue, G. E. W. Bauer, and L. W. Molenkamp, Phys. Rev. B 67, 033104 (2003).
|
|
|
|
|
|
|
|
|
|
[36] E. G. Mishchenko, A. V. Shytov, and B. I. Halperin, Phys. Rev. Lett. 93, 226602 (2004).
|
|
|
|
|
|
|
|
|
|
[37] N. Sugimoto, S. Onoda, S. Murakami, and N. Nagaosa, Phys. Rev. B 73, 113305 (2006).
|
|
|
|
|
[38] J. Rammer, Quantum Transport Theory, Frontiers in Physics (Book 99) (Westview Press, 2004).
|
|
|
|
|
|
|
|
|
|
Supplementary Online Material: Spin Hall Effect on Topological Insulator Surface
|
|
|
|
|
|
|
|
|
|
arXiv:1701.00074v3 [cond-mat.mes-hall] 18 Oct 2017
|
|
|
|
|
|
|
|
|
|
CONTENTS
|
|
|
|
|
|
|
|
|
|
I. 2D Weyl Fermion and Chiral Skew Scattering from Non-magnetic Impurity
|
|
|
|
|
|
|
|
|
|
1
|
|
|
|
|
|
|
|
|
|
II. Effective Greens Function and Quasi-particle Scattering Rate
|
|
|
|
|
|
|
|
|
|
5
|
|
|
|
|
|
|
|
|
|
III. SHE & Rashba Edelstein Effect Correlation Functions
|
|
|
|
|
|
|
|
|
|
7
|
|
|
|
|
|
|
|
|
|
IV. Vertex Correction
|
|
|
|
|
|
|
|
|
|
11
|
|
|
|
|
|
|
|
|
|
V. Longitudinal Charge Transport and SHE DC Conductivities
|
|
|
|
|
|
|
|
|
|
15
|
|
|
|
|
|
|
|
|
|
References
|
|
|
|
|
|
|
|
|
|
23
|
|
|
|
|
|
|
|
|
|
I. 2D WEYL FERMION AND CHIRAL SKEW SCATTERING FROM NONMAGNETIC IMPURITY
|
|
|
|
|
|
|
|
|
|
We consider elastic scattering near EF of 2D Weyl fermions (Dresselhaus-type vF k <20>
|
|
|
|
|
|
|
|
|
|
system) from a dilute (ni 1) random distribution of non-magnetic impurities, at positions
|
|
|
|
|
|
|
|
|
|
Ri, with impurity scattering Himp =
|
|
|
|
|
|
|
|
|
|
r,Ri
|
|
|
|
|
|
|
|
|
|
V
|
|
|
|
|
|
|
|
|
|
e-
|
|
|
|
|
|
|
|
|
|
|r -Ri |2 a2
|
|
|
|
|
|
|
|
|
|
c(r)1
|
|
|
|
|
|
|
|
|
|
c
|
|
|
|
|
|
|
|
|
|
(r),
|
|
|
|
|
|
|
|
|
|
and
|
|
|
|
|
|
|
|
|
|
the
|
|
|
|
|
|
|
|
|
|
impurity
|
|
|
|
|
|
|
|
|
|
size
|
|
|
|
|
|
|
|
|
|
a determines the strength of skew scattering. Note that the results can be easily translated
|
|
|
|
|
|
|
|
|
|
into the Rashba-type vF z^ <20> k <20> case by rotating the momentum by 90. The chemical
|
|
|
|
|
|
|
|
|
|
potential <20> is chosen to lie in the upper helical band, with the upper/ lower helical Weyl
|
|
|
|
|
|
|
|
|
|
fermions
|
|
|
|
|
|
|
|
|
|
being
|
|
|
|
|
|
|
|
|
|
<EFBFBD>,k
|
|
|
|
|
|
|
|
|
|
=
|
|
|
|
|
|
|
|
|
|
1 2
|
|
|
|
|
|
|
|
|
|
(<28>
|
|
|
|
|
|
|
|
|
|
ck,
|
|
|
|
|
|
|
|
|
|
+
|
|
|
|
|
|
|
|
|
|
eik ck,),
|
|
|
|
|
|
|
|
|
|
and
|
|
|
|
|
|
|
|
|
|
the
|
|
|
|
|
|
|
|
|
|
Hamiltonian
|
|
|
|
|
|
|
|
|
|
is,
|
|
|
|
|
|
|
|
|
|
H = H0 + Himp
|
|
|
|
|
|
|
|
|
|
(1)
|
|
|
|
|
|
|
|
|
|
H0 =
|
|
|
|
|
|
|
|
|
|
ck,vF k
|
|
|
|
|
|
|
|
|
|
<EFBFBD>
|
|
|
|
|
|
|
|
|
|
, ck,
|
|
|
|
|
|
|
|
|
|
-
|
|
|
|
|
|
|
|
|
|
<EFBFBD>
|
|
|
|
|
|
|
|
|
|
c k,
|
|
|
|
|
|
|
|
|
|
ck,
|
|
|
|
|
|
|
|
|
|
k,,
|
|
|
|
|
|
|
|
|
|
H imp =
|
|
|
|
|
|
|
|
|
|
c k,
|
|
|
|
|
|
|
|
|
|
Vk,k,
|
|
|
|
|
|
|
|
|
|
ck
|
|
|
|
|
|
|
|
|
|
,
|
|
|
|
|
|
|
|
|
|
(2)
|
|
|
|
|
|
|
|
|
|
k,k
|
|
|
|
|
|
|
|
|
|
The non-magnetic impurity is modelled with a scattering potential V and a Gaussian
|
|
|
|
|
|
|
|
|
|
profile,
|
|
|
|
|
|
|
|
|
|
V
|
|
|
|
|
|
|
|
|
|
e . -
|
|
|
|
|
|
|
|
|
|
r2 a2
|
|
|
|
|
|
|
|
|
|
Hence
|
|
|
|
|
|
|
|
|
|
the
|
|
|
|
|
|
|
|
|
|
scattering
|
|
|
|
|
|
|
|
|
|
matrix
|
|
|
|
|
|
|
|
|
|
element
|
|
|
|
|
|
|
|
|
|
of
|
|
|
|
|
|
|
|
|
|
2D
|
|
|
|
|
|
|
|
|
|
Weyl
|
|
|
|
|
|
|
|
|
|
fermions
|
|
|
|
|
|
|
|
|
|
off
|
|
|
|
|
|
|
|
|
|
this
|
|
|
|
|
|
|
|
|
|
impurity
|
|
|
|
|
|
|
|
|
|
is,
|
|
|
|
|
|
|
|
|
|
Vk,k, =
|
|
|
|
|
|
|
|
|
|
k,
|
|
|
|
|
|
|
|
|
|
V e-
|
|
|
|
|
|
|
|
|
|
r2 a2
|
|
|
|
|
|
|
|
|
|
k,
|
|
|
|
|
|
|
|
|
|
1
|
|
|
|
|
|
|
|
|
|
=
|
|
|
|
|
|
|
|
|
|
Vnein(k-k )1
|
|
|
|
|
|
|
|
|
|
(3)
|
|
|
|
|
|
|
|
|
|
n
|
|
|
|
|
|
|
|
|
|
where
|
|
|
|
|
|
|
|
|
|
Vn
|
|
|
|
|
|
|
|
|
|
=
|
|
|
|
|
|
|
|
|
|
e k a V a2 8
|
|
|
|
|
|
|
|
|
|
-
|
|
|
|
|
|
|
|
|
|
1 8
|
|
|
|
|
|
|
|
|
|
kF2
|
|
|
|
|
|
|
|
|
|
a2
|
|
|
|
|
|
|
|
|
|
F
|
|
|
|
|
|
|
|
|
|
I
|
|
|
|
|
|
|
|
|
|
(
|
|
|
|
|
|
|
|
|
|
n-1 2
|
|
|
|
|
|
|
|
|
|
,
|
|
|
|
|
|
|
|
|
|
kF2 a2 8
|
|
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
-
|
|
|
|
|
|
|
|
|
|
I
|
|
|
|
|
|
|
|
|
|
(
|
|
|
|
|
|
|
|
|
|
n+1 2
|
|
|
|
|
|
|
|
|
|
,
|
|
|
|
|
|
|
|
|
|
kF2 a2 8
|
|
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
. V a2 (kF a)n
|
|
|
|
|
|
|
|
|
|
2
|
|
|
|
|
|
|
|
|
|
2n
|
|
|
|
|
|
|
|
|
|
(
|
|
|
|
|
|
|
|
|
|
n+1 2
|
|
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
We
|
|
|
|
|
|
|
|
|
|
have
|
|
|
|
|
|
|
|
|
|
assumed
|
|
|
|
|
|
|
|
|
|
that transport involves mainly the quasi-particles near EF , i.e. |k| = |k| kF , and have used
|
|
|
|
|
|
|
|
|
|
the result
|
|
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
|
|
|
|
r
|
|
|
|
|
|
|
|
|
|
drJn(kF
|
|
|
|
|
|
|
|
|
|
r)e-
|
|
|
|
|
|
|
|
|
|
r2 a2
|
|
|
|
|
|
|
|
|
|
=
|
|
|
|
|
|
|
|
|
|
k a e a2
|
|
|
|
|
8F
|
|
|
|
|
|
|
|
|
|
-
|
|
|
|
|
|
|
|
|
|
1 8
|
|
|
|
|
|
|
|
|
|
kF2
|
|
|
|
|
|
|
|
|
|
a2
|
|
|
|
|
|
|
|
|
|
I
|
|
|
|
|
|
|
|
|
|
(
|
|
|
|
|
|
|
|
|
|
n-1 2
|
|
|
|
|
|
|
|
|
|
,
|
|
|
|
|
|
|
|
|
|
) kF2 a2 8
|
|
|
|
|
|
|
|
|
|
-
|
|
|
|
|
|
|
|
|
|
I
|
|
|
|
|
|
|
|
|
|
(
|
|
|
|
|
|
|
|
|
|
n+1 2
|
|
|
|
|
|
|
|
|
|
,
|
|
|
|
|
|
|
|
|
|
) kF2 a2 8
|
|
|
|
|
|
|
|
|
|
, with J(n, z)
|
|
|
|
|
|
|
|
|
|
and I(n, z) being the Bessel and modified Bessel functions of the first kind respectively, and
|
|
|
|
|
|
|
|
|
|
(n) is the Gamma function
|
|
|
|
|
|
|
|
|
|
All the scattering events from a single impurity are captured in the T -matrix, given by the Dyson equation T^ = V^ + V^ G^ 0 T^ . Making use of the rotational symmetry of the system,
|
|
|
|
|
we express the Greens function and T -matrix in a multipole-expansion,
|
|
|
|
|
|
|
|
|
|
G0(k, in)
|
|
|
|
|
|
|
|
|
|
=
|
|
|
|
|
|
|
|
|
|
in
|
|
|
|
|
|
|
|
|
|
+
|
|
|
|
|
|
|
|
|
|
1 <20> - vF k <20>
|
|
|
|
|
|
|
|
|
|
(4)
|
|
|
|
|
|
|
|
|
|
= g00(k, in)1 + g01(k, in)(cos k x + sin k y)
|
|
|
|
|
|
|
|
|
|
g00(k, in)
|
|
|
|
|
|
|
|
|
|
=
|
|
|
|
|
|
|
|
|
|
(in
|
|
|
|
|
|
|
|
|
|
in + <20> + <20>)2 - vF2 k2
|
|
|
|
|
|
|
|
|
|
g01(k, in)
|
|
|
|
|
|
|
|
|
|
=
|
|
|
|
|
|
|
|
|
|
(in
|
|
|
|
|
|
|
|
|
|
vF k + <20>)2 -
|
|
|
|
|
|
|
|
|
|
vF2 k2
|
|
|
|
|
|
|
|
|
|
, where
|
|
|
|
|
|
|
|
|
|
T (k, k)
|
|
|
|
|
|
|
|
|
|
Tnimeink e-imk i
|
|
|
|
|
|
|
|
|
|
nm
|
|
|
|
|
|
|
|
|
|
= V (k, k) +
|
|
|
|
|
n1n2n3
|
|
|
|
|
|
|
|
|
|
dk1 2
|
|
|
|
|
|
|
|
|
|
k1dk1 2
|
|
|
|
|
|
|
|
|
|
Vn1
|
|
|
|
|
|
|
|
|
|
ein1
|
|
|
|
|
|
|
|
|
|
(k
|
|
|
|
|
|
|
|
|
|
-k1
|
|
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
<EFBFBD> g00(k1, in)1 + g01(k1, in)(cos k1 x + sin k1 y)
|
|
|
|
|
|
|
|
|
|
<EFBFBD>Tnj2n3 (k1, k)ein2k1 e-in3k j
|
|
|
|
|
|
|
|
|
|
(5)
|
|
|
|
|
|
|
|
|
|
The Pauli matrices are defined as i [1, ]. As discussed in the main paper, we shall
|
|
|
|
|
|
|
|
|
|
assume that there are no resonances, so the T -matrix varies slowly as a function of k near
|
|
|
|
|
|
|
|
|
|
EF . Approximating the T -matrix as a constant near kF , the dk1-integral is carried out
|
|
|
|
|
|
|
|
|
|
only over the Green's function. This is the momentum-averaged retarded Green's function,
|
|
|
|
|
|
|
|
|
|
g0i,(R,A)(in)
|
|
|
|
|
|
|
|
|
|
kdk 2
|
|
|
|
|
|
|
|
|
|
gi,(R,A)(k,
|
|
|
|
|
|
|
|
|
|
in),
|
|
|
|
|
|
|
|
|
|
and
|
|
|
|
|
|
|
|
|
|
the
|
|
|
|
|
|
|
|
|
|
results
|
|
|
|
|
|
|
|
|
|
are,
|
|
|
|
|
|
|
|
|
|
g00,(R,A)(EF )
|
|
|
|
|
|
|
|
|
|
=
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
i 2
|
|
|
|
|
|
|
|
|
|
N0(EF
|
|
|
|
|
|
|
|
|
|
)sgn(EF
|
|
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
g01,(R,A)(EF )
|
|
|
|
|
|
|
|
|
|
=
|
|
|
|
|
|
|
|
|
|
<EFBFBD>
|
|
|
|
|
|
|
|
|
|
i 2
|
|
|
|
|
|
|
|
|
|
N0(EF
|
|
|
|
|
|
|
|
|
|
)sgn(EF
|
|
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
(6a) (6b)
|
|
|
|
|
|
|
|
|
|
Here,
|
|
|
|
|
|
|
|
|
|
N0(EF )
|
|
|
|
|
|
|
|
|
|
=
|
|
|
|
|
|
|
|
|
|
EF 2vF2
|
|
|
|
|
|
|
|
|
|
is the bare density of states,
|
|
|
|
|
|
|
|
|
|
and in terms of the momentum-
|
|
|
|
|
|
|
|
|
|
averaged retarded Greens functions, the retarded T -matrix is now given by,
|
|
|
|
|
|
|
|
|
|
2
|
|
|
|
|
|
|
|
|
|
T (k, k) =
|
|
|
|
|
|
|
|
|
|
Vnein(k-k )1nm + Vneink e-imk g00(EF ) Tn0m1 + Tn1mx + Tn2my + Tn3mz (7)
|
|
|
|
|
|
|
|
|
|
nm
|
|
|
|
|
|
|
|
|
|
+ g01(EF ) Tn--1m1 + Tn--1mz + Tnz-+1m- + g01(EF ) Tn++1m1 + Tn++1mz + Tnz+-1m+
|
|
|
|
|
|
|
|
|
|
The
|
|
|
|
|
|
|
|
|
|
coefficients
|
|
|
|
|
|
|
|
|
|
of
|
|
|
|
|
|
|
|
|
|
the
|
|
|
|
|
|
|
|
|
|
T -matrix
|
|
|
|
|
|
|
|
|
|
are
|
|
|
|
|
|
|
|
|
|
Tnzm<EFBFBD>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Tn0m
|
|
|
|
|
|
|
|
|
|
<EFBFBD> Tn3m,
|
|
|
|
|
|
|
|
|
|
Tn<EFBFBD>m
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 2
|
|
|
|
|
|
|
|
|
|
(Tn1m
|
|
|
|
|
|
|
|
|
|
<EFBFBD> iTn2m),
|
|
|
|
|
|
|
|
|
|
and
|
|
|
|
|
|
|
|
|
|
are
|
|
|
|
|
|
|
|
|
|
now defined by the following set of coupled recurrence equations,
|
|
|
|
|
|
|
|
|
|
Tnzm+ = Vnnm + Vn g0(EF ) Tnzm+ + 2Vn g1(EF ) Tn++1m
|
|
|
|
|
|
|
|
|
|
Tn+m
|
|
|
|
|
|
|
|
|
|
= Vn
|
|
|
|
|
|
|
|
|
|
g0(EF )
|
|
|
|
|
|
|
|
|
|
Tn+m +
|
|
|
|
|
|
|
|
|
|
1 2
|
|
|
|
|
|
|
|
|
|
Vn
|
|
|
|
|
|
|
|
|
|
g1(EF )
|
|
|
|
|
|
|
|
|
|
Tnz-+1m
|
|
|
|
|
|
|
|
|
|
Tnzm- = Vnnm + Vn g0(EF ) Tnzm- + 2Vn g1(EF ) Tn--1m
|
|
|
|
|
|
|
|
|
|
Tn-m
|
|
|
|
|
|
|
|
|
|
= Vn
|
|
|
|
|
|
|
|
|
|
g0(EF )
|
|
|
|
|
|
|
|
|
|
Tn-m +
|
|
|
|
|
|
|
|
|
|
1 2
|
|
|
|
|
|
|
|
|
|
Vn
|
|
|
|
|
|
|
|
|
|
g1(EF )
|
|
|
|
|
|
|
|
|
|
Tnz+-1m
|
|
|
|
|
|
|
|
|
|
(8)
|
|
|
|
|
|
|
|
|
|
The T -coefficients reduce to two set of coupled equations for T z<> = Tn0m <20> Tn3m and T <20> = Tn1m <20> iTn2m, given in terms of Vn and the momentum-averaged retarded Green's functions, gi,(R)(EF ) . The arguments of the T -matrix coefficients are dropped, understanding that they are evaluated at kF and EF . Some straightforward, albeit tedious, algebra allows us to solve Eq. 8.
|
|
|
|
|
|
|
|
|
|
Tnzm+
|
|
|
|
|
|
|
|
|
|
=
|
|
|
|
|
|
|
|
|
|
(1 - Vn
|
|
|
|
|
|
|
|
|
|
Vn (1 - Vn+1 g0(EF )) nm g0(EF ) ) (1 - Vn+1 g0(EF ) ) - VnVn+1
|
|
|
|
|
|
|
|
|
|
g1(EF )
|
|
|
|
|
|
|
|
|
|
2
|
|
|
|
|
|
|
|
|
|
Tn+m
|
|
|
|
|
|
|
|
|
|
=
|
|
|
|
|
|
|
|
|
|
1 2 (1 - Vn-1
|
|
|
|
|
|
|
|
|
|
VnVn-1 g1(EF )n-1m g0(EF ) ) (1 - Vn g0(EF ) ) - VnVn-1
|
|
|
|
|
|
|
|
|
|
g1(EF )
|
|
|
|
|
|
|
|
|
|
2
|
|
|
|
|
|
|
|
|
|
Tnzm-
|
|
|
|
|
|
|
|
|
|
=
|
|
|
|
|
|
|
|
|
|
(1 - Vn
|
|
|
|
|
|
|
|
|
|
Vn (1 - Vn-1 g0(EF )) nm g0(EF ) ) (1 - Vn-1 g0(EF ) ) - VnVn-1
|
|
|
|
|
|
|
|
|
|
g1(EF )
|
|
|
|
|
|
|
|
|
|
2
|
|
|
|
|
|
|
|
|
|
Tn-m
|
|
|
|
|
|
|
|
|
|
=
|
|
|
|
|
|
|
|
|
|
1 2 (1 - Vn+1
|
|
|
|
|
|
|
|
|
|
VnVn+1 g1(EF )n+1m g0(EF ) ) (1 - Vn g0(EF ) ) - VnVn+1
|
|
|
|
|
|
|
|
|
|
g1(EF )
|
|
|
|
|
|
|
|
|
|
2
|
|
|
|
|
|
|
|
|
|
(9)
|
|
|
|
|
|
|
|
|
|
Therefore, the T -matrix coefficients are,
|
|
|
|
|
|
|
|
|
|
Tn0m
|
|
|
|
|
|
|
|
|
|
=
|
|
|
|
|
|
|
|
|
|
1 2 (1 - Vn
|
|
|
|
|
|
|
|
|
|
Vn (1 - Vn+1 g0(EF )) nm g0(EF ) ) (1 - Vn+1 g0(EF ) ) - VnVn+1
|
|
|
|
|
|
|
|
|
|
g1(EF )
|
|
|
|
|
|
|
|
|
|
2
|
|
|
|
|
|
|
|
|
|
+
|
|
|
|
|
|
|
|
|
|
1 2 (1 - Vn
|
|
|
|
|
|
|
|
|
|
Vn (1 - Vn-1 g0(EF )) nm g0(EF ) ) (1 - Vn-1 g0(EF ) ) - VnVn-1
|
|
|
|
|
|
|
|
|
|
g1(EF )
|
|
|
|
|
|
|
|
|
|
2
|
|
|
|
|
|
|
|
|
|
Tn3m
|
|
|
|
|
|
|
|
|
|
=
|
|
|
|
|
|
|
|
|
|
1 2 (1 - Vn
|
|
|
|
|
|
|
|
|
|
Vn (1 - Vn+1 g0(EF )) nm g0(EF ) ) (1 - Vn+1 g0(EF ) ) - VnVn+1
|
|
|
|
|
|
|
|
|
|
g1(EF )
|
|
|
|
|
|
|
|
|
|
2
|
|
|
|
|
|
|
|
|
|
-
|
|
|
|
|
|
|
|
|
|
1 2 (1 - Vn
|
|
|
|
|
|
|
|
|
|
Vn (1 - Vn-1 g0(EF )) nm g0(EF ) ) (1 - Vn-1 g0(EF ) ) - VnVn-1
|
|
|
|
|
|
|
|
|
|
g1(EF )
|
|
|
|
|
|
|
|
|
|
2
|
|
|
|
|
|
|
|
|
|
Tn1m
|
|
|
|
|
|
|
|
|
|
=
|
|
|
|
|
|
|
|
|
|
1 2 (1 - Vn-1
|
|
|
|
|
|
|
|
|
|
VnVn-1 g1(EF )n-1m g0(EF ) ) (1 - Vn g0(EF ) ) - VnVn-1
|
|
|
|
|
|
|
|
|
|
g1(EF )
|
|
|
|
|
|
|
|
|
|
2
|
|
|
|
|
|
|
|
|
|
3
|
|
|
|
|
|
|
|
|
|
+
|
|
|
|
|
|
|
|
|
|
1 2 (1 - Vn+1
|
|
|
|
|
|
|
|
|
|
VnVn+1 g1(EF )n+1m g0(EF ) ) (1 - Vn g0(EF ) ) - VnVn+1
|
|
|
|
|
|
|
|
|
|
g1(EF )
|
|
|
|
|
|
|
|
|
|
2
|
|
|
|
|
|
|
|
|
|
Tn2m
|
|
|
|
|
|
|
|
|
|
=
|
|
|
|
|
|
|
|
|
|
-
|
|
|
|
|
|
|
|
|
|
i 2
|
|
|
|
|
|
|
|
|
|
(1
|
|
|
|
|
|
|
|
|
|
-
|
|
|
|
|
|
|
|
|
|
Vn-1
|
|
|
|
|
|
|
|
|
|
VnVn-1 g1(EF )n-1m g0(EF ) ) (1 - Vn g0(EF ) ) - VnVn-1
|
|
|
|
|
|
|
|
|
|
g1(EF )
|
|
|
|
|
|
|
|
|
|
2
|
|
|
|
|
|
|
|
|
|
+
|
|
|
|
|
|
|
|
|
|
i 2 (1 - Vn+1
|
|
|
|
|
|
|
|
|
|
VnVn+1 g1(EF )n+1m g0(EF ) ) (1 - Vn g0(EF ) ) - VnVn+1
|
|
|
|
|
|
|
|
|
|
g1(EF )
|
|
|
|
|
|
|
|
|
|
2
|
|
|
|
|
|
|
|
|
|
(10)
|
|
|
|
|
|
|
|
|
|
We calculate the T -matrix up to order O(V0V12), at which skew scattering appears, and keep only the l = 0 and l = 1 channels. Defining the symmetric and asymmetric parts of the spin-flip scattering as T S/A = T1+0 <20> T--10, we can now write down the s and p-wave channels of the T -matrix.
|
|
|
|
|
|
|
|
|
|
T (k, k ) = T 01 + T03z + T13
|
|
|
|
|
|
|
|
|
|
e - e i(k-k )
|
|
|
|
|
|
|
|
|
|
-i(k-k )
|
|
|
|
|
|
|
|
|
|
z
|
|
|
|
|
|
|
|
|
|
+
|
|
|
|
|
|
|
|
|
|
TS
|
|
|
|
|
|
|
|
|
|
+ 2
|
|
|
|
|
|
|
|
|
|
T A eik -
|
|
|
|
|
|
|
|
|
|
+
|
|
|
|
|
|
|
|
|
|
TS
|
|
|
|
|
|
|
|
|
|
- 2
|
|
|
|
|
|
|
|
|
|
T A e-ik +
|
|
|
|
|
|
|
|
|
|
+ T S + T A e-ik + + T S - T A eik -
|
|
|
|
|
|
|
|
|
|
2
|
|
|
|
|
|
|
|
|
|
2
|
|
|
|
|
|
|
|
|
|
and the coefficients are defined as,
|
|
|
|
|
|
|
|
|
|
T0
|
|
|
|
|
|
|
|
|
|
=
|
|
|
|
|
|
|
|
|
|
1 2
|
|
|
|
|
|
|
|
|
|
V0 1 - V1 g0(EF ) (1 - V0 g0(EF ) ) (1 - V1 g0(EF ) ) - V0V1 g1(EF ) 2
|
|
|
|
|
|
|
|
|
|
+
|
|
|
|
|
|
|
|
|
|
1 2
|
|
|
|
|
|
|
|
|
|
V0 1 - V-1 g0(EF ) (1 - V0 g0(EF ) ) (1 - V-1 g0(EF ) ) - V0V-1 g1(EF ) 2
|
|
|
|
|
|
|
|
|
|
=
|
|
|
|
|
|
|
|
|
|
V0
|
|
|
|
|
2
|
|
|
|
|
|
|
|
|
|
1 - V0 g0(EF )
|
|
|
|
|
|
|
|
|
|
T03
|
|
|
|
|
|
|
|
|
|
=
|
|
|
|
|
|
|
|
|
|
1 2
|
|
|
|
|
|
|
|
|
|
V0 1 - V1 g0(EF ) (1 - V0 g0(EF ) ) (1 - V1 g0(EF ) ) - V0V1 g1(EF ) 2
|
|
|
|
|
|
|
|
|
|
-
|
|
|
|
|
|
|
|
|
|
1 2
|
|
|
|
|
|
|
|
|
|
V0 1 - V-1 g0(EF ) (1 - V0 g0(EF ) ) (1 - V1 g0(EF ) ) - V0V-1 g1(EF ) 2
|
|
|
|
|
|
|
|
|
|
=
|
|
|
|
|
|
|
|
|
|
V02V1 g1(EF ) 2
|
|
|
|
|
2
|
|
|
|
|
|
|
|
|
|
1 - V0 g0(EF )
|
|
|
|
|
|
|
|
|
|
T13
|
|
|
|
|
|
|
|
|
|
=
|
|
|
|
|
|
|
|
|
|
1 2
|
|
|
|
|
|
|
|
|
|
V1 1 - V2 g0(EF ) (1 - V1 g0(EF ) ) (1 - V2 g0(EF ) ) - V1V2 g1(EF ) 2
|
|
|
|
|
|
|
|
|
|
-
|
|
|
|
|
|
|
|
|
|
1 2
|
|
|
|
|
|
|
|
|
|
V1 1 - V0 g0(EF ) (1 - V1 g0(EF ) ) (1 - V0 g0(EF ) ) - V1V0 g1(EF ) 2
|
|
|
|
|
|
|
|
|
|
4
|
|
|
|
|
|
|
|
|
|
(11) (12a) (12b)
|
|
|
|
|
|
|
|
|
|
=
|
|
|
|
|
|
|
|
|
|
-
|
|
|
|
|
|
|
|
|
|
1 2
|
|
|
|
|
|
|
|
|
|
V0V12 g1(EF ) 2
|
|
|
|
|
2
|
|
|
|
|
1 - V1 g0(EF )
|
|
|
|
|
|
|
|
|
|
TS
|
|
|
|
|
|
|
|
|
|
=
|
|
|
|
|
|
|
|
|
|
1 2 (1 - V0
|
|
|
|
|
|
|
|
|
|
g0(EF )
|
|
|
|
|
|
|
|
|
|
V0V1 g1(EF ) )(1 - V1 g0(EF )
|
|
|
|
|
|
|
|
|
|
) - V0V1
|
|
|
|
|
|
|
|
|
|
g1(EF )
|
|
|
|
|
|
|
|
|
|
2
|
|
|
|
|
|
|
|
|
|
+
|
|
|
|
|
|
|
|
|
|
1 2
|
|
|
|
|
|
|
|
|
|
(1
|
|
|
|
|
|
|
|
|
|
-
|
|
|
|
|
|
|
|
|
|
V0
|
|
|
|
|
|
|
|
|
|
g0(EF )
|
|
|
|
|
|
|
|
|
|
V0V-1 )(1 - V-1
|
|
|
|
|
|
|
|
|
|
g1(EF ) g0(EF )
|
|
|
|
|
|
|
|
|
|
) - V0V-1
|
|
|
|
|
|
|
|
|
|
g1(EF )
|
|
|
|
|
|
|
|
|
|
2
|
|
|
|
|
|
|
|
|
|
= V0V12 g0(EF )
|
|
|
|
|
|
|
|
|
|
g1(EF )
|
|
|
|
|
2
|
|
|
|
|
|
|
|
|
|
1 - V0 g0(EF )
|
|
|
|
|
|
|
|
|
|
TA
|
|
|
|
|
|
|
|
|
|
=
|
|
|
|
|
|
|
|
|
|
1 2 (1 - V0
|
|
|
|
|
|
|
|
|
|
g0(EF )
|
|
|
|
|
|
|
|
|
|
V0V1 g1(EF ) )(1 - V1 g0(EF )
|
|
|
|
|
|
|
|
|
|
) - V0V1
|
|
|
|
|
|
|
|
|
|
g1(EF )
|
|
|
|
|
|
|
|
|
|
2
|
|
|
|
|
|
|
|
|
|
-
|
|
|
|
|
|
|
|
|
|
1 2
|
|
|
|
|
|
|
|
|
|
(1
|
|
|
|
|
|
|
|
|
|
-
|
|
|
|
|
|
|
|
|
|
V0
|
|
|
|
|
|
|
|
|
|
g0(EF )
|
|
|
|
|
|
|
|
|
|
V0V-1 )(1 - V-1
|
|
|
|
|
|
|
|
|
|
g1(EF ) g0(EF )
|
|
|
|
|
|
|
|
|
|
) - V0V-1
|
|
|
|
|
|
|
|
|
|
g1(EF )
|
|
|
|
|
|
|
|
|
|
2
|
|
|
|
|
|
|
|
|
|
=
|
|
|
|
|
|
|
|
|
|
V0V1 g1(EF )
|
|
|
|
|
2
|
|
|
|
|
|
|
|
|
|
1 - V0 g0(EF )
|
|
|
|
|
|
|
|
|
|
(12c) (12d) (12e)
|
|
|
|
|
|
|
|
|
|
We point out that upon projecting into the upper helical band, i.e. calculating the matrix elements k, + T S(eik - + e-ik +) k, + = 2 T S (cos(k - k ) - i sin(k - k )), we find that the spin-flip scattering gives rise to a skew-scattering term 2iT S sin(k - k ) in the chiral band basis, which will drive the SHE.
|
|
|
|
|
|
|
|
|
|
II. EFFECTIVE GREENS FUNCTION AND QUASI-PARTICLE SCATTERING RATE
|
|
|
|
|
|
|
|
|
|
The retarded T -matrix calculated in Eq. 5 includes only scattering from a single impurity, and in the dilute impurity limit, the T -matrix for scattering from all impurities can be calculated in the non-crossing approximation NCA) [1]) by including scattering events from other impurities in the bare Greens function leg, i.e. replacing G0 by Geff , in the calculation of the T -matrix. Hence, this forms an implicit self-consistent solution for the retarded and advanced Geff function and T -matrix.
|
|
|
|
|
|
|
|
|
|
T
|
|
|
|
|
|
|
|
|
|
(R)
|
|
|
|
|
(k,
|
|
|
|
|
|
|
|
|
|
k)
|
|
|
|
|
|
|
|
|
|
=
|
|
|
|
|
|
|
|
|
|
niV
|
|
|
|
|
|
|
|
|
|
(k,
|
|
|
|
|
|
|
|
|
|
k)
|
|
|
|
|
|
|
|
|
|
+
|
|
|
|
|
|
|
|
|
|
ni
|
|
|
|
|
|
|
|
|
|
V
|
|
|
|
|
|
|
|
|
|
(k,
|
|
|
|
|
|
|
|
|
|
(R)
|
|
|
|
|
k1 )Gef f
|
|
|
|
|
|
|
|
|
|
(k1,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
)T
|
|
|
|
|
|
|
|
|
|
(R)
|
|
|
|
|
(k1,
|
|
|
|
|
|
|
|
|
|
k,
|
|
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
k1
|
|
|
|
|
|
|
|
|
|
T
|
|
|
|
|
|
|
|
|
|
(A)
|
|
|
|
|
(k,
|
|
|
|
|
|
|
|
|
|
k)
|
|
|
|
|
|
|
|
|
|
=
|
|
|
|
|
|
|
|
|
|
niV
|
|
|
|
|
|
|
|
|
|
(k,
|
|
|
|
|
|
|
|
|
|
k)
|
|
|
|
|
|
|
|
|
|
+
|
|
|
|
|
|
|
|
|
|
ni
|
|
|
|
|
|
|
|
|
|
V
|
|
|
|
|
|
|
|
|
|
(k,
|
|
|
|
|
|
|
|
|
|
(A)
|
|
|
|
|
k1 )Gef f
|
|
|
|
|
|
|
|
|
|
(k1,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
)T
|
|
|
|
|
|
|
|
|
|
(A)
|
|
|
|
|
(k1
|
|
|
|
|
|
|
|
|
|
,
|
|
|
|
|
|
|
|
|
|
k,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
k1
|
|
|
|
|
|
|
|
|
|
(13)
|
|
|
|
|
|
|
|
|
|
5
|
|
|
|
|
|
|
|
|
|
(R)
|
|
|
|
|
In the non-crossing approximation, the retarded self-energy (k, ) and quasi-particle
|
|
|
|
|
(R)
|
|
|
|
|
scattering rate (k, ) = Im[ (k, )] are given by,
|
|
|
|
|
|
|
|
|
|
(R)
|
|
|
|
|
(k, ) = ni
|
|
|
|
|
|
|
|
|
|
V
|
|
|
|
|
|
|
|
|
|
(k,
|
|
|
|
|
|
|
|
|
|
(R)
|
|
|
|
|
k1 )Gef f
|
|
|
|
|
|
|
|
|
|
(k1
|
|
|
|
|
|
|
|
|
|
,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
)T
|
|
|
|
|
|
|
|
|
|
(R)
|
|
|
|
|
|
|
|
|
|
(k1,
|
|
|
|
|
|
|
|
|
|
k,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
k1
|
|
|
|
|
|
|
|
|
|
(R)
|
|
|
|
|
|
|
|
|
|
(A)
|
|
|
|
|
|
|
|
|
|
(R)
|
|
|
|
|
|
|
|
|
|
(k, ) = Im[ (k, )] = T (k, k1, )Aeff (k1, )T (k1, k, )
|
|
|
|
|
|
|
|
|
|
(14)
|
|
|
|
|
|
|
|
|
|
k1
|
|
|
|
|
|
|
|
|
|
(R)
|
|
|
|
|
The spin-dependent spectral weight is given by Aeff (k, ) = 2Im[Geff (k, )]. Similar to
|
|
|
|
|
|
|
|
|
|
the calculation of the T -matrix, the dk-integral for the self-energy is done using the ap-
|
|
|
|
|
|
|
|
|
|
proximation that the T -matrix varies slowly near kF , leaving only the dk-integral of the spin-dependent spectral weight, which is none other than the density of states,
|
|
|
|
|
|
|
|
|
|
Ne(f0)f () =
|
|
|
|
|
|
|
|
|
|
kdk 2
|
|
|
|
|
|
|
|
|
|
I
|
|
|
|
|
|
|
|
|
|
m[ge0f
|
|
|
|
|
|
|
|
|
|
f
|
|
|
|
|
|
|
|
|
|
(k,
|
|
|
|
|
|
|
|
|
|
)]
|
|
|
|
|
|
|
|
|
|
Ne(f1)f () =
|
|
|
|
|
|
|
|
|
|
kdk 2
|
|
|
|
|
|
|
|
|
|
I
|
|
|
|
|
|
|
|
|
|
m[ge1f
|
|
|
|
|
|
|
|
|
|
f
|
|
|
|
|
|
|
|
|
|
(k,
|
|
|
|
|
|
|
|
|
|
)]
|
|
|
|
|
|
|
|
|
|
(15)
|
|
|
|
|
|
|
|
|
|
As
|
|
|
|
|
|
|
|
|
|
pointed
|
|
|
|
|
|
|
|
|
|
out
|
|
|
|
|
|
|
|
|
|
in
|
|
|
|
|
|
|
|
|
|
the
|
|
|
|
|
|
|
|
|
|
main
|
|
|
|
|
|
|
|
|
|
paper,
|
|
|
|
|
|
|
|
|
|
Ne(f0)f/(1)(EF )
|
|
|
|
|
|
|
|
|
|
=
|
|
|
|
|
|
|
|
|
|
N0 (EF 2
|
|
|
|
|
|
|
|
|
|
) (1
|
|
|
|
|
|
|
|
|
|
+
|
|
|
|
|
|
|
|
|
|
O())
|
|
|
|
|
|
|
|
|
|
in
|
|
|
|
|
|
|
|
|
|
the
|
|
|
|
|
|
|
|
|
|
dilute
|
|
|
|
|
|
|
|
|
|
limit;
|
|
|
|
|
|
|
|
|
|
hence, we will approximate Ne(f0)f/(1)(EF )
|
|
|
|
|
|
|
|
|
|
N0(EF ) 2
|
|
|
|
|
|
|
|
|
|
=
|
|
|
|
|
|
|
|
|
|
|EF2 | 4vF2
|
|
|
|
|
|
|
|
|
|
and Ne(f1)f (EF )
|
|
|
|
|
|
|
|
|
|
N0 (EF 2
|
|
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
sgn(EF
|
|
|
|
|
|
|
|
|
|
).
|
|
|
|
|
|
|
|
|
|
This finally gives the result for the quasi-particle lifetime near the Fermi surface, i.e. =
|
|
|
|
|
|
|
|
|
|
(R)
|
|
|
|
|
(kF , EF ) = Im[ (kF , EF )], which is shown below. The real part of the self-energy
|
|
|
|
|
|
|
|
|
|
that renormalizes vF and <20> are ignored here, as vF and <20> are taken to be experimentally
|
|
|
|
|
|
|
|
|
|
determined parameters.
|
|
|
|
|
|
|
|
|
|
= 01 + a (cos x + sin y)
|
|
|
|
|
- b(sin x - cos y) + i3 z
|
|
|
|
|
0 = niNe(f0)f (EF ) |T 0|2 - 2 |T 3|2 + |T S|2 - |T A|2 a = -4niNe(f1)f (EF ) |T S|2 + |T A|2 b = 2niNe(f0)f (EF ) |T 0||T A| + |T 3||T S| 3 = 4niNe(f1)f (EF ) |T 0||T S| + |T 3||T A|
|
|
|
|
|
|
|
|
|
|
(16a) (16b)
|
|
|
|
|
|
|
|
|
|
The effective Greens function in the dilute impurity limit is now given by,
|
|
|
|
|
|
|
|
|
|
(R)
|
|
|
|
|
|
|
|
|
|
-1
|
|
|
|
|
|
|
|
|
|
Geff (k, ) = + <20> - vF k <20> - i(k, )
|
|
|
|
|
|
|
|
|
|
= ge0ff (k, )1 + geaff (k, ) (cos x + sin y)
|
|
|
|
|
|
|
|
|
|
+ gebff (k, ) (sin x - cos y) + ge3ff (k, )z
|
|
|
|
|
|
|
|
|
|
ge0ff (k, )
|
|
|
|
|
|
|
|
|
|
=
|
|
|
|
|
|
|
|
|
|
((k)
|
|
|
|
|
|
|
|
|
|
+ i(k))( + <20> - i0) 2(k) + 2(k)
|
|
|
|
|
|
|
|
|
|
(17a)
|
|
|
|
|
|
|
|
|
|
6
|
|
|
|
|
|
|
|
|
|
geaff (k, )
|
|
|
|
|
|
|
|
|
|
=
|
|
|
|
|
|
|
|
|
|
((k)
|
|
|
|
|
|
|
|
|
|
+ i(k))(vF |k| 2(k) + 2(k)
|
|
|
|
|
|
|
|
|
|
+
|
|
|
|
|
|
|
|
|
|
ia)
|
|
|
|
|
|
|
|
|
|
gebff (k, )
|
|
|
|
|
|
|
|
|
|
=
|
|
|
|
|
|
|
|
|
|
ib((k) + i(k)) 2(k) + 2(k)
|
|
|
|
|
|
|
|
|
|
ge3ff (k,
|
|
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
=
|
|
|
|
|
|
|
|
|
|
-
|
|
|
|
|
|
|
|
|
|
3((k) + i(k)) 2(k) + 2(k)
|
|
|
|
|
|
|
|
|
|
(17b)
|
|
|
|
|
|
|
|
|
|
where the denominator terms are (k) = ( + <20>)2 - vF2 |k|2 - 02 + a2 + b2 - 32, (k) = 2 ( + <20>)0 + vF |k|a .
|
|
|
|
|
|
|
|
|
|
III. SHE & RASHBA EDELSTEIN EFFECT CORRELATION FUNCTIONS
|
|
|
|
|
|
|
|
|
|
Within the Kubo formalism, the longitudinal charge conductivity and spin-Hall con-
|
|
|
|
|
|
|
|
|
|
ductivity, yy and xzy, are given by the retarded current-current and spin current-current correlation functions respectively,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
y(Ry )(k, ) = -i
|
|
|
|
|
|
|
|
|
|
dt eit(t) [jy(k, t), jy(k, 0])
|
|
|
|
|
|
|
|
|
|
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
xzy,(R)(k, ) = -i
|
|
|
|
|
|
|
|
|
|
dt eit(t) [Jxz(k, t), jy(k, 0])
|
|
|
|
|
|
|
|
|
|
-
|
|
|
|
|
|
|
|
|
|
(18a) (18b)
|
|
|
|
|
|
|
|
|
|
Similarly, it is straightforward to derive a Kubo formula for the spin-accumulation due
|
|
|
|
|
|
|
|
|
|
longitudinal charge transport, i.e. the Rashba-Edelstein effect.
|
|
|
|
|
|
|
|
|
|
S
|
|
|
|
|
|
|
|
|
|
=
|
|
|
|
|
|
|
|
|
|
lim
|
|
|
|
|
0
|
|
|
|
|
|
|
|
|
|
lim
|
|
|
|
|
k0
|
|
|
|
|
|
|
|
|
|
E ei(k <20> r-t)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
dt(t) [S(k, t), j(k, 0)]
|
|
|
|
|
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
i,(R)(k, ) = -i
|
|
|
|
|
|
|
|
|
|
dteit [Si(k, t), j(k, 0)]
|
|
|
|
|
|
|
|
|
|
-
|
|
|
|
|
|
|
|
|
|
(19a) (19b)
|
|
|
|
|
|
|
|
|
|
The spin current Jxz has two components, one is the conventional spin current jxz due
|
|
|
|
|
|
|
|
|
|
to band-bending effects, and the other is the spin-torque current Pxz, which are defined as
|
|
|
|
|
|
|
|
|
|
follow,
|
|
|
|
|
|
|
|
|
|
jxz(k, ) =
|
|
|
|
|
|
|
|
|
|
c ( k1,
|
|
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
(k
|
|
|
|
|
|
|
|
|
|
+ k1)x m
|
|
|
|
|
|
|
|
|
|
z
|
|
|
|
|
|
|
|
|
|
ck+k1, (
|
|
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
k1
|
|
|
|
|
|
|
|
|
|
Pxz(k, )
|
|
|
|
|
|
|
|
|
|
=
|
|
|
|
|
|
|
|
|
|
2ivF kx
|
|
|
|
|
|
|
|
|
|
c ( ) k1,
|
|
|
|
|
|
|
|
|
|
(k1
|
|
|
|
|
|
|
|
|
|
+
|
|
|
|
|
|
|
|
|
|
k 2
|
|
|
|
|
|
|
|
|
|
)x
|
|
|
|
|
|
|
|
|
|
y
|
|
|
|
|
|
|
|
|
|
-
|
|
|
|
|
|
|
|
|
|
(k1
|
|
|
|
|
|
|
|
|
|
+
|
|
|
|
|
|
|
|
|
|
k 2
|
|
|
|
|
|
|
|
|
|
)y
|
|
|
|
|
|
|
|
|
|
x
|
|
|
|
|
|
|
|
|
|
ck+k1, ( )
|
|
|
|
|
|
|
|
|
|
k1
|
|
|
|
|
|
|
|
|
|
(20a) (20b)
|
|
|
|
|
|
|
|
|
|
We will now separate the SHE into two contributions, xzy(1) and xz(y2), coming from the
|
|
|
|
|
|
|
|
|
|
conventional spin current and the spin torque current respectively. All the Matsubara cor-
|
|
|
|
|
|
|
|
|
|
relation functions, yy(k, in), yi (k, in), xz(y1)(k, in) and xzy(2)(k, in), are given below,
|
|
|
|
|
|
|
|
|
|
7
|
|
|
|
|
|
|
|
|
|
and analytic continuation (in + i) will give the corresponding retarded correlation
|
|
|
|
|
|
|
|
|
|
functions.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
yy(k, in) = - d e-in T U (, 0)jy(k, )jy(k, 0)
|
|
|
|
|
0
|
|
|
|
|
|
|
|
|
|
yi (k, in) = - d e-in T U (, 0)Si(k, )jy(k, 0) 0
|
|
|
|
|
|
|
|
|
|
xzy,(1)(k, in) = - d e-in T U (, 0)jxz(k, )jy(k, 0) 0
|
|
|
|
|
|
|
|
|
|
xz,y(2)(k, in) = - d e-in T U (, 0)Pxz(k, )jy(k, 0) 0
|
|
|
|
|
|
|
|
|
|
(21a) (21b) (21c) (21d)
|
|
|
|
|
|
|
|
|
|
The correlation functions are written in the interaction representation, and U(, 0) is the
|
|
|
|
|
|
|
|
|
|
S-matrix, which can be formally expanded as an infinite series of interacting terms involving
|
|
|
|
|
|
|
|
|
|
Hint. Hence, the correlation functions are evaluated by expanding the S-matrix, and we show the expansion for xzy,(1)(k, ) below.
|
|
|
|
|
|
|
|
|
|
xz,y(1)(k, ) = -
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
(-1)n n!
|
|
|
|
|
|
|
|
|
|
n=0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
d1 . . .
|
|
|
|
|
0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
dn T jxz(k, )Hint(1) . . . Hint(n)jy(k, 0) (22)
|
|
|
|
|
0
|
|
|
|
|
|
|
|
|
|
The n = 0 term in Eq. 22 is just the bare bubble diagram, and the n = 2 term will give
|
|
|
|
|
|
|
|
|
|
the first correction to the scattering vertex.
|
|
|
|
|
|
|
|
|
|
xz,y(1,n=2)(k, in) = -
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
d
|
|
|
|
|
0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
d1
|
|
|
|
|
0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
d2e-in
|
|
|
|
|
0
|
|
|
|
|
|
|
|
|
|
evF c
|
|
|
|
|
|
|
|
|
|
T
|
|
|
|
|
|
|
|
|
|
c ( k1,
|
|
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
(k
|
|
|
|
|
|
|
|
|
|
+ k1)x m
|
|
|
|
|
|
|
|
|
|
z
|
|
|
|
|
|
|
|
|
|
ck+k1,
|
|
|
|
|
|
|
|
|
|
(
|
|
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
k1 ,k2
|
|
|
|
|
|
|
|
|
|
<EFBFBD>H int(1)H int(2)ck2,(0)y ck+k2,
|
|
|
|
|
|
|
|
|
|
= - evF mc
|
|
|
|
|
|
|
|
|
|
1
|
|
|
|
|
|
|
|
|
|
z G<>1 (p + k, i1 + in)V<>1<EFBFBD>2 (p + k, p + q)
|
|
|
|
|
|
|
|
|
|
p,q
|
|
|
|
|
|
|
|
|
|
i1
|
|
|
|
|
|
|
|
|
|
<EFBFBD>G<EFBFBD>2(p + q, i1 + in)y G<>3(p + q - k, i1)
|
|
|
|
|
|
|
|
|
|
<EFBFBD>V<EFBFBD>3<EFBFBD>4(p + q - k, p)G<>4(p, i1)(k1 + k)x
|
|
|
|
|
|
|
|
|
|
(23)
|
|
|
|
|
|
|
|
|
|
This corresponds to the Feynman diagram for the vertex correction from a single scattering event. Notice that only elastic scattering is considered here, as each scattering event does not change the energy of the electron; hence, all the Green's functions on the upper (and lower) legs of the bubble diagram have the same energy, e.g. in Eq. 23, G<>1(p + k, i1 + in) and G<>2(p + q, i1 + in) undergo a change of momentum and spin upon scattering off V<>1<EFBFBD>2(p + k, p + q), but do not exchange energy with the impurity.
|
|
|
|
|
Since energy is conserved in the upper and lower legs of the bubble diagram, we can now include the effect of all the scattering events from a single impurity on the vertex correction
|
|
|
|
|
|
|
|
|
|
8
|
|
|
|
|
|
|
|
|
|
by replacing the scattering potential V<>1<EFBFBD>2(k, k) by the full T -matrix to obtain,
|
|
|
|
|
|
|
|
|
|
xzy,(1,T )(k,
|
|
|
|
|
|
|
|
|
|
in)
|
|
|
|
|
|
|
|
|
|
=
|
|
|
|
|
|
|
|
|
|
- evF c
|
|
|
|
|
|
|
|
|
|
1
|
|
|
|
|
|
|
|
|
|
(p + k)x Tr m
|
|
|
|
|
|
|
|
|
|
zG(p + k, i1 + in)T (p + k, p + q)
|
|
|
|
|
|
|
|
|
|
p,q
|
|
|
|
|
|
|
|
|
|
i1
|
|
|
|
|
|
|
|
|
|
<EFBFBD>G(p + q, i1 + in)yG(p + q - k, i1)T (p + q - k, p)G(p, i1) (24)
|
|
|
|
|
|
|
|
|
|
Finally, scattering events from all the impurities can be included by defining a scattering
|
|
|
|
|
y
|
|
|
|
|
vertex (p+k, k, i1 +in, in), whereby an infinite subset of scattering events are included
|
|
|
|
|
in the Bethe-Salpeter equation,
|
|
|
|
|
|
|
|
|
|
y
|
|
|
|
|
(p
|
|
|
|
|
|
|
|
|
|
+
|
|
|
|
|
|
|
|
|
|
k,
|
|
|
|
|
|
|
|
|
|
k,
|
|
|
|
|
|
|
|
|
|
i1
|
|
|
|
|
|
|
|
|
|
+
|
|
|
|
|
|
|
|
|
|
in,
|
|
|
|
|
|
|
|
|
|
in)
|
|
|
|
|
|
|
|
|
|
=
|
|
|
|
|
|
|
|
|
|
y
|
|
|
|
|
|
|
|
|
|
+
|
|
|
|
|
|
|
|
|
|
T (p + k, p + q, i1 + in)Geff (p + q, i1 + in)
|
|
|
|
|
|
|
|
|
|
q y
|
|
|
|
|
<EFBFBD> (p + q, q, i1 + in, in)Geff (q, in)T (q, k, in) (25)
|
|
|
|
|
|
|
|
|
|
and the full correlation function is therefore,
|
|
|
|
|
|
|
|
|
|
xzy,(1)(k,
|
|
|
|
|
|
|
|
|
|
in)
|
|
|
|
|
|
|
|
|
|
=
|
|
|
|
|
|
|
|
|
|
-
|
|
|
|
|
|
|
|
|
|
evF c
|
|
|
|
|
|
|
|
|
|
1
|
|
|
|
|
|
|
|
|
|
(p + k)x m
|
|
|
|
|
|
|
|
|
|
p
|
|
|
|
|
|
|
|
|
|
i1
|
|
|
|
|
|
|
|
|
|
<EFBFBD> Tr
|
|
|
|
|
|
|
|
|
|
G(p,
|
|
|
|
|
|
|
|
|
|
i1)zG(p
|
|
|
|
|
|
|
|
|
|
+
|
|
|
|
|
|
|
|
|
|
k,
|
|
|
|
|
|
|
|
|
|
i1
|
|
|
|
|
|
|
|
|
|
+
|
|
|
|
|
|
|
|
|
|
y
|
|
|
|
|
in) (p
|
|
|
|
|
|
|
|
|
|
+
|
|
|
|
|
|
|
|
|
|
k,
|
|
|
|
|
|
|
|
|
|
p,
|
|
|
|
|
|
|
|
|
|
i1
|
|
|
|
|
|
|
|
|
|
+
|
|
|
|
|
|
|
|
|
|
in,
|
|
|
|
|
|
|
|
|
|
i1)
|
|
|
|
|
|
|
|
|
|
(26)
|
|
|
|
|
|
|
|
|
|
This infinite subset of ladder diagrams includes all the scattering corrections to the vertex
|
|
|
|
|
|
|
|
|
|
from all the impurities, but does not include diagrams where scattering events from different
|
|
|
|
|
|
|
|
|
|
impurities cross each other, i.e. this is the non-crossing approximation, which is reasonable
|
|
|
|
|
|
|
|
|
|
in the dilute impurity limit.
|
|
|
|
|
|
|
|
|
|
Now let us evaluate the uniform limit of the Matsubara correlation function, lim xz,y(1)(k, in),
|
|
|
|
|
k0
|
|
|
|
|
by first doing the sum over the i1 frequencies using the standard method of integrating
|
|
|
|
|
|
|
|
|
|
over the poles of nF (z) = (ez + 1)-1 in the complex z-plane. The poles of nF (z) are at
|
|
|
|
|
|
|
|
|
|
z
|
|
|
|
|
|
|
|
|
|
=
|
|
|
|
|
|
|
|
|
|
i
|
|
|
|
|
|
|
|
|
|
2(n+1)
|
|
|
|
|
|
|
|
|
|
,
|
|
|
|
|
|
|
|
|
|
with
|
|
|
|
|
|
|
|
|
|
residue
|
|
|
|
|
|
|
|
|
|
of
|
|
|
|
|
|
|
|
|
|
-
|
|
|
|
|
|
|
|
|
|
1
|
|
|
|
|
|
|
|
|
|
,
|
|
|
|
|
|
|
|
|
|
and
|
|
|
|
|
|
|
|
|
|
the
|
|
|
|
|
|
|
|
|
|
sum
|
|
|
|
|
|
|
|
|
|
i1 is replaced by an integration over the
|
|
|
|
|
|
|
|
|
|
complex plane,
|
|
|
|
|
|
|
|
|
|
xzy,(1)(k
|
|
|
|
|
|
|
|
|
|
=
|
|
|
|
|
|
|
|
|
|
0,
|
|
|
|
|
|
|
|
|
|
in)
|
|
|
|
|
|
|
|
|
|
=
|
|
|
|
|
|
|
|
|
|
- evF mc
|
|
|
|
|
|
|
|
|
|
dz 2i
|
|
|
|
|
|
|
|
|
|
P (z,
|
|
|
|
|
|
|
|
|
|
z
|
|
|
|
|
|
|
|
|
|
+
|
|
|
|
|
|
|
|
|
|
in)nF
|
|
|
|
|
|
|
|
|
|
(z)
|
|
|
|
|
|
|
|
|
|
P(z, z + in) =
|
|
|
|
|
|
|
|
|
|
px Tr
|
|
|
|
|
|
|
|
|
|
G(p,
|
|
|
|
|
|
|
|
|
|
z )z G(p,
|
|
|
|
|
|
|
|
|
|
z
|
|
|
|
|
|
|
|
|
|
+
|
|
|
|
|
|
|
|
|
|
y
|
|
|
|
|
in) (p,
|
|
|
|
|
|
|
|
|
|
p,
|
|
|
|
|
|
|
|
|
|
z,
|
|
|
|
|
|
|
|
|
|
z
|
|
|
|
|
|
|
|
|
|
+
|
|
|
|
|
|
|
|
|
|
in)
|
|
|
|
|
|
|
|
|
|
(27)
|
|
|
|
|
|
|
|
|
|
p
|
|
|
|
|
|
|
|
|
|
The integral over the complex z-plane will also pick up the branch cuts of the Green's function G(p, z) and G(p, z + in), which leads to branch cuts at z = vF |p| - <20> = (p) and z + in = vF |p| - <20> = (p), and the upper ( + i) and lower ( - i) paths along the branch cuts will give the following retarded and advanced contributions to the correlation function.
|
|
|
|
|
|
|
|
|
|
9
|
|
|
|
|
|
|
|
|
|
xzy,(1)(k = 0, in) = -
|
|
|
|
|
|
|
|
|
|
d 2i
|
|
|
|
|
|
|
|
|
|
nF
|
|
|
|
|
|
|
|
|
|
()
|
|
|
|
|
|
|
|
|
|
P( + i, + in) - P( - i, + in)
|
|
|
|
|
|
|
|
|
|
+P( - in, + i) - P( - in, - i)
|
|
|
|
|
|
|
|
|
|
(28)
|
|
|
|
|
|
|
|
|
|
Therefore, the retarded correlation function is obtained by analytic continuation in
|
|
|
|
|
|
|
|
|
|
+ i,
|
|
|
|
|
|
|
|
|
|
xz,y(1)(k
|
|
|
|
|
|
|
|
|
|
=
|
|
|
|
|
|
|
|
|
|
0,
|
|
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
=
|
|
|
|
|
|
|
|
|
|
- evF mc
|
|
|
|
|
|
|
|
|
|
d 2i
|
|
|
|
|
|
|
|
|
|
(nF
|
|
|
|
|
|
|
|
|
|
()
|
|
|
|
|
|
|
|
|
|
-
|
|
|
|
|
|
|
|
|
|
nF
|
|
|
|
|
|
|
|
|
|
(
|
|
|
|
|
|
|
|
|
|
+
|
|
|
|
|
|
|
|
|
|
))P (
|
|
|
|
|
|
|
|
|
|
-
|
|
|
|
|
|
|
|
|
|
i,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
+
|
|
|
|
|
|
|
|
|
|
i)
|
|
|
|
|
|
|
|
|
|
-nF ()P( + i, + + i) + nF ( + )P( - i, + - i) (29)
|
|
|
|
|
|
|
|
|
|
Following the standard discussion in [2], the most singular contribution comes from P( -
|
|
|
|
|
|
|
|
|
|
i, + + i).
|
|
|
|
|
|
|
|
|
|
Since
|
|
|
|
|
|
|
|
|
|
the
|
|
|
|
|
|
|
|
|
|
SHE
|
|
|
|
|
|
|
|
|
|
conductivity
|
|
|
|
|
|
|
|
|
|
is
|
|
|
|
|
|
|
|
|
|
given
|
|
|
|
|
|
|
|
|
|
by
|
|
|
|
|
|
|
|
|
|
xz y (
|
|
|
|
|
|
|
|
|
|
=
|
|
|
|
|
|
|
|
|
|
0)
|
|
|
|
|
|
|
|
|
|
=
|
|
|
|
|
|
|
|
|
|
- lim I 0
|
|
|
|
|
|
|
|
|
|
m[
|
|
|
|
|
|
|
|
|
|
xzy
|
|
|
|
|
|
|
|
|
|
(k=0,)
|
|
|
|
|
|
|
|
|
|
],
|
|
|
|
|
|
|
|
|
|
hence we will calculate the following contribution to the retarded SHE correlation function.
|
|
|
|
|
|
|
|
|
|
xzy,(1)(k
|
|
|
|
|
|
|
|
|
|
=
|
|
|
|
|
|
|
|
|
|
0,
|
|
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
=
|
|
|
|
|
|
|
|
|
|
- evF mc
|
|
|
|
|
|
|
|
|
|
d 2i
|
|
|
|
|
|
|
|
|
|
(nF
|
|
|
|
|
|
|
|
|
|
()
|
|
|
|
|
|
|
|
|
|
-
|
|
|
|
|
|
|
|
|
|
nF
|
|
|
|
|
|
|
|
|
|
(
|
|
|
|
|
|
|
|
|
|
+
|
|
|
|
|
|
|
|
|
|
))P (
|
|
|
|
|
|
|
|
|
|
-
|
|
|
|
|
|
|
|
|
|
i,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
+
|
|
|
|
|
|
|
|
|
|
i)
|
|
|
|
|
|
|
|
|
|
xzy,(1)(k = 0, = 0) = -Im
|
|
|
|
|
|
|
|
|
|
evF mc
|
|
|
|
|
|
|
|
|
|
d 2i
|
|
|
|
|
|
|
|
|
|
dnF () d
|
|
|
|
|
|
|
|
|
|
P
|
|
|
|
|
|
|
|
|
|
(
|
|
|
|
|
|
|
|
|
|
-
|
|
|
|
|
|
|
|
|
|
i,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
+
|
|
|
|
|
|
|
|
|
|
i)
|
|
|
|
|
|
|
|
|
|
P( - i, + i) =
|
|
|
|
|
|
|
|
|
|
px Tr
|
|
|
|
|
|
|
|
|
|
(A)
|
|
|
|
|
G (p,
|
|
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
z
|
|
|
|
|
|
|
|
|
|
(R)
|
|
|
|
|
G (p,
|
|
|
|
|
|
|
|
|
|
y
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
(p,
|
|
|
|
|
|
|
|
|
|
p,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
-
|
|
|
|
|
|
|
|
|
|
i,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
+
|
|
|
|
|
|
|
|
|
|
i
|
|
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
(30)
|
|
|
|
|
|
|
|
|
|
p
|
|
|
|
|
|
|
|
|
|
The other correlation functions for the spin-torque current contribution to the SHE
|
|
|
|
|
|
|
|
|
|
(xz,y(2)(k, )), the Rashba-Edelstein effect (yi (k, )), and the charge current conductivity
|
|
|
|
|
|
|
|
|
|
(yy(k, )) are derived in a similar manner, and we obtain,
|
|
|
|
|
|
|
|
|
|
yy(k = 0, ) = lim
|
|
|
|
|
k0
|
|
|
|
|
|
|
|
|
|
evF c
|
|
|
|
|
|
|
|
|
|
2
|
|
|
|
|
|
|
|
|
|
d - 2i
|
|
|
|
|
|
|
|
|
|
d2p (2)2
|
|
|
|
|
|
|
|
|
|
(nF
|
|
|
|
|
|
|
|
|
|
()
|
|
|
|
|
|
|
|
|
|
-
|
|
|
|
|
|
|
|
|
|
nF
|
|
|
|
|
|
|
|
|
|
(
|
|
|
|
|
|
|
|
|
|
+
|
|
|
|
|
|
|
|
|
|
))
|
|
|
|
|
|
|
|
|
|
<EFBFBD> Tr
|
|
|
|
|
|
|
|
|
|
(A)
|
|
|
|
|
G (p,
|
|
|
|
|
|
|
|
|
|
)y
|
|
|
|
|
|
|
|
|
|
(R)
|
|
|
|
|
G (p
|
|
|
|
|
|
|
|
|
|
+
|
|
|
|
|
|
|
|
|
|
k,
|
|
|
|
|
|
|
|
|
|
y
|
|
|
|
|
) (p,
|
|
|
|
|
|
|
|
|
|
k1
|
|
|
|
|
|
|
|
|
|
+
|
|
|
|
|
|
|
|
|
|
k,
|
|
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
(31)
|
|
|
|
|
|
|
|
|
|
xzy,(2)(k = 0, ) = xzy,(2a)(k = 0, ) + xz,y(2b)(k = 0, )
|
|
|
|
|
|
|
|
|
|
(32)
|
|
|
|
|
|
|
|
|
|
xz,y(2a)(k
|
|
|
|
|
|
|
|
|
|
=
|
|
|
|
|
|
|
|
|
|
0,
|
|
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
=
|
|
|
|
|
|
|
|
|
|
lim 2ievF2 k0 c
|
|
|
|
|
|
|
|
|
|
d - 2i
|
|
|
|
|
|
|
|
|
|
d2p py + (2)2 kx
|
|
|
|
|
|
|
|
|
|
ky 2
|
|
|
|
|
|
|
|
|
|
(nF () - nF ( + ))
|
|
|
|
|
|
|
|
|
|
<EFBFBD> Tr
|
|
|
|
|
|
|
|
|
|
(A)
|
|
|
|
|
G (p,
|
|
|
|
|
|
|
|
|
|
)xG(R)
|
|
|
|
|
|
|
|
|
|
(p
|
|
|
|
|
|
|
|
|
|
+
|
|
|
|
|
|
|
|
|
|
k,
|
|
|
|
|
|
|
|
|
|
y
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
(p,
|
|
|
|
|
|
|
|
|
|
p
|
|
|
|
|
|
|
|
|
|
+
|
|
|
|
|
|
|
|
|
|
k
|
|
|
|
|
|
|
|
|
|
,
|
|
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
xz,y(2b)(k
|
|
|
|
|
|
|
|
|
|
=
|
|
|
|
|
|
|
|
|
|
0,
|
|
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
=
|
|
|
|
|
|
|
|
|
|
lim 2ievF2 k0 c
|
|
|
|
|
|
|
|
|
|
d - 2i
|
|
|
|
|
|
|
|
|
|
d2p (2)2
|
|
|
|
|
|
|
|
|
|
px + kx
|
|
|
|
|
|
|
|
|
|
kx 2
|
|
|
|
|
|
|
|
|
|
(nF (
|
|
|
|
|
|
|
|
|
|
+
|
|
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
-
|
|
|
|
|
|
|
|
|
|
nF ())
|
|
|
|
|
|
|
|
|
|
<EFBFBD> Tr
|
|
|
|
|
|
|
|
|
|
(A)
|
|
|
|
|
G (p,
|
|
|
|
|
|
|
|
|
|
)y
|
|
|
|
|
|
|
|
|
|
(R)
|
|
|
|
|
G (p
|
|
|
|
|
|
|
|
|
|
+
|
|
|
|
|
|
|
|
|
|
k,
|
|
|
|
|
|
|
|
|
|
y
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
(p,
|
|
|
|
|
|
|
|
|
|
p
|
|
|
|
|
|
|
|
|
|
+
|
|
|
|
|
|
|
|
|
|
k,
|
|
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
yi (k
|
|
|
|
|
|
|
|
|
|
=
|
|
|
|
|
|
|
|
|
|
0,
|
|
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
=
|
|
|
|
|
|
|
|
|
|
lim evF k0 c
|
|
|
|
|
|
|
|
|
|
d - 2i
|
|
|
|
|
|
|
|
|
|
d2p (2)2
|
|
|
|
|
|
|
|
|
|
(nF
|
|
|
|
|
|
|
|
|
|
(
|
|
|
|
|
|
|
|
|
|
+
|
|
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
-
|
|
|
|
|
|
|
|
|
|
nF
|
|
|
|
|
|
|
|
|
|
())
|
|
|
|
|
|
|
|
|
|
<EFBFBD> Tr
|
|
|
|
|
|
|
|
|
|
(A)
|
|
|
|
|
G (p,
|
|
|
|
|
|
|
|
|
|
)iG(R)(p
|
|
|
|
|
|
|
|
|
|
+
|
|
|
|
|
|
|
|
|
|
k,
|
|
|
|
|
|
|
|
|
|
y
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
(p,
|
|
|
|
|
|
|
|
|
|
p
|
|
|
|
|
|
|
|
|
|
+
|
|
|
|
|
|
|
|
|
|
k,
|
|
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
(33)
|
|
|
|
|
|
|
|
|
|
10
|
|
|
|
|
|
|
|
|
|
IV. VERTEX CORRECTION
|
|
|
|
|
|
|
|
|
|
For four fermion correlation functions, like the current-current and spin current-current
|
|
|
|
|
|
|
|
|
|
correlation functions, we have to consider the effects of impurity scattering on the scattering
|
|
|
|
|
|
|
|
|
|
vertex[2], in addition to the quasi-particle self-energy corrections. This arises from an infinite
|
|
|
|
|
|
|
|
|
|
subset of Feynman ladder diagrams shown in the main paper, and is summed up in the Bethe
|
|
|
|
|
y
|
|
|
|
|
Salpeter equation for the scattering vertex (k + p, p, i1 + in, in) (Eq. 34).
|
|
|
|
|
|
|
|
|
|
y
|
|
|
|
|
(k
|
|
|
|
|
|
|
|
|
|
+
|
|
|
|
|
|
|
|
|
|
p,
|
|
|
|
|
|
|
|
|
|
p,
|
|
|
|
|
|
|
|
|
|
i1
|
|
|
|
|
|
|
|
|
|
+
|
|
|
|
|
|
|
|
|
|
in,
|
|
|
|
|
|
|
|
|
|
in)
|
|
|
|
|
|
|
|
|
|
=
|
|
|
|
|
|
|
|
|
|
y
|
|
|
|
|
|
|
|
|
|
+
|
|
|
|
|
|
|
|
|
|
T (k + p, k + q, i1 + in)Geff (k + q, i1 + in)
|
|
|
|
|
|
|
|
|
|
q y
|
|
|
|
|
<EFBFBD> (k + q, q, i1 + in, in)Geff (q, in)T (q, p, in) (34)
|
|
|
|
|
|
|
|
|
|
Here, k and i1 are the external momentum and frequency, and the DC uniform limit of
|
|
|
|
|
|
|
|
|
|
the conductivities are obtained by analytic continuation of i1 + i, setting the limit
|
|
|
|
|
|
|
|
|
|
k 0, and then setting 0, i.e. lim lim. Hence, we only need to calculate the on-shell
|
|
|
|
|
|
|
|
|
|
0 y
|
|
|
|
|
|
|
|
|
|
k0
|
|
|
|
|
|
|
|
|
|
y
|
|
|
|
|
|
|
|
|
|
component of the scattering vertex (p, ) = (p, - i, + i), which is defined by,
|
|
|
|
|
|
|
|
|
|
y
|
|
|
|
|
(p,
|
|
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
=
|
|
|
|
|
|
|
|
|
|
y
|
|
|
|
|
|
|
|
|
|
+
|
|
|
|
|
|
|
|
|
|
T (p, q, + i)Geff (q, + i)
|
|
|
|
|
|
|
|
|
|
q
|
|
|
|
|
|
|
|
|
|
y
|
|
|
|
|
<EFBFBD> (q, )Geff (q, - i)T (q, p, - i)
|
|
|
|
|
|
|
|
|
|
= y +
|
|
|
|
|
|
|
|
|
|
(R)
|
|
|
|
|
|
|
|
|
|
(R)
|
|
|
|
|
|
|
|
|
|
y
|
|
|
|
|
|
|
|
|
|
(A)
|
|
|
|
|
|
|
|
|
|
(A)
|
|
|
|
|
|
|
|
|
|
T (p, q, )Geff (q, ) (q, )Geff (q, )T (q, p, )
|
|
|
|
|
|
|
|
|
|
(35)
|
|
|
|
|
|
|
|
|
|
q
|
|
|
|
|
|
|
|
|
|
(R)
|
|
|
|
|
|
|
|
|
|
Note that both the advanced and retarded Green's function and T -matrices, Geff (p, ),
|
|
|
|
|
|
|
|
|
|
(A)
|
|
|
|
|
|
|
|
|
|
(R)
|
|
|
|
|
|
|
|
|
|
(A)
|
|
|
|
|
|
|
|
|
|
Geff (p, ), T (p, q, ) and T (p, q, ) enter into the Bethe-Salpeter equation due to
|
|
|
|
|
|
|
|
|
|
the branch cut in the complex plane, when the integral over the complex plane is car-
|
|
|
|
|
|
|
|
|
|
ried out. Similar to the assumption for the T -matrix, the scattering vertex is assumed
|
|
|
|
|
|
|
|
|
|
to be momentum-independent near EF , and we will do a similar multipole expansion of
|
|
|
|
|
|
|
|
|
|
y
|
|
|
|
|
(|p| = kF , , = EF ) =
|
|
|
|
|
|
|
|
|
|
n ineini, keeping only the l = 0 and l = 1 scattering chan-
|
|
|
|
|
|
|
|
|
|
nels.
|
|
|
|
|
|
|
|
|
|
y
|
|
|
|
|
(|p|
|
|
|
|
|
|
|
|
|
|
=
|
|
|
|
|
|
|
|
|
|
kF
|
|
|
|
|
|
|
|
|
|
,
|
|
|
|
|
|
|
|
|
|
,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
=
|
|
|
|
|
|
|
|
|
|
EF
|
|
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
=
|
|
|
|
|
|
|
|
|
|
i0i
|
|
|
|
|
|
|
|
|
|
+
|
|
|
|
|
|
|
|
|
|
0px cos + i0py sin
|
|
|
|
|
|
|
|
|
|
1+
|
|
|
|
|
|
|
|
|
|
ipx cos + iipy sin
|
|
|
|
|
|
|
|
|
|
i
|
|
|
|
|
|
|
|
|
|
(36)
|
|
|
|
|
|
|
|
|
|
Hence, the Bethe-Salpeter equation is reduced to,
|
|
|
|
|
|
|
|
|
|
y
|
|
|
|
|
(p,
|
|
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
=
|
|
|
|
|
|
|
|
|
|
y
|
|
|
|
|
|
|
|
|
|
+
|
|
|
|
|
|
|
|
|
|
dq 2
|
|
|
|
|
|
|
|
|
|
T
|
|
|
|
|
|
|
|
|
|
(R)
|
|
|
|
|
(|p|
|
|
|
|
|
|
|
|
|
|
=
|
|
|
|
|
|
|
|
|
|
|p
|
|
|
|
|
|
|
|
|
|
+
|
|
|
|
|
|
|
|
|
|
q|
|
|
|
|
|
|
|
|
|
|
=
|
|
|
|
|
|
|
|
|
|
kF
|
|
|
|
|
|
|
|
|
|
,
|
|
|
|
|
|
|
|
|
|
p,
|
|
|
|
|
|
|
|
|
|
p+q ,
|
|
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
(37)
|
|
|
|
|
|
|
|
|
|
<EFBFBD>
|
|
|
|
|
|
|
|
|
|
qdq 2
|
|
|
|
|
|
|
|
|
|
(R)
|
|
|
|
|
G (p
|
|
|
|
|
|
|
|
|
|
+
|
|
|
|
|
|
|
|
|
|
q,
|
|
|
|
|
|
|
|
|
|
y
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
(p
|
|
|
|
|
|
|
|
|
|
+
|
|
|
|
|
|
|
|
|
|
q,
|
|
|
|
|
|
|
|
|
|
(A)
|
|
|
|
|
)G (p
|
|
|
|
|
|
|
|
|
|
+
|
|
|
|
|
|
|
|
|
|
q
|
|
|
|
|
|
|
|
|
|
,
|
|
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
11
|
|
|
|
|
|
|
|
|
|
(A)
|
|
|
|
|
<EFBFBD>T (|p + q| = |q| = kF , p+q, q, )
|
|
|
|
|
|
|
|
|
|
ineini = y +
|
|
|
|
|
|
|
|
|
|
n
|
|
|
|
|
|
|
|
|
|
n1 ...n7
|
|
|
|
|
|
|
|
|
|
dq 2
|
|
|
|
|
|
|
|
|
|
T i1 n1n2
|
|
|
|
|
|
|
|
|
|
ei(n1k
|
|
|
|
|
|
|
|
|
|
-n2
|
|
|
|
|
|
|
|
|
|
k+q
|
|
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
T i5 n6
|
|
|
|
|
|
|
|
|
|
n7
|
|
|
|
|
|
|
|
|
|
ei(n6
|
|
|
|
|
|
|
|
|
|
k
|
|
|
|
|
|
|
|
|
|
-n7
|
|
|
|
|
|
|
|
|
|
k+q
|
|
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
i1
|
|
|
|
|
|
|
|
|
|
i2
|
|
|
|
|
|
|
|
|
|
i3
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
i4
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
i5
|
|
|
|
|
|
|
|
|
|
<EFBFBD>
|
|
|
|
|
|
|
|
|
|
qdq 2
|
|
|
|
|
|
|
|
|
|
gi2,(R) n3
|
|
|
|
|
|
|
|
|
|
(|p
|
|
|
|
|
|
|
|
|
|
+
|
|
|
|
|
|
|
|
|
|
q|,
|
|
|
|
|
|
|
|
|
|
)e-in3p+q
|
|
|
|
|
|
|
|
|
|
i3 n4
|
|
|
|
|
|
|
|
|
|
e-in4p+q
|
|
|
|
|
|
|
|
|
|
gi4,(A) n5
|
|
|
|
|
|
|
|
|
|
(|p
|
|
|
|
|
|
|
|
|
|
+
|
|
|
|
|
|
|
|
|
|
q|,
|
|
|
|
|
|
|
|
|
|
)e-in5p+q
|
|
|
|
|
|
|
|
|
|
Since the in coefficients are assumed to be invariant near kF , the dq-integral is carried out over all the spin and angular momentum resolved Green's function components, gmi,(R)(|p + q|, ) gnj,(A)(|p + q|, ). As the Weyl fermions are spin-momentum locked; hence, the spin i and momentum m indices are related, i.e. m = 0 for i = [0, 3], and m = <20>1 for
|
|
|
|
|
|
|
|
|
|
i [1, 2]. We can now define,
|
|
|
|
|
|
|
|
|
|
ij() = kdk gi,(R)(|k|, )gj,(A)(|k|, )
|
|
|
|
|
|
|
|
|
|
(38)
|
|
|
|
|
|
|
|
|
|
2
|
|
|
|
|
|
|
|
|
|
We have carried out a change of variable from + <20> here, thereby absorbing the factors
|
|
|
|
|
|
|
|
|
|
of <20> that appear in the Green's function into , which is now the energy measured from EF .
|
|
|
|
|
|
|
|
|
|
Knowing
|
|
|
|
|
|
|
|
|
|
that
|
|
|
|
|
|
|
|
|
|
G(R)(k, )G(A)(k, )
|
|
|
|
|
|
|
|
|
|
=
|
|
|
|
|
|
|
|
|
|
A(k,) I m[(k,)]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
A(k,)
|
|
|
|
|
|
|
|
|
|
,
|
|
|
|
|
|
|
|
|
|
this
|
|
|
|
|
|
|
|
|
|
means
|
|
|
|
|
|
|
|
|
|
that
|
|
|
|
|
|
|
|
|
|
ij ()
|
|
|
|
|
|
|
|
|
|
is
|
|
|
|
|
|
|
|
|
|
basically
|
|
|
|
|
|
|
|
|
|
the spin-resolved density of states divided by the quasi-particle scattering rate. The domi-
|
|
|
|
|
|
|
|
|
|
nant terms are the s-wave, p-wave and s-p spin-flip DOS, 00(), aa() and 0a() = (a0())
|
|
|
|
|
|
|
|
|
|
respectively, which are calculated to be,
|
|
|
|
|
|
|
|
|
|
00()
|
|
|
|
|
|
|
|
|
|
=
|
|
|
|
|
|
|
|
|
|
1 2vF2
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
+
|
|
|
|
|
|
|
|
|
|
02
|
|
|
|
|
|
|
|
|
|
2(0 + a) 2(0 + a)
|
|
|
|
|
|
|
|
|
|
aa() 0a()
|
|
|
|
|
|
|
|
|
|
= =
|
|
|
|
|
|
|
|
|
|
1 21vF2 2vF2
|
|
|
|
|
|
|
|
|
|
2(0 +
|
|
|
|
|
|
|
|
|
|
a)
|
|
|
|
|
|
|
|
|
|
+
|
|
|
|
|
|
|
|
|
|
a2 2(0 + a)
|
|
|
|
|
|
|
|
|
|
2(0 +
|
|
|
|
|
|
|
|
|
|
a) (
|
|
|
|
|
|
|
|
|
|
-
|
|
|
|
|
|
|
|
|
|
i0)(1
|
|
|
|
|
|
|
|
|
|
-
|
|
|
|
|
|
|
|
|
|
ia
|
|
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
(39)
|
|
|
|
|
|
|
|
|
|
The above set of coupled equations for the -coefficients are then solved analytically, and
|
|
|
|
|
|
|
|
|
|
the finite terms are shown below; and the other terms 00, 30, 1px, 1py , 2px and 2py are equal to zero.
|
|
|
|
|
|
|
|
|
|
10(EF ) = 2ni(|T13||T A| + |T 0||T03| - 2i|T A||T S|)(00 + aa)
|
|
|
|
|
|
|
|
|
|
<EFBFBD> 1 - ni |T 0|2 + |T03|2 + 2|T S|2 - 2|T A|2 - 2|T13|2 (00 + aa)
|
|
|
|
|
|
|
|
|
|
-1
|
|
|
|
|
-2ni |T13|2 - |T03|2 (0a + a0)
|
|
|
|
|
|
|
|
|
|
= asym,1 + 30 - iasym,3 + O( )
|
|
|
|
|
|
|
|
|
|
t
|
|
|
|
|
|
|
|
|
|
EF
|
|
|
|
|
|
|
|
|
|
(40a)
|
|
|
|
|
|
|
|
|
|
12
|
|
|
|
|
|
|
|
|
|
20(EF ) = 1 - ni |T 0|2 + |T03|2 - 2|T13|2 00 - ni |T S|2 + |T A|2 aa + i ni|T13||T S|(0a + a0)
|
|
|
|
|
|
|
|
|
|
<EFBFBD> 1 - ni |T 0|2 + |T03|2 + 2|T S|2 - 2|T A|2 - 2|T13|2 (00 + aa)
|
|
|
|
|
|
|
|
|
|
-1
|
|
|
|
|
-2ni |T13|2 - |T03|2 (0a + a0)
|
|
|
|
|
|
|
|
|
|
= 0 + a + i 31,s + O( )
|
|
|
|
|
|
|
|
|
|
t
|
|
|
|
|
|
|
|
|
|
t
|
|
|
|
|
|
|
|
|
|
EF
|
|
|
|
|
|
|
|
|
|
(40b)
|
|
|
|
|
|
|
|
|
|
0px(EF ) = ni |T A|2| + |T S|2 (0a + a0) + 2|T 0||T13|(0a - a0) <20> 2ni(|T13||T A| + |T 0||T03| - 2i|T A||T S|)(00 + aa)
|
|
|
|
|
<EFBFBD> 1 - ni |T 0|2 + |T03|2 + 2|T S|2 - 2|T A|2 - 2|T13|2 (00 + aa)
|
|
|
|
|
-1
|
|
|
|
|
-2ni |T13|2 - |T03|2 (0a + a0)
|
|
|
|
|
+ni 2|T A||T13|(00 + aa) - 2i|T A||T S|(0a + a0)
|
|
|
|
|
<EFBFBD> 1 - ni |T 0|2 + |T03|2 - 2|T13|2 00 - ni |T S|2 + |T A|2 aa + i ni|T13||T S|(0a + a0)
|
|
|
|
|
|
|
|
|
|
<EFBFBD> 1 - ni |T 0|2 + |T03|2 + 2|T S|2 - 2|T A|2 - 2|T13|2 (00 + aa)
|
|
|
|
|
|
|
|
|
|
-1
|
|
|
|
|
-2ni |T13|2 - |T03|2 (0a + a0)
|
|
|
|
|
|
|
|
|
|
=
|
|
|
|
|
|
|
|
|
|
asym,1
|
|
|
|
|
|
|
|
|
|
- iasym,3 t
|
|
|
|
|
|
|
|
|
|
-
|
|
|
|
|
|
|
|
|
|
a(30
|
|
|
|
|
|
|
|
|
|
+ asym,1 - iasym,3) 4t(0 + a)
|
|
|
|
|
|
|
|
|
|
+ O(
|
|
|
|
|
EF
|
|
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
(40c)
|
|
|
|
|
|
|
|
|
|
0py (EF ) = 2i ni |T13||T A|(00 + aa) + |T A||T S|(0a + a0) <20> 2ni(|T13||T A| + |T 0||T03| - 2i|T A||T S|)(00 + aa)
|
|
|
|
|
<EFBFBD> 1 - ni |T 0|2 + |T03|2 + 2|T S|2 - 2|T A|2 - 2|T13|2 (00 + aa)
|
|
|
|
|
-1
|
|
|
|
|
-2ni |T13|2 - |T03|2 (0a + a0)
|
|
|
|
|
-i ni |T S|2 + |T A|2 (0a + a0)
|
|
|
|
|
<EFBFBD> 1 - ni |T 0|2 + |T03|2 - 2|T13|2 00 - ni |T S|2 + |T A|2 aa + i ni|T13||T S|(0a + a0)
|
|
|
|
|
|
|
|
|
|
13
|
|
|
|
|
|
|
|
|
|
<0C> 1 - ni |T 0|2 + |T03|2 + 2|T S|2 - 2|T A|2 - 2|T13|2 (00 + aa)
|
|
|
|
|
|
|
|
|
|
-1
|
|
|
|
|
-2ni |T13|2 - |T03|2 (0a + a0)
|
|
|
|
|
|
|
|
|
|
=
|
|
|
|
|
|
|
|
|
|
i 4
|
|
|
|
|
|
|
|
|
|
a t
|
|
|
|
|
|
|
|
|
|
+
|
|
|
|
|
|
|
|
|
|
i 2
|
|
|
|
|
|
|
|
|
|
(asym,1
|
|
|
|
|
|
|
|
|
|
-
|
|
|
|
|
|
|
|
|
|
iasym,3)(asym,1 - t(0 + a)
|
|
|
|
|
|
|
|
|
|
iasym,3
|
|
|
|
|
|
|
|
|
|
+
|
|
|
|
|
|
|
|
|
|
30)
|
|
|
|
|
|
|
|
|
|
+
|
|
|
|
|
|
|
|
|
|
O( EF
|
|
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
(40d)
|
|
|
|
|
|
|
|
|
|
3px(EF ) = 2ni |T03||T S| - i|T 0||T A| 00 <20> 2ni(|T13||T A| + |T 0||T03| - 2i|T A||T S|)(00 + aa)
|
|
|
|
|
<EFBFBD> 1 - ni |T 0|2 + |T03|2 + 2|T S|2 - 2|T A|2 - 2|T13|2 (00 + aa)
|
|
|
|
|
-1
|
|
|
|
|
-2ni |T13|2 - |T03|2 (0a + a0)
|
|
|
|
|
-2ni (|T 0||T S| + i|T A||T03|)00 - i|T 0||T13|(0a + a0)
|
|
|
|
|
<EFBFBD> 1 - ni |T 0|2 + |T03|2 - 2|T13|2 00 - ni |T S|2 + |T A|2 aa + i ni|T13||T S|(0a + a0)
|
|
|
|
|
|
|
|
|
|
<EFBFBD> 1 - ni |T 0|2 + |T03|2 + 2|T S|2 - 2|T A|2 - 2|T13|2 (00 + aa)
|
|
|
|
|
|
|
|
|
|
-1
|
|
|
|
|
-2ni |T13|2 - |T03|2 (0a + a0)
|
|
|
|
|
|
|
|
|
|
=
|
|
|
|
|
|
|
|
|
|
- s t
|
|
|
|
|
|
|
|
|
|
-
|
|
|
|
|
|
|
|
|
|
i 31
|
|
|
|
|
|
|
|
|
|
+ asym,2 t
|
|
|
|
|
|
|
|
|
|
+
|
|
|
|
|
|
|
|
|
|
3sasym,1 2t(0 + a)
|
|
|
|
|
|
|
|
|
|
(40e)
|
|
|
|
|
|
|
|
|
|
3py (EF ) = ni |T 0||T A| + i|T03||T S| 00 <20> 1 - ni |T 0|2 + |T03|2 - 2|T13|2 00 - ni |T S|2 + |T A|2 aa + i ni|T13||T S|(0a + a0)
|
|
|
|
|
|
|
|
|
|
<EFBFBD> 1 - ni |T 0|2 + |T03|2 + 2|T S|2 - 2|T A|2 - 2|T13|2 (00 + aa)
|
|
|
|
|
-1
|
|
|
|
|
-2ni |T13|2 - |T03|2 (0a + a0)
|
|
|
|
|
-ni (|T03||T A| + i|T 0||T S|)00 + |T 0||T13|(0a + a0) <20> 2ni(|T13||T A| + |T 0||T03| - 2i|T A||T S|)(00 + aa)
|
|
|
|
|
<EFBFBD> 1 - ni |T 0|2 + |T03|2 + 2|T S|2 - 2|T A|2 - 2|T13|2 (00 + aa)
|
|
|
|
|
|
|
|
|
|
14
|
|
|
|
|
|
|
|
|
|
-1
|
|
|
|
|
-2ni |T13|2 - |T03|2 (0a + a0)
|
|
|
|
|
|
|
|
|
|
=
|
|
|
|
|
|
|
|
|
|
-
|
|
|
|
|
|
|
|
|
|
3 4t
|
|
|
|
|
|
|
|
|
|
-
|
|
|
|
|
|
|
|
|
|
i
|
|
|
|
|
|
|
|
|
|
3s 2t
|
|
|
|
|
|
|
|
|
|
+
|
|
|
|
|
|
|
|
|
|
1 2
|
|
|
|
|
|
|
|
|
|
(30
|
|
|
|
|
|
|
|
|
|
+
|
|
|
|
|
|
|
|
|
|
asym,1)(31 + asym,2) t(0 + a)
|
|
|
|
|
|
|
|
|
|
-
|
|
|
|
|
|
|
|
|
|
sasym,3
|
|
|
|
|
|
|
|
|
|
-
|
|
|
|
|
|
|
|
|
|
i 2
|
|
|
|
|
|
|
|
|
|
s(30
|
|
|
|
|
|
|
|
|
|
+
|
|
|
|
|
|
|
|
|
|
asym,1) + asym,3(31 t(0 + a)
|
|
|
|
|
|
|
|
|
|
+
|
|
|
|
|
|
|
|
|
|
asym,2)
|
|
|
|
|
|
|
|
|
|
Hence, using the results of ij(EF ) listed above, the scattering vertex is,
|
|
|
|
|
|
|
|
|
|
y
|
|
|
|
|
(|k|
|
|
|
|
|
|
|
|
|
|
=
|
|
|
|
|
|
|
|
|
|
kF
|
|
|
|
|
|
|
|
|
|
,
|
|
|
|
|
|
|
|
|
|
,
|
|
|
|
|
|
|
|
|
|
EF
|
|
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
=
|
|
|
|
|
|
|
|
|
|
10(EF
|
|
|
|
|
|
|
|
|
|
)1
|
|
|
|
|
|
|
|
|
|
+
|
|
|
|
|
|
|
|
|
|
20(EF
|
|
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
y
|
|
|
|
|
|
|
|
|
|
+
|
|
|
|
|
|
|
|
|
|
(0px (EF
|
|
|
|
|
|
|
|
|
|
)1
|
|
|
|
|
|
|
|
|
|
+
|
|
|
|
|
|
|
|
|
|
3px (EF
|
|
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
z)
|
|
|
|
|
|
|
|
|
|
cos
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
+i 0py (EF )1 + 3py (EF ) z sin
|
|
|
|
|
|
|
|
|
|
(40f ) (41)
|
|
|
|
|
|
|
|
|
|
Since 20 is the scattering vertex channel for longitudinal electrical conductivity, we have
|
|
|
|
|
|
|
|
|
|
defined
|
|
|
|
|
|
|
|
|
|
a
|
|
|
|
|
|
|
|
|
|
transport
|
|
|
|
|
|
|
|
|
|
scattering
|
|
|
|
|
|
|
|
|
|
rate
|
|
|
|
|
|
|
|
|
|
t
|
|
|
|
|
|
|
|
|
|
=
|
|
|
|
|
|
|
|
|
|
(
|
|
|
|
|
|
|
|
|
|
1 2
|
|
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
|
|
|
|
+
|
|
|
|
|
|
|
|
|
|
a
|
|
|
|
|
|
|
|
|
|
-
|
|
|
|
|
|
|
|
|
|
2t
|
|
|
|
|
|
|
|
|
|
),
|
|
|
|
|
|
|
|
|
|
in
|
|
|
|
|
|
|
|
|
|
terms
|
|
|
|
|
|
|
|
|
|
of
|
|
|
|
|
|
|
|
|
|
0,
|
|
|
|
|
|
|
|
|
|
a,
|
|
|
|
|
|
|
|
|
|
and
|
|
|
|
|
|
|
|
|
|
an
|
|
|
|
|
|
|
|
|
|
additional
|
|
|
|
|
|
|
|
|
|
transport contribution, t = 2niN0(EF )(|T13|2 - |T03|2). Since t V04V12N0(EF )5, it is
|
|
|
|
|
|
|
|
|
|
much weaker than 0 V02N0(EF ) and a V02V12N0(EF )3, and we do not display t in
|
|
|
|
|
|
|
|
|
|
the main paper, but instead, display it here for completeness.
|
|
|
|
|
|
|
|
|
|
In addition, there are spin flip scattering rates arising from |T A| and |T S|, s =
|
|
|
|
|
|
|
|
|
|
niN0 2
|
|
|
|
|
|
|
|
|
|
(EF
|
|
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|T
|
|
|
|
|
|
|
|
|
|
0||T
|
|
|
|
|
|
|
|
|
|
S
|
|
|
|
|
|
|
|
|
|
|,
|
|
|
|
|
|
|
|
|
|
asym,1
|
|
|
|
|
|
|
|
|
|
=
|
|
|
|
|
|
|
|
|
|
2niN0(EF )|T13||T A|,
|
|
|
|
|
|
|
|
|
|
asym,2
|
|
|
|
|
|
|
|
|
|
=
|
|
|
|
|
|
|
|
|
|
niN0 2
|
|
|
|
|
|
|
|
|
|
(EF
|
|
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|T03||T
|
|
|
|
|
|
|
|
|
|
A|,
|
|
|
|
|
|
|
|
|
|
asym,3
|
|
|
|
|
|
|
|
|
|
=
|
|
|
|
|
|
|
|
|
|
niN0 2
|
|
|
|
|
|
|
|
|
|
(EF
|
|
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|T
|
|
|
|
|
|
|
|
|
|
S
|
|
|
|
|
|
|
|
|
|
||T
|
|
|
|
|
|
|
|
|
|
A|,
|
|
|
|
|
|
|
|
|
|
30
|
|
|
|
|
|
|
|
|
|
=
|
|
|
|
|
|
|
|
|
|
ni
|
|
|
|
|
|
|
|
|
|
N0(EF 2
|
|
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|T03
|
|
|
|
|
|
|
|
|
|
||T
|
|
|
|
|
|
|
|
|
|
0|,
|
|
|
|
|
|
|
|
|
|
31
|
|
|
|
|
|
|
|
|
|
=
|
|
|
|
|
|
|
|
|
|
niN0 2
|
|
|
|
|
|
|
|
|
|
(EF
|
|
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|T13
|
|
|
|
|
|
|
|
|
|
||T
|
|
|
|
|
|
|
|
|
|
0|,
|
|
|
|
|
|
|
|
|
|
3s
|
|
|
|
|
|
|
|
|
|
=
|
|
|
|
|
|
|
|
|
|
niN0 2
|
|
|
|
|
|
|
|
|
|
(EF
|
|
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|T03||T
|
|
|
|
|
|
|
|
|
|
S
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
and
|
|
|
|
|
|
|
|
|
|
31,s
|
|
|
|
|
|
|
|
|
|
=
|
|
|
|
|
|
|
|
|
|
ni
|
|
|
|
|
|
|
|
|
|
N0(EF 2
|
|
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|T13||T
|
|
|
|
|
|
|
|
|
|
S
|
|
|
|
|
|
|
|
|
|
|,
|
|
|
|
|
|
|
|
|
|
which
|
|
|
|
|
|
|
|
|
|
are
|
|
|
|
|
|
|
|
|
|
proportional
|
|
|
|
|
|
|
|
|
|
to
|
|
|
|
|
|
|
|
|
|
TS
|
|
|
|
|
|
|
|
|
|
and
|
|
|
|
|
|
|
|
|
|
T A,
|
|
|
|
|
|
|
|
|
|
the
|
|
|
|
|
|
|
|
|
|
symmetric
|
|
|
|
|
|
|
|
|
|
and
|
|
|
|
|
|
|
|
|
|
asymmetric component of the T -matrix, as well as the z components of the T -matrix, T03
|
|
|
|
|
|
|
|
|
|
and T13.
|
|
|
|
|
|
|
|
|
|
V. LONGITUDINAL CHARGE TRANSPORT AND SHE DC CONDUCTIVITIES
|
|
|
|
|
|
|
|
|
|
We calculate the longitudinal charge conductivity, the Rashba-Edelstein effect, and the
|
|
|
|
|
|
|
|
|
|
spin torque contribution to the SHE here. The retarded correlation functions for the spin-
|
|
|
|
|
|
|
|
|
|
torque current contribution to the SHE (xzy,(2)(k, )), the Rashba-Edelstein effect (yi (k, )),
|
|
|
|
|
|
|
|
|
|
and the charge current conductivity (yy(k, )) are shown below, and the DC conductivities
|
|
|
|
|
|
|
|
|
|
are all given by first taking the limit of lim k 0, then taking the DC limit of lim 0,
|
|
|
|
|
|
|
|
|
|
(DC)
|
|
|
|
|
|
|
|
|
|
=
|
|
|
|
|
|
|
|
|
|
-lim lim 0k0
|
|
|
|
|
|
|
|
|
|
I
|
|
|
|
|
|
|
|
|
|
m[
|
|
|
|
|
|
|
|
|
|
(k,)
|
|
|
|
|
|
|
|
|
|
].
|
|
|
|
|
|
|
|
|
|
yy(k = 0, ) = lim
|
|
|
|
|
k0
|
|
|
|
|
|
|
|
|
|
evF c
|
|
|
|
|
|
|
|
|
|
2
|
|
|
|
|
|
|
|
|
|
d - 2i
|
|
|
|
|
|
|
|
|
|
d2p (2)2
|
|
|
|
|
|
|
|
|
|
Tr
|
|
|
|
|
|
|
|
|
|
(A)
|
|
|
|
|
G (p,
|
|
|
|
|
|
|
|
|
|
)y
|
|
|
|
|
|
|
|
|
|
(R)
|
|
|
|
|
G (p
|
|
|
|
|
|
|
|
|
|
+
|
|
|
|
|
|
|
|
|
|
k,
|
|
|
|
|
|
|
|
|
|
y
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
(p,
|
|
|
|
|
|
|
|
|
|
p
|
|
|
|
|
|
|
|
|
|
+
|
|
|
|
|
|
|
|
|
|
k,
|
|
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
15
|
|
|
|
|
|
|
|
|
|
<0C> (nF () - nF ( + ))
|
|
|
|
|
|
|
|
|
|
(42)
|
|
|
|
|
|
|
|
|
|
xz,y(2)(k = 0, ) = xzy,(2a)(k = 0, ) + xz,y(2b)(k = 0, )
|
|
|
|
|
|
|
|
|
|
(43)
|
|
|
|
|
|
|
|
|
|
xzy,(2a)(k
|
|
|
|
|
|
|
|
|
|
=
|
|
|
|
|
|
|
|
|
|
0,
|
|
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
=
|
|
|
|
|
|
|
|
|
|
lim 2ievF2 k0 c
|
|
|
|
|
|
|
|
|
|
d - 2i
|
|
|
|
|
|
|
|
|
|
d2p (2)2
|
|
|
|
|
|
|
|
|
|
Tr
|
|
|
|
|
|
|
|
|
|
(A)
|
|
|
|
|
G (p,
|
|
|
|
|
|
|
|
|
|
)xG(R)(p
|
|
|
|
|
|
|
|
|
|
+
|
|
|
|
|
|
|
|
|
|
k,
|
|
|
|
|
|
|
|
|
|
y
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
(p,
|
|
|
|
|
|
|
|
|
|
p
|
|
|
|
|
|
|
|
|
|
+
|
|
|
|
|
|
|
|
|
|
k,
|
|
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
<EFBFBD>
|
|
|
|
|
|
|
|
|
|
py + px
|
|
|
|
|
|
|
|
|
|
ky 2
|
|
|
|
|
|
|
|
|
|
(nF () - nF ( + ))
|
|
|
|
|
|
|
|
|
|
xz,y(2b)(k
|
|
|
|
|
|
|
|
|
|
=
|
|
|
|
|
|
|
|
|
|
0,
|
|
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
=
|
|
|
|
|
|
|
|
|
|
-lim 2ievF2 k0 c
|
|
|
|
|
|
|
|
|
|
d - 2i
|
|
|
|
|
|
|
|
|
|
d2p (2)2
|
|
|
|
|
|
|
|
|
|
Tr
|
|
|
|
|
|
|
|
|
|
(A)
|
|
|
|
|
G
|
|
|
|
|
|
|
|
|
|
(p,
|
|
|
|
|
|
|
|
|
|
)y
|
|
|
|
|
|
|
|
|
|
(R)
|
|
|
|
|
G
|
|
|
|
|
|
|
|
|
|
(p
|
|
|
|
|
|
|
|
|
|
+
|
|
|
|
|
|
|
|
|
|
k,
|
|
|
|
|
|
|
|
|
|
y
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
(p,
|
|
|
|
|
|
|
|
|
|
p
|
|
|
|
|
|
|
|
|
|
+
|
|
|
|
|
|
|
|
|
|
k,
|
|
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
<EFBFBD>
|
|
|
|
|
|
|
|
|
|
px + px
|
|
|
|
|
|
|
|
|
|
kx 2
|
|
|
|
|
|
|
|
|
|
(nF ()
|
|
|
|
|
|
|
|
|
|
-
|
|
|
|
|
|
|
|
|
|
nF ( +
|
|
|
|
|
|
|
|
|
|
))
|
|
|
|
|
|
|
|
|
|
yi (k
|
|
|
|
|
|
|
|
|
|
=
|
|
|
|
|
|
|
|
|
|
0,
|
|
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
=
|
|
|
|
|
|
|
|
|
|
lim evF k0 c
|
|
|
|
|
|
|
|
|
|
d - 2i
|
|
|
|
|
|
|
|
|
|
d2p (2)2
|
|
|
|
|
|
|
|
|
|
Tr
|
|
|
|
|
|
|
|
|
|
(A)
|
|
|
|
|
G
|
|
|
|
|
|
|
|
|
|
(p,
|
|
|
|
|
|
|
|
|
|
)i
|
|
|
|
|
|
|
|
|
|
(R)
|
|
|
|
|
G
|
|
|
|
|
|
|
|
|
|
(p
|
|
|
|
|
|
|
|
|
|
+
|
|
|
|
|
|
|
|
|
|
k,
|
|
|
|
|
|
|
|
|
|
y
|
|
|
|
|
) (p,
|
|
|
|
|
|
|
|
|
|
p
|
|
|
|
|
|
|
|
|
|
+
|
|
|
|
|
|
|
|
|
|
k,
|
|
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
<EFBFBD> (nF ( + ) - nF ())
|
|
|
|
|
|
|
|
|
|
(44)
|
|
|
|
|
|
|
|
|
|
We have specialized to the case of a charge current along y^ in the expression for the Rashba-
|
|
|
|
|
|
|
|
|
|
Edelstein effect. For the SHE Kubo formula, we have to Taylor expand the Green's function
|
|
|
|
|
|
|
|
|
|
(R)
|
|
|
|
|
G (p
|
|
|
|
|
|
|
|
|
|
+
|
|
|
|
|
|
|
|
|
|
k,
|
|
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
=
|
|
|
|
|
|
|
|
|
|
(R)
|
|
|
|
|
G (p,
|
|
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
+
|
|
|
|
|
|
|
|
|
|
(R)
|
|
|
|
|
|
|
|
|
|
ki
|
|
|
|
|
|
|
|
|
|
dG
|
|
|
|
|
|
|
|
|
|
(p,) dpi
|
|
|
|
|
|
|
|
|
|
,
|
|
|
|
|
|
|
|
|
|
which
|
|
|
|
|
|
|
|
|
|
is
|
|
|
|
|
|
|
|
|
|
shown
|
|
|
|
|
|
|
|
|
|
in
|
|
|
|
|
|
|
|
|
|
detail
|
|
|
|
|
|
|
|
|
|
below.
|
|
|
|
|
|
|
|
|
|
(R)
|
|
|
|
|
|
|
|
|
|
(R)
|
|
|
|
|
|
|
|
|
|
(R)
|
|
|
|
|
|
|
|
|
|
dG (p, ) = G (p, ) p + G (p, )
|
|
|
|
|
|
|
|
|
|
dpx
|
|
|
|
|
|
|
|
|
|
p px
|
|
|
|
|
|
|
|
|
|
px
|
|
|
|
|
|
|
|
|
|
(45a)
|
|
|
|
|
|
|
|
|
|
(R)
|
|
|
|
|
G (p, ) p = p px
|
|
|
|
|
|
|
|
|
|
dg0 dp 1
|
|
|
|
|
|
|
|
|
|
+
|
|
|
|
|
|
|
|
|
|
dg3 dp
|
|
|
|
|
|
|
|
|
|
z
|
|
|
|
|
|
|
|
|
|
+
|
|
|
|
|
|
|
|
|
|
dga (cos
|
|
|
|
|
dp
|
|
|
|
|
|
|
|
|
|
px
|
|
|
|
|
|
|
|
|
|
+
|
|
|
|
|
|
|
|
|
|
sin
|
|
|
|
|
|
|
|
|
|
p y )
|
|
|
|
|
|
|
|
|
|
+
|
|
|
|
|
|
|
|
|
|
dgb (sin
|
|
|
|
|
dp
|
|
|
|
|
|
|
|
|
|
px
|
|
|
|
|
|
|
|
|
|
-
|
|
|
|
|
|
|
|
|
|
cos
|
|
|
|
|
|
|
|
|
|
p y )
|
|
|
|
|
|
|
|
|
|
cos p
|
|
|
|
|
|
|
|
|
|
(R)
|
|
|
|
|
|
|
|
|
|
G (p, ) = px
|
|
|
|
|
|
|
|
|
|
ga(- sin px + cos py) + gb(cos px + sin py)
|
|
|
|
|
|
|
|
|
|
- sin p p
|
|
|
|
|
|
|
|
|
|
(R)
|
|
|
|
|
|
|
|
|
|
(R)
|
|
|
|
|
|
|
|
|
|
(R)
|
|
|
|
|
|
|
|
|
|
dG (p, ) = G (p, ) p + G (p, )
|
|
|
|
|
|
|
|
|
|
(45b)
|
|
|
|
|
|
|
|
|
|
dpy
|
|
|
|
|
|
|
|
|
|
p py
|
|
|
|
|
|
|
|
|
|
py
|
|
|
|
|
|
|
|
|
|
(R)
|
|
|
|
|
G (p, ) p = p py
|
|
|
|
|
|
|
|
|
|
dg0 dp 1
|
|
|
|
|
|
|
|
|
|
+
|
|
|
|
|
|
|
|
|
|
dg3 dp
|
|
|
|
|
|
|
|
|
|
z
|
|
|
|
|
|
|
|
|
|
+
|
|
|
|
|
|
|
|
|
|
dga (cos dp
|
|
|
|
|
|
|
|
|
|
px
|
|
|
|
|
|
|
|
|
|
+
|
|
|
|
|
|
|
|
|
|
sin
|
|
|
|
|
|
|
|
|
|
p y )
|
|
|
|
|
|
|
|
|
|
+
|
|
|
|
|
|
|
|
|
|
dgb (sin dp
|
|
|
|
|
|
|
|
|
|
px
|
|
|
|
|
|
|
|
|
|
-
|
|
|
|
|
|
|
|
|
|
cos
|
|
|
|
|
|
|
|
|
|
p y )
|
|
|
|
|
|
|
|
|
|
sin p
|
|
|
|
|
|
|
|
|
|
(R)
|
|
|
|
|
|
|
|
|
|
G (p, ) = py
|
|
|
|
|
|
|
|
|
|
ga(- sin px + cos py) + gb(cos px + sin py)
|
|
|
|
|
|
|
|
|
|
cos p p
|
|
|
|
|
|
|
|
|
|
Following the same approximation of an average -matrix near EF , the spin current-current
|
|
|
|
|
|
|
|
|
|
correlation function is then given in terms of the -coefficients, and the spin-resolved density
|
|
|
|
|
|
|
|
|
|
of
|
|
|
|
|
|
|
|
|
|
states
|
|
|
|
|
|
|
|
|
|
ij(EF ),
|
|
|
|
|
|
|
|
|
|
as
|
|
|
|
|
|
|
|
|
|
well
|
|
|
|
|
|
|
|
|
|
as
|
|
|
|
|
|
|
|
|
|
the
|
|
|
|
|
|
|
|
|
|
quantity
|
|
|
|
|
|
|
|
|
|
involving
|
|
|
|
|
|
|
|
|
|
the
|
|
|
|
|
|
|
|
|
|
integral
|
|
|
|
|
|
|
|
|
|
of
|
|
|
|
|
|
|
|
|
|
(A)
|
|
|
|
|
G
|
|
|
|
|
|
|
|
|
|
(k,
|
|
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
(R)
|
|
|
|
|
dG
|
|
|
|
|
|
|
|
|
|
(k,)
|
|
|
|
|
|
|
|
|
|
,
|
|
|
|
|
|
|
|
|
|
dk
|
|
|
|
|
|
|
|
|
|
which
|
|
|
|
|
|
|
|
|
|
we term ij(),
|
|
|
|
|
|
|
|
|
|
ij()
|
|
|
|
|
|
|
|
|
|
-
|
|
|
|
|
|
|
|
|
|
dp 2
|
|
|
|
|
|
|
|
|
|
p2
|
|
|
|
|
|
|
|
|
|
dgi,(R)(p, dp
|
|
|
|
|
|
|
|
|
|
) gejf,(fA)(p,
|
|
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
(46a)
|
|
|
|
|
|
|
|
|
|
16
|
|
|
|
|
|
|
|
|
|
00() =
|
|
|
|
|
|
|
|
|
|
dp 2
|
|
|
|
|
|
|
|
|
|
vF
|
|
|
|
|
|
|
|
|
|
p2
|
|
|
|
|
|
|
|
|
|
2(-vF p + ia)( - i0) (p)2 + (p)2
|
|
|
|
|
|
|
|
|
|
+
|
|
|
|
|
|
|
|
|
|
4(vF
|
|
|
|
|
|
|
|
|
|
p(p)
|
|
|
|
|
|
|
|
|
|
-
|
|
|
|
|
|
|
|
|
|
a(p))((p) + i(p))( ((p)2 + (p)2)2
|
|
|
|
|
|
|
|
|
|
-
|
|
|
|
|
|
|
|
|
|
i0)
|
|
|
|
|
|
|
|
|
|
((p) - i(p))( + i0) (p)2 + (p)2
|
|
|
|
|
|
|
|
|
|
=
|
|
|
|
|
|
|
|
|
|
1 2vF2
|
|
|
|
|
|
|
|
|
|
i2 8(0 + a)2
|
|
|
|
|
|
|
|
|
|
-
|
|
|
|
|
|
|
|
|
|
16(0 +
|
|
|
|
|
|
|
|
|
|
a)
|
|
|
|
|
|
|
|
|
|
+
|
|
|
|
|
|
|
|
|
|
i0(02 + a2) 4(02 - a2)2
|
|
|
|
|
|
|
|
|
|
+
|
|
|
|
|
|
|
|
|
|
i(202 - 16(0
|
|
|
|
|
|
|
|
|
|
0a + + a)2
|
|
|
|
|
|
|
|
|
|
a2)
|
|
|
|
|
|
|
|
|
|
-
|
|
|
|
|
|
|
|
|
|
1 8
|
|
|
|
|
|
|
|
|
|
+
|
|
|
|
|
|
|
|
|
|
O(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
(46b)
|
|
|
|
|
|
|
|
|
|
aa() =
|
|
|
|
|
|
|
|
|
|
dp 2
|
|
|
|
|
|
|
|
|
|
vF
|
|
|
|
|
|
|
|
|
|
p2
|
|
|
|
|
|
|
|
|
|
2(-vF p + ia)(vF p + ia) (p)2 + (p)2
|
|
|
|
|
|
|
|
|
|
+
|
|
|
|
|
|
|
|
|
|
4(vF
|
|
|
|
|
|
|
|
|
|
p(p)
|
|
|
|
|
|
|
|
|
|
-
|
|
|
|
|
|
|
|
|
|
a(p))((p) + i(p))(vF ((p)2 + (p)2)2
|
|
|
|
|
|
|
|
|
|
p
|
|
|
|
|
|
|
|
|
|
+
|
|
|
|
|
|
|
|
|
|
ia
|
|
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
((p) - i(p))(vF p - ia) (p)2 + (p)2
|
|
|
|
|
|
|
|
|
|
=
|
|
|
|
|
|
|
|
|
|
1 2vF2
|
|
|
|
|
|
|
|
|
|
i2 8(0 + a)2
|
|
|
|
|
|
|
|
|
|
-
|
|
|
|
|
|
|
|
|
|
16(0 +
|
|
|
|
|
|
|
|
|
|
a)
|
|
|
|
|
|
|
|
|
|
+
|
|
|
|
|
|
|
|
|
|
i0(02 + a2) 4(02 - a2)2
|
|
|
|
|
|
|
|
|
|
-
|
|
|
|
|
|
|
|
|
|
i(0 - 3a)a 16(0 + a)2
|
|
|
|
|
|
|
|
|
|
-
|
|
|
|
|
|
|
|
|
|
04 + 602a2 + a4 8(02 - a2)2
|
|
|
|
|
|
|
|
|
|
+
|
|
|
|
|
|
|
|
|
|
O( )
|
|
|
|
|
|
|
|
|
|
(46c)
|
|
|
|
|
|
|
|
|
|
aa()
|
|
|
|
|
|
|
|
|
|
-
|
|
|
|
|
|
|
|
|
|
00()
|
|
|
|
|
|
|
|
|
|
=
|
|
|
|
|
|
|
|
|
|
1 2vF2
|
|
|
|
|
|
|
|
|
|
-
|
|
|
|
|
|
|
|
|
|
02a2 (02 - a2)2
|
|
|
|
|
|
|
|
|
|
-
|
|
|
|
|
|
|
|
|
|
i
|
|
|
|
|
|
|
|
|
|
(0 8(0
|
|
|
|
|
|
|
|
|
|
- a) + a)
|
|
|
|
|
|
|
|
|
|
(46d)
|
|
|
|
|
|
|
|
|
|
0a() =
|
|
|
|
|
|
|
|
|
|
dp 2
|
|
|
|
|
|
|
|
|
|
vF
|
|
|
|
|
|
|
|
|
|
p2
|
|
|
|
|
|
|
|
|
|
2(-vF p + ia)( - i0) (p)2 + (p)2
|
|
|
|
|
|
|
|
|
|
+
|
|
|
|
|
|
|
|
|
|
4(vF
|
|
|
|
|
|
|
|
|
|
p(p)
|
|
|
|
|
|
|
|
|
|
-
|
|
|
|
|
|
|
|
|
|
a(p))((p) + i(p))( ((p)2 + (p)2)2
|
|
|
|
|
|
|
|
|
|
-
|
|
|
|
|
|
|
|
|
|
i0)
|
|
|
|
|
|
|
|
|
|
((p) - i(p))(vF p - ia) (p)2 + (p)2
|
|
|
|
|
|
|
|
|
|
=
|
|
|
|
|
|
|
|
|
|
1 2vF2
|
|
|
|
|
|
|
|
|
|
2 i 8(0 + a)2
|
|
|
|
|
|
|
|
|
|
+
|
|
|
|
|
|
|
|
|
|
16(0 +
|
|
|
|
|
|
|
|
|
|
a)
|
|
|
|
|
|
|
|
|
|
+
|
|
|
|
|
|
|
|
|
|
i
|
|
|
|
|
|
|
|
|
|
a(02 + a2) 4(02 - a2)2
|
|
|
|
|
|
|
|
|
|
-i
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
(02 - 0a + 2a2) 16 (0 + a)2
|
|
|
|
|
|
|
|
|
|
+
|
|
|
|
|
|
|
|
|
|
03a 2(02 - a2)2
|
|
|
|
|
|
|
|
|
|
+
|
|
|
|
|
|
|
|
|
|
O(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
(46e)
|
|
|
|
|
|
|
|
|
|
a0() =
|
|
|
|
|
|
|
|
|
|
dp 2
|
|
|
|
|
|
|
|
|
|
vF
|
|
|
|
|
|
|
|
|
|
p2
|
|
|
|
|
|
|
|
|
|
2(-vF p + ia)(vF p + ia) (p)2 + (p)2
|
|
|
|
|
|
|
|
|
|
+
|
|
|
|
|
|
|
|
|
|
4(vF
|
|
|
|
|
|
|
|
|
|
p(p)
|
|
|
|
|
|
|
|
|
|
-
|
|
|
|
|
|
|
|
|
|
a(p))((p) + i(p))(vF ((p)2 + (p)2)2
|
|
|
|
|
|
|
|
|
|
p
|
|
|
|
|
|
|
|
|
|
+
|
|
|
|
|
|
|
|
|
|
ia
|
|
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
((p) - i(p))( + i0) (p)2 + (p)2
|
|
|
|
|
|
|
|
|
|
=
|
|
|
|
|
|
|
|
|
|
1 2vF2
|
|
|
|
|
|
|
|
|
|
2 i 8(0 + a)2
|
|
|
|
|
|
|
|
|
|
+
|
|
|
|
|
|
|
|
|
|
0a2 2(02 - a2)2
|
|
|
|
|
|
|
|
|
|
-
|
|
|
|
|
|
|
|
|
|
3 16(0 +
|
|
|
|
|
|
|
|
|
|
a)
|
|
|
|
|
|
|
|
|
|
+
|
|
|
|
|
|
|
|
|
|
ia(502 + a2) 4(02 - a2)2
|
|
|
|
|
|
|
|
|
|
-
|
|
|
|
|
|
|
|
|
|
i0(0 + 5a) 16 (0 + a)2
|
|
|
|
|
|
|
|
|
|
-
|
|
|
|
|
|
|
|
|
|
303a + 20a3) 2(02 - a2)2
|
|
|
|
|
|
|
|
|
|
+
|
|
|
|
|
|
|
|
|
|
O(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
(46f )
|
|
|
|
|
|
|
|
|
|
0a() - a0()
|
|
|
|
|
|
|
|
|
|
=
|
|
|
|
|
|
|
|
|
|
1 2vF2
|
|
|
|
|
|
|
|
|
|
4(0 +
|
|
|
|
|
|
|
|
|
|
a)
|
|
|
|
|
|
|
|
|
|
-
|
|
|
|
|
|
|
|
|
|
i02a (02 - a2)2
|
|
|
|
|
|
|
|
|
|
+
|
|
|
|
|
|
|
|
|
|
0a(202 + a2) (02 - a2)2
|
|
|
|
|
|
|
|
|
|
+
|
|
|
|
|
|
|
|
|
|
O(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
(46g)
|
|
|
|
|
|
|
|
|
|
17
|
|
|
|
|
|
|
|
|
|
Note that = + <20> is the energy measured from EF ; hence, the DC conductivities
|
|
|
|
|
|
|
|
|
|
will depend on ij(EF ). We now re-write the SHE correlation function as a sum of several
|
|
|
|
|
|
|
|
|
|
terms, xzy,(2)(k, ) = xzy,(2a)(k, ) + xz,y(2b)(k, ), where xz,y(2a)(k, ) and xz,y(2b)(k, ) are the
|
|
|
|
|
|
|
|
|
|
kyx and kxy terms respectively.
|
|
|
|
|
|
|
|
|
|
(R)
|
|
|
|
|
It is then necessary to Taylor expand G (p + k, ) =
|
|
|
|
|
|
|
|
|
|
(R)
|
|
|
|
|
G (p,
|
|
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
+
|
|
|
|
|
|
|
|
|
|
ki
|
|
|
|
|
|
|
|
|
|
(R)
|
|
|
|
|
|
|
|
|
|
dG
|
|
|
|
|
|
|
|
|
|
(p,) dpi
|
|
|
|
|
|
|
|
|
|
,
|
|
|
|
|
|
|
|
|
|
and
|
|
|
|
|
|
|
|
|
|
z,(2a1)(k, )
|
|
|
|
|
|
|
|
|
|
is
|
|
|
|
|
|
|
|
|
|
the
|
|
|
|
|
|
|
|
|
|
zeroth-order
|
|
|
|
|
|
|
|
|
|
term,
|
|
|
|
|
|
|
|
|
|
while
|
|
|
|
|
|
|
|
|
|
z,(2a2)(k, )
|
|
|
|
|
|
|
|
|
|
and
|
|
|
|
|
|
|
|
|
|
(R)
|
|
|
|
|
|
|
|
|
|
(R)
|
|
|
|
|
|
|
|
|
|
z,(2a3)(k,
|
|
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
are
|
|
|
|
|
|
|
|
|
|
the
|
|
|
|
|
|
|
|
|
|
kx dG
|
|
|
|
|
|
|
|
|
|
(p,) dpx
|
|
|
|
|
|
|
|
|
|
and
|
|
|
|
|
|
|
|
|
|
ky
|
|
|
|
|
|
|
|
|
|
dG
|
|
|
|
|
|
|
|
|
|
(p,) dpy
|
|
|
|
|
|
|
|
|
|
terms
|
|
|
|
|
|
|
|
|
|
respectively;
|
|
|
|
|
|
|
|
|
|
thus,
|
|
|
|
|
|
|
|
|
|
giving
|
|
|
|
|
|
|
|
|
|
xz,y(2a)(k,
|
|
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
=
|
|
|
|
|
|
|
|
|
|
xzy,(2a1)(k = 0, ) + xz,y(2a2)(k = 0, ) + xzy,(2a3)(k = 0, ) and xz,y(2b)(k, ) = xz,y(2b1)(k =
|
|
|
|
|
|
|
|
|
|
(R)
|
|
|
|
|
|
|
|
|
|
0, ) + xz,y(2b2)(k
|
|
|
|
|
|
|
|
|
|
=
|
|
|
|
|
|
|
|
|
|
0, ) + xz,y(2b3)(k
|
|
|
|
|
|
|
|
|
|
=
|
|
|
|
|
|
|
|
|
|
0, ).
|
|
|
|
|
|
|
|
|
|
Finally,
|
|
|
|
|
|
|
|
|
|
we
|
|
|
|
|
|
|
|
|
|
make
|
|
|
|
|
|
|
|
|
|
use
|
|
|
|
|
|
|
|
|
|
of
|
|
|
|
|
|
|
|
|
|
the
|
|
|
|
|
|
|
|
|
|
chain
|
|
|
|
|
|
|
|
|
|
rule
|
|
|
|
|
|
|
|
|
|
dG
|
|
|
|
|
|
|
|
|
|
(p,) dpi
|
|
|
|
|
|
|
|
|
|
=
|
|
|
|
|
|
|
|
|
|
(R)
|
|
|
|
|
|
|
|
|
|
(R)
|
|
|
|
|
|
|
|
|
|
dG
|
|
|
|
|
|
|
|
|
|
(p,) p dp pi
|
|
|
|
|
|
|
|
|
|
+
|
|
|
|
|
|
|
|
|
|
dG
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
(p,)
|
|
|
|
|
|
|
|
|
|
pi
|
|
|
|
|
|
|
|
|
|
,
|
|
|
|
|
|
|
|
|
|
which
|
|
|
|
|
|
|
|
|
|
give
|
|
|
|
|
|
|
|
|
|
xz,y(2a1)(k
|
|
|
|
|
|
|
|
|
|
=
|
|
|
|
|
|
|
|
|
|
0, )
|
|
|
|
|
|
|
|
|
|
=
|
|
|
|
|
|
|
|
|
|
xzy,(2a1P 1)(k, ) +
|
|
|
|
|
|
|
|
|
|
xz,y(2a1P 2)(k, )
|
|
|
|
|
|
|
|
|
|
(R)
|
|
|
|
|
|
|
|
|
|
respectively,
|
|
|
|
|
|
|
|
|
|
with
|
|
|
|
|
|
|
|
|
|
xzy,(2a1P 1)(k, )
|
|
|
|
|
|
|
|
|
|
and
|
|
|
|
|
|
|
|
|
|
xzy,(2a1P 2)(k, )
|
|
|
|
|
|
|
|
|
|
being
|
|
|
|
|
|
|
|
|
|
proportional
|
|
|
|
|
|
|
|
|
|
to
|
|
|
|
|
|
|
|
|
|
the
|
|
|
|
|
|
|
|
|
|
dG
|
|
|
|
|
|
|
|
|
|
(p,) p dp pi
|
|
|
|
|
|
|
|
|
|
(R)
|
|
|
|
|
|
|
|
|
|
and
|
|
|
|
|
|
|
|
|
|
dG (p,) pi
|
|
|
|
|
|
|
|
|
|
terms respectively.
|
|
|
|
|
|
|
|
|
|
A similar procedure is carried out for the other terms,
|
|
|
|
|
|
|
|
|
|
and we have symmetrized the expressions for xzy,(2a)(k, ) and xz,y(2b)(k, ) by doing a shift
|
|
|
|
|
|
|
|
|
|
of
|
|
|
|
|
|
|
|
|
|
variable
|
|
|
|
|
|
|
|
|
|
py +
|
|
|
|
|
|
|
|
|
|
ky 2
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
py
|
|
|
|
|
|
|
|
|
|
and
|
|
|
|
|
|
|
|
|
|
px +
|
|
|
|
|
|
|
|
|
|
kx 2
|
|
|
|
|
|
|
|
|
|
px
|
|
|
|
|
|
|
|
|
|
respectively.
|
|
|
|
|
|
|
|
|
|
The
|
|
|
|
|
|
|
|
|
|
results
|
|
|
|
|
|
|
|
|
|
are
|
|
|
|
|
|
|
|
|
|
shown
|
|
|
|
|
|
|
|
|
|
below.
|
|
|
|
|
|
|
|
|
|
xzy,(2a)(k,
|
|
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
=
|
|
|
|
|
|
|
|
|
|
lim
|
|
|
|
|
k0
|
|
|
|
|
|
|
|
|
|
2ievF2 c
|
|
|
|
|
|
|
|
|
|
d 2i
|
|
|
|
|
|
|
|
|
|
p
|
|
|
|
|
|
|
|
|
|
(nF
|
|
|
|
|
|
|
|
|
|
()
|
|
|
|
|
|
|
|
|
|
-
|
|
|
|
|
|
|
|
|
|
nF
|
|
|
|
|
|
|
|
|
|
(
|
|
|
|
|
|
|
|
|
|
+
|
|
|
|
|
|
|
|
|
|
))
|
|
|
|
|
|
|
|
|
|
py kx
|
|
|
|
|
|
|
|
|
|
<EFBFBD> Tr
|
|
|
|
|
|
|
|
|
|
(A)
|
|
|
|
|
G (p
|
|
|
|
|
|
|
|
|
|
-
|
|
|
|
|
|
|
|
|
|
k 2,
|
|
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
x
|
|
|
|
|
|
|
|
|
|
R)
|
|
|
|
|
G (p
|
|
|
|
|
|
|
|
|
|
+
|
|
|
|
|
|
|
|
|
|
k 2,
|
|
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
(y)
|
|
|
|
|
(p,
|
|
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
= xzy,(2a1)(k = 0, ) + xzy,(2a2)(k = 0, ) + xzy,(2a3)(k = 0, )
|
|
|
|
|
|
|
|
|
|
xzy,(2a1)(k
|
|
|
|
|
|
|
|
|
|
=
|
|
|
|
|
|
|
|
|
|
0,
|
|
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
=
|
|
|
|
|
|
|
|
|
|
lim 2ievF2 k0 c
|
|
|
|
|
|
|
|
|
|
1 kx
|
|
|
|
|
|
|
|
|
|
d 2i
|
|
|
|
|
|
|
|
|
|
(nF () - nF ( + ))
|
|
|
|
|
|
|
|
|
|
p
|
|
|
|
|
|
|
|
|
|
<EFBFBD> Tr
|
|
|
|
|
|
|
|
|
|
(A)
|
|
|
|
|
G
|
|
|
|
|
|
|
|
|
|
(p,
|
|
|
|
|
|
|
|
|
|
)xGR)(p,
|
|
|
|
|
|
|
|
|
|
(y)
|
|
|
|
|
) (p,
|
|
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
p sin
|
|
|
|
|
|
|
|
|
|
=0
|
|
|
|
|
|
|
|
|
|
(47a) (47b)
|
|
|
|
|
|
|
|
|
|
xzy,(2a2)(k
|
|
|
|
|
|
|
|
|
|
=
|
|
|
|
|
|
|
|
|
|
0,
|
|
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
=
|
|
|
|
|
|
|
|
|
|
lim 2ievF2 k0 c
|
|
|
|
|
|
|
|
|
|
kx kx
|
|
|
|
|
|
|
|
|
|
d 2i
|
|
|
|
|
|
|
|
|
|
(nF
|
|
|
|
|
|
|
|
|
|
()
|
|
|
|
|
|
|
|
|
|
-
|
|
|
|
|
|
|
|
|
|
nF
|
|
|
|
|
|
|
|
|
|
(
|
|
|
|
|
|
|
|
|
|
+
|
|
|
|
|
|
|
|
|
|
))
|
|
|
|
|
|
|
|
|
|
p
|
|
|
|
|
|
|
|
|
|
sin 2
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
p
|
|
|
|
|
|
|
|
|
|
(R)
|
|
|
|
|
|
|
|
|
|
(A)
|
|
|
|
|
|
|
|
|
|
<EFBFBD>
|
|
|
|
|
|
|
|
|
|
Tr
|
|
|
|
|
|
|
|
|
|
(A)
|
|
|
|
|
G
|
|
|
|
|
|
|
|
|
|
(p,
|
|
|
|
|
|
|
|
|
|
)x
|
|
|
|
|
|
|
|
|
|
G
|
|
|
|
|
|
|
|
|
|
(p,
|
|
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
(y)
|
|
|
|
|
(p,
|
|
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
- Tr
|
|
|
|
|
|
|
|
|
|
G
|
|
|
|
|
|
|
|
|
|
(p,
|
|
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
xG(R)
|
|
|
|
|
|
|
|
|
|
(p,
|
|
|
|
|
|
|
|
|
|
(y)
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
(p,
|
|
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
px
|
|
|
|
|
|
|
|
|
|
px
|
|
|
|
|
|
|
|
|
|
= lim 2ievF2 kx k0 c kx
|
|
|
|
|
|
|
|
|
|
d 2i
|
|
|
|
|
|
|
|
|
|
(nF
|
|
|
|
|
|
|
|
|
|
()
|
|
|
|
|
|
|
|
|
|
-
|
|
|
|
|
|
|
|
|
|
nF
|
|
|
|
|
|
|
|
|
|
(
|
|
|
|
|
|
|
|
|
|
+
|
|
|
|
|
|
|
|
|
|
))
|
|
|
|
|
|
|
|
|
|
p
|
|
|
|
|
|
|
|
|
|
sin 2
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
p
|
|
|
|
|
|
|
|
|
|
(R)
|
|
|
|
|
|
|
|
|
|
(R)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<EFBFBD>
|
|
|
|
|
|
|
|
|
|
Tr
|
|
|
|
|
|
|
|
|
|
(A)
|
|
|
|
|
G
|
|
|
|
|
|
|
|
|
|
(p,
|
|
|
|
|
|
|
|
|
|
)x
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
G
|
|
|
|
|
|
|
|
|
|
(p, ) p p px
|
|
|
|
|
|
|
|
|
|
+
|
|
|
|
|
|
|
|
|
|
G
|
|
|
|
|
|
|
|
|
|
(p,
|
|
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
px
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
(y)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
(p,
|
|
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
18
|
|
|
|
|
|
|
|
|
|
(A)
|
|
|
|
|
|
|
|
|
|
(A)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
- Tr
|
|
|
|
|
|
|
|
|
|
G
|
|
|
|
|
|
|
|
|
|
(p, ) p p px
|
|
|
|
|
|
|
|
|
|
+
|
|
|
|
|
|
|
|
|
|
G
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
(p,
|
|
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
px
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
xG(R)
|
|
|
|
|
|
|
|
|
|
(p,
|
|
|
|
|
|
|
|
|
|
(y)
|
|
|
|
|
) (p,
|
|
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
= xzy,(2a2P 1)(k = 0, ) + xzy,(2a2P 2)(k = 0, )
|
|
|
|
|
|
|
|
|
|
(47c)
|
|
|
|
|
|
|
|
|
|
xzy,(2a2P 1)(k
|
|
|
|
|
|
|
|
|
|
=
|
|
|
|
|
|
|
|
|
|
0,
|
|
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
=
|
|
|
|
|
|
|
|
|
|
lim 2ievF2 k0 c
|
|
|
|
|
|
|
|
|
|
kx kx
|
|
|
|
|
|
|
|
|
|
d 2i
|
|
|
|
|
|
|
|
|
|
(nF
|
|
|
|
|
|
|
|
|
|
()
|
|
|
|
|
|
|
|
|
|
-
|
|
|
|
|
|
|
|
|
|
nF
|
|
|
|
|
|
|
|
|
|
(
|
|
|
|
|
|
|
|
|
|
+
|
|
|
|
|
|
|
|
|
|
))
|
|
|
|
|
|
|
|
|
|
p
|
|
|
|
|
|
|
|
|
|
sin 2
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
p
|
|
|
|
|
|
|
|
|
|
(R)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<EFBFBD>
|
|
|
|
|
|
|
|
|
|
Tr
|
|
|
|
|
|
|
|
|
|
(A)
|
|
|
|
|
G
|
|
|
|
|
|
|
|
|
|
(p,
|
|
|
|
|
|
|
|
|
|
)x
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
G
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
(p, p
|
|
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
p px
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
(y)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
(p,
|
|
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
(A)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
- Tr
|
|
|
|
|
|
|
|
|
|
G
|
|
|
|
|
|
|
|
|
|
(p, p
|
|
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
p px
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
xG(R)(p,
|
|
|
|
|
|
|
|
|
|
(y)
|
|
|
|
|
) (p,
|
|
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
= lim 2ievF2 kx k0 c kx
|
|
|
|
|
|
|
|
|
|
d 2i
|
|
|
|
|
|
|
|
|
|
p
|
|
|
|
|
|
|
|
|
|
(nF
|
|
|
|
|
|
|
|
|
|
()
|
|
|
|
|
|
|
|
|
|
-
|
|
|
|
|
|
|
|
|
|
nF
|
|
|
|
|
|
|
|
|
|
(
|
|
|
|
|
|
|
|
|
|
+
|
|
|
|
|
|
|
|
|
|
))
|
|
|
|
|
|
|
|
|
|
p
|
|
|
|
|
|
|
|
|
|
sin 2
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
p px
|
|
|
|
|
|
|
|
|
|
(R)
|
|
|
|
|
|
|
|
|
|
(A)
|
|
|
|
|
|
|
|
|
|
<EFBFBD>
|
|
|
|
|
|
|
|
|
|
Tr
|
|
|
|
|
|
|
|
|
|
(A)
|
|
|
|
|
G
|
|
|
|
|
|
|
|
|
|
(p,
|
|
|
|
|
|
|
|
|
|
)x
|
|
|
|
|
|
|
|
|
|
G
|
|
|
|
|
|
|
|
|
|
(p,
|
|
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
(y)
|
|
|
|
|
(p,
|
|
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
- Tr
|
|
|
|
|
|
|
|
|
|
G
|
|
|
|
|
|
|
|
|
|
(p,
|
|
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
xG(R)
|
|
|
|
|
|
|
|
|
|
(p,
|
|
|
|
|
|
|
|
|
|
(y)
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
(p,
|
|
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
p
|
|
|
|
|
|
|
|
|
|
p
|
|
|
|
|
|
|
|
|
|
= 2ievF2 c
|
|
|
|
|
|
|
|
|
|
d 2i
|
|
|
|
|
|
|
|
|
|
(nF
|
|
|
|
|
|
|
|
|
|
()
|
|
|
|
|
|
|
|
|
|
-
|
|
|
|
|
|
|
|
|
|
nF
|
|
|
|
|
|
|
|
|
|
(
|
|
|
|
|
|
|
|
|
|
+
|
|
|
|
|
|
|
|
|
|
))
|
|
|
|
|
|
|
|
|
|
1 2
|
|
|
|
|
|
|
|
|
|
<EFBFBD>
|
|
|
|
|
|
|
|
|
|
1 4
|
|
|
|
|
|
|
|
|
|
2s() (2aa() - 2(aa()))
|
|
|
|
|
|
|
|
|
|
+0py () a0() + 0a() - (a0()) - (0a())
|
|
|
|
|
|
|
|
|
|
+i3px() a0() - 0a() + (a0()) - (0a())
|
|
|
|
|
|
|
|
|
|
+ O( ) EF
|
|
|
|
|
|
|
|
|
|
(47d)
|
|
|
|
|
|
|
|
|
|
xzy,(2a2P 2)(k
|
|
|
|
|
|
|
|
|
|
=
|
|
|
|
|
|
|
|
|
|
0,
|
|
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
=
|
|
|
|
|
|
|
|
|
|
lim 2ievF2 p0 c
|
|
|
|
|
|
|
|
|
|
kx kx
|
|
|
|
|
|
|
|
|
|
d 2i
|
|
|
|
|
|
|
|
|
|
p
|
|
|
|
|
|
|
|
|
|
(nF
|
|
|
|
|
|
|
|
|
|
()
|
|
|
|
|
|
|
|
|
|
-
|
|
|
|
|
|
|
|
|
|
nF
|
|
|
|
|
|
|
|
|
|
(
|
|
|
|
|
|
|
|
|
|
+
|
|
|
|
|
|
|
|
|
|
))
|
|
|
|
|
|
|
|
|
|
p
|
|
|
|
|
|
|
|
|
|
sin 2
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
px
|
|
|
|
|
|
|
|
|
|
(R)
|
|
|
|
|
|
|
|
|
|
(A)
|
|
|
|
|
|
|
|
|
|
<EFBFBD>
|
|
|
|
|
|
|
|
|
|
Tr
|
|
|
|
|
|
|
|
|
|
(A)
|
|
|
|
|
G
|
|
|
|
|
|
|
|
|
|
(p,
|
|
|
|
|
|
|
|
|
|
)x
|
|
|
|
|
|
|
|
|
|
G
|
|
|
|
|
|
|
|
|
|
(p,
|
|
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
(y)
|
|
|
|
|
(p,
|
|
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
- Tr
|
|
|
|
|
|
|
|
|
|
G
|
|
|
|
|
|
|
|
|
|
(p,
|
|
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
xG(R)
|
|
|
|
|
|
|
|
|
|
(p,
|
|
|
|
|
|
|
|
|
|
(y)
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
(p,
|
|
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
= 2ievF2 c
|
|
|
|
|
|
|
|
|
|
d 2i
|
|
|
|
|
|
|
|
|
|
(nF
|
|
|
|
|
|
|
|
|
|
()
|
|
|
|
|
|
|
|
|
|
-
|
|
|
|
|
|
|
|
|
|
nF
|
|
|
|
|
|
|
|
|
|
(
|
|
|
|
|
|
|
|
|
|
+
|
|
|
|
|
|
|
|
|
|
))
|
|
|
|
|
|
|
|
|
|
1 2
|
|
|
|
|
|
|
|
|
|
<EFBFBD>
|
|
|
|
|
|
|
|
|
|
1 4
|
|
|
|
|
|
|
|
|
|
30py
|
|
|
|
|
|
|
|
|
|
+3px ()
|
|
|
|
|
|
|
|
|
|
() i0a
|
|
|
|
|
|
|
|
|
|
0a ()
|
|
|
|
|
|
|
|
|
|
() + a0() + ia0()
|
|
|
|
|
|
|
|
|
|
+ +
|
|
|
|
|
|
|
|
|
|
i3b()
|
|
|
|
|
O( EF
|
|
|
|
|
|
|
|
|
|
+ )
|
|
|
|
|
|
|
|
|
|
i
|
|
|
|
|
|
|
|
|
|
b3
|
|
|
|
|
|
|
|
|
|
()
|
|
|
|
|
|
|
|
|
|
(47e)
|
|
|
|
|
|
|
|
|
|
xzy,(2a3)(k
|
|
|
|
|
|
|
|
|
|
=
|
|
|
|
|
|
|
|
|
|
0,
|
|
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
=
|
|
|
|
|
|
|
|
|
|
lim 2ievF2 k0 c
|
|
|
|
|
|
|
|
|
|
ky kx
|
|
|
|
|
|
|
|
|
|
d 2i
|
|
|
|
|
|
|
|
|
|
(nF
|
|
|
|
|
|
|
|
|
|
()
|
|
|
|
|
|
|
|
|
|
-
|
|
|
|
|
|
|
|
|
|
nF
|
|
|
|
|
|
|
|
|
|
(
|
|
|
|
|
|
|
|
|
|
+
|
|
|
|
|
|
|
|
|
|
))
|
|
|
|
|
|
|
|
|
|
p
|
|
|
|
|
|
|
|
|
|
sin 2
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
p
|
|
|
|
|
|
|
|
|
|
(R)
|
|
|
|
|
|
|
|
|
|
(A)
|
|
|
|
|
|
|
|
|
|
<EFBFBD>
|
|
|
|
|
|
|
|
|
|
Tr
|
|
|
|
|
|
|
|
|
|
(A)
|
|
|
|
|
G
|
|
|
|
|
|
|
|
|
|
(p,
|
|
|
|
|
|
|
|
|
|
)x
|
|
|
|
|
|
|
|
|
|
G
|
|
|
|
|
|
|
|
|
|
(p,
|
|
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
(y)
|
|
|
|
|
(p,
|
|
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
- Tr
|
|
|
|
|
|
|
|
|
|
G
|
|
|
|
|
|
|
|
|
|
(p,
|
|
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
xG(R)
|
|
|
|
|
|
|
|
|
|
(p,
|
|
|
|
|
|
|
|
|
|
(y)
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
(p,
|
|
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
py
|
|
|
|
|
|
|
|
|
|
py
|
|
|
|
|
|
|
|
|
|
19
|
|
|
|
|
|
|
|
|
|
= lim 2ievF2 ky k0 c kx
|
|
|
|
|
|
|
|
|
|
d 2i
|
|
|
|
|
|
|
|
|
|
(nF
|
|
|
|
|
|
|
|
|
|
()
|
|
|
|
|
|
|
|
|
|
-
|
|
|
|
|
|
|
|
|
|
nF
|
|
|
|
|
|
|
|
|
|
(
|
|
|
|
|
|
|
|
|
|
+
|
|
|
|
|
|
|
|
|
|
))
|
|
|
|
|
|
|
|
|
|
p
|
|
|
|
|
|
|
|
|
|
sin 2
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
p
|
|
|
|
|
|
|
|
|
|
(R)
|
|
|
|
|
|
|
|
|
|
(R)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<EFBFBD>
|
|
|
|
|
|
|
|
|
|
Tr
|
|
|
|
|
|
|
|
|
|
(A)
|
|
|
|
|
G
|
|
|
|
|
|
|
|
|
|
(p,
|
|
|
|
|
|
|
|
|
|
)x
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
G
|
|
|
|
|
|
|
|
|
|
(p, ) p p py
|
|
|
|
|
|
|
|
|
|
+
|
|
|
|
|
|
|
|
|
|
G
|
|
|
|
|
|
|
|
|
|
(p,
|
|
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
py
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
(y)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
(p,
|
|
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
(A)
|
|
|
|
|
|
|
|
|
|
(A)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
- Tr
|
|
|
|
|
|
|
|
|
|
G
|
|
|
|
|
|
|
|
|
|
(p, ) p p py
|
|
|
|
|
|
|
|
|
|
+
|
|
|
|
|
|
|
|
|
|
G
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
(p,
|
|
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
py
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
xG(R)
|
|
|
|
|
|
|
|
|
|
(p,
|
|
|
|
|
|
|
|
|
|
(y)
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
(p,
|
|
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
= xzy,(2a3P 1)(k = 0, ) + xzy,(2a3P 2)(k = 0, )
|
|
|
|
|
|
|
|
|
|
(47f )
|
|
|
|
|
|
|
|
|
|
xzy,(2a3P 1)(k
|
|
|
|
|
|
|
|
|
|
=
|
|
|
|
|
|
|
|
|
|
0,
|
|
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
=
|
|
|
|
|
|
|
|
|
|
lim 2ievF2 p0 c
|
|
|
|
|
|
|
|
|
|
ky kx
|
|
|
|
|
|
|
|
|
|
d 2i
|
|
|
|
|
|
|
|
|
|
p
|
|
|
|
|
|
|
|
|
|
(nF
|
|
|
|
|
|
|
|
|
|
()
|
|
|
|
|
|
|
|
|
|
-
|
|
|
|
|
|
|
|
|
|
nF
|
|
|
|
|
|
|
|
|
|
(
|
|
|
|
|
|
|
|
|
|
+
|
|
|
|
|
|
|
|
|
|
))
|
|
|
|
|
|
|
|
|
|
p
|
|
|
|
|
|
|
|
|
|
sin 2
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
p py
|
|
|
|
|
|
|
|
|
|
(R)
|
|
|
|
|
|
|
|
|
|
(A)
|
|
|
|
|
|
|
|
|
|
<EFBFBD>
|
|
|
|
|
|
|
|
|
|
Tr
|
|
|
|
|
|
|
|
|
|
(A)
|
|
|
|
|
G
|
|
|
|
|
|
|
|
|
|
(p,
|
|
|
|
|
|
|
|
|
|
)x
|
|
|
|
|
|
|
|
|
|
G
|
|
|
|
|
|
|
|
|
|
(p,
|
|
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
(y)
|
|
|
|
|
(p,
|
|
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
- Tr
|
|
|
|
|
|
|
|
|
|
G
|
|
|
|
|
|
|
|
|
|
(p,
|
|
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
xG(R)
|
|
|
|
|
|
|
|
|
|
(p,
|
|
|
|
|
|
|
|
|
|
(y)
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
(p,
|
|
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
p
|
|
|
|
|
|
|
|
|
|
p
|
|
|
|
|
|
|
|
|
|
= 2ievF2 c
|
|
|
|
|
|
|
|
|
|
d 2i
|
|
|
|
|
|
|
|
|
|
(nF
|
|
|
|
|
|
|
|
|
|
()
|
|
|
|
|
|
|
|
|
|
-
|
|
|
|
|
|
|
|
|
|
nF
|
|
|
|
|
|
|
|
|
|
(
|
|
|
|
|
|
|
|
|
|
+
|
|
|
|
|
|
|
|
|
|
))
|
|
|
|
|
|
|
|
|
|
1 2
|
|
|
|
|
|
|
|
|
|
<EFBFBD>
|
|
|
|
|
|
|
|
|
|
1 4
|
|
|
|
|
|
|
|
|
|
1s ()
|
|
|
|
|
|
|
|
|
|
400() - 4(00()) - 2aa() + 2(aa())
|
|
|
|
|
|
|
|
|
|
+0px() a0() + 0a() - (a0()) + (0a())
|
|
|
|
|
|
|
|
|
|
+3py () -3a0() + 30a() - 3(a0()) + 3(0a())
|
|
|
|
|
|
|
|
|
|
+ O( ) EF
|
|
|
|
|
|
|
|
|
|
(47g)
|
|
|
|
|
|
|
|
|
|
xzy,(2a3P 2)(k
|
|
|
|
|
|
|
|
|
|
=
|
|
|
|
|
|
|
|
|
|
0,
|
|
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
=
|
|
|
|
|
|
|
|
|
|
lim 2ievF2 p0 c
|
|
|
|
|
|
|
|
|
|
ky kx
|
|
|
|
|
|
|
|
|
|
d 2i
|
|
|
|
|
|
|
|
|
|
p
|
|
|
|
|
|
|
|
|
|
(nF
|
|
|
|
|
|
|
|
|
|
()
|
|
|
|
|
|
|
|
|
|
-
|
|
|
|
|
|
|
|
|
|
nF
|
|
|
|
|
|
|
|
|
|
(
|
|
|
|
|
|
|
|
|
|
+
|
|
|
|
|
|
|
|
|
|
))
|
|
|
|
|
|
|
|
|
|
p
|
|
|
|
|
|
|
|
|
|
sin 2
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
py
|
|
|
|
|
|
|
|
|
|
(R)
|
|
|
|
|
|
|
|
|
|
(A)
|
|
|
|
|
|
|
|
|
|
<EFBFBD>
|
|
|
|
|
|
|
|
|
|
Tr
|
|
|
|
|
|
|
|
|
|
(A)
|
|
|
|
|
G
|
|
|
|
|
|
|
|
|
|
(p,
|
|
|
|
|
|
|
|
|
|
)x
|
|
|
|
|
|
|
|
|
|
G
|
|
|
|
|
|
|
|
|
|
(p,
|
|
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
(y)
|
|
|
|
|
(p,
|
|
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
- Tr
|
|
|
|
|
|
|
|
|
|
G
|
|
|
|
|
|
|
|
|
|
(p,
|
|
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
xG(R)
|
|
|
|
|
|
|
|
|
|
(p,
|
|
|
|
|
|
|
|
|
|
(y)
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
(p,
|
|
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
= 2ievF2 c
|
|
|
|
|
|
|
|
|
|
d 2i
|
|
|
|
|
|
|
|
|
|
(nF
|
|
|
|
|
|
|
|
|
|
()
|
|
|
|
|
|
|
|
|
|
-
|
|
|
|
|
|
|
|
|
|
nF
|
|
|
|
|
|
|
|
|
|
(
|
|
|
|
|
|
|
|
|
|
+
|
|
|
|
|
|
|
|
|
|
))
|
|
|
|
|
|
|
|
|
|
1 2
|
|
|
|
|
|
|
|
|
|
<EFBFBD>
|
|
|
|
|
|
|
|
|
|
1 4
|
|
|
|
|
|
|
|
|
|
0px ()
|
|
|
|
|
|
|
|
|
|
0a() - a0()
|
|
|
|
|
|
|
|
|
|
- 3py ()
|
|
|
|
|
|
|
|
|
|
0a() + a0()
|
|
|
|
|
|
|
|
|
|
+ O( )
|
|
|
|
|
EF
|
|
|
|
|
|
|
|
|
|
(47h)
|
|
|
|
|
|
|
|
|
|
xz,y(2b)(k,
|
|
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
=
|
|
|
|
|
|
|
|
|
|
lim
|
|
|
|
|
k0
|
|
|
|
|
|
|
|
|
|
-
|
|
|
|
|
|
|
|
|
|
2ievF2 c
|
|
|
|
|
|
|
|
|
|
d 2i
|
|
|
|
|
|
|
|
|
|
p
|
|
|
|
|
|
|
|
|
|
(nF
|
|
|
|
|
|
|
|
|
|
()
|
|
|
|
|
|
|
|
|
|
-
|
|
|
|
|
|
|
|
|
|
nF
|
|
|
|
|
|
|
|
|
|
(
|
|
|
|
|
|
|
|
|
|
+
|
|
|
|
|
|
|
|
|
|
))
|
|
|
|
|
|
|
|
|
|
px kx
|
|
|
|
|
|
|
|
|
|
<EFBFBD> Tr
|
|
|
|
|
|
|
|
|
|
(A)
|
|
|
|
|
G (p
|
|
|
|
|
|
|
|
|
|
-
|
|
|
|
|
|
|
|
|
|
k 2
|
|
|
|
|
|
|
|
|
|
,
|
|
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
y
|
|
|
|
|
|
|
|
|
|
R)
|
|
|
|
|
G (p
|
|
|
|
|
|
|
|
|
|
+
|
|
|
|
|
|
|
|
|
|
k 2
|
|
|
|
|
|
|
|
|
|
,
|
|
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
(y)
|
|
|
|
|
(p,
|
|
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
= xz,y(2b1)(k = 0, ) + xz,y(2b2)(k = 0, ) + xz,y(2b3)(k = 0, )
|
|
|
|
|
|
|
|
|
|
(47i)
|
|
|
|
|
|
|
|
|
|
xz,y(2b1)(k
|
|
|
|
|
|
|
|
|
|
=
|
|
|
|
|
|
|
|
|
|
0, )
|
|
|
|
|
|
|
|
|
|
=
|
|
|
|
|
|
|
|
|
|
lim
|
|
|
|
|
k0
|
|
|
|
|
|
|
|
|
|
-
|
|
|
|
|
|
|
|
|
|
2ievF2 c
|
|
|
|
|
|
|
|
|
|
1 kx
|
|
|
|
|
|
|
|
|
|
d 2i
|
|
|
|
|
|
|
|
|
|
(nF () - nF ( + ))
|
|
|
|
|
|
|
|
|
|
p
|
|
|
|
|
|
|
|
|
|
<EFBFBD> Tr
|
|
|
|
|
|
|
|
|
|
(A)
|
|
|
|
|
G
|
|
|
|
|
|
|
|
|
|
(p,
|
|
|
|
|
|
|
|
|
|
)y
|
|
|
|
|
|
|
|
|
|
R)
|
|
|
|
|
G
|
|
|
|
|
|
|
|
|
|
(p,
|
|
|
|
|
|
|
|
|
|
(y)
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
(p,
|
|
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
p cos
|
|
|
|
|
|
|
|
|
|
20
|
|
|
|
|
|
|
|
|
|
=0
|
|
|
|
|
|
|
|
|
|
(47j)
|
|
|
|
|
|
|
|
|
|
xz,y(2b2)(k
|
|
|
|
|
|
|
|
|
|
=
|
|
|
|
|
|
|
|
|
|
0, )
|
|
|
|
|
|
|
|
|
|
=
|
|
|
|
|
|
|
|
|
|
lim
|
|
|
|
|
k0
|
|
|
|
|
|
|
|
|
|
-
|
|
|
|
|
|
|
|
|
|
2ievF2 c
|
|
|
|
|
|
|
|
|
|
kx kx
|
|
|
|
|
|
|
|
|
|
d 2i
|
|
|
|
|
|
|
|
|
|
(nF
|
|
|
|
|
|
|
|
|
|
()
|
|
|
|
|
|
|
|
|
|
-
|
|
|
|
|
|
|
|
|
|
nF
|
|
|
|
|
|
|
|
|
|
(
|
|
|
|
|
|
|
|
|
|
+
|
|
|
|
|
|
|
|
|
|
))
|
|
|
|
|
|
|
|
|
|
p
|
|
|
|
|
|
|
|
|
|
cos 2
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
p
|
|
|
|
|
|
|
|
|
|
(R)
|
|
|
|
|
|
|
|
|
|
(A)
|
|
|
|
|
|
|
|
|
|
<EFBFBD>
|
|
|
|
|
|
|
|
|
|
Tr
|
|
|
|
|
|
|
|
|
|
(A)
|
|
|
|
|
G
|
|
|
|
|
|
|
|
|
|
(p,
|
|
|
|
|
|
|
|
|
|
)y
|
|
|
|
|
|
|
|
|
|
G
|
|
|
|
|
|
|
|
|
|
(p,
|
|
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
(y)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
(p,
|
|
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
- Tr
|
|
|
|
|
|
|
|
|
|
G
|
|
|
|
|
|
|
|
|
|
(p,
|
|
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
y
|
|
|
|
|
|
|
|
|
|
(R)
|
|
|
|
|
G (p,
|
|
|
|
|
|
|
|
|
|
(y)
|
|
|
|
|
) (p,
|
|
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
px
|
|
|
|
|
|
|
|
|
|
px
|
|
|
|
|
|
|
|
|
|
= lim - 2ievF2 kx
|
|
|
|
|
|
|
|
|
|
k0
|
|
|
|
|
|
|
|
|
|
c kx
|
|
|
|
|
|
|
|
|
|
d 2i
|
|
|
|
|
|
|
|
|
|
(nF
|
|
|
|
|
|
|
|
|
|
()
|
|
|
|
|
|
|
|
|
|
-
|
|
|
|
|
|
|
|
|
|
nF
|
|
|
|
|
|
|
|
|
|
(
|
|
|
|
|
|
|
|
|
|
+
|
|
|
|
|
|
|
|
|
|
))
|
|
|
|
|
|
|
|
|
|
p
|
|
|
|
|
|
|
|
|
|
cos 2
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
p
|
|
|
|
|
|
|
|
|
|
(R)
|
|
|
|
|
|
|
|
|
|
(R)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<EFBFBD>
|
|
|
|
|
|
|
|
|
|
Tr
|
|
|
|
|
|
|
|
|
|
(A)
|
|
|
|
|
G
|
|
|
|
|
|
|
|
|
|
(p,
|
|
|
|
|
|
|
|
|
|
)y
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
G
|
|
|
|
|
|
|
|
|
|
(p, ) p p px
|
|
|
|
|
|
|
|
|
|
+
|
|
|
|
|
|
|
|
|
|
G
|
|
|
|
|
|
|
|
|
|
(p,
|
|
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
px
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
(y)
|
|
|
|
|
(p,
|
|
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
(A)
|
|
|
|
|
|
|
|
|
|
(A)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
- Tr
|
|
|
|
|
|
|
|
|
|
G
|
|
|
|
|
|
|
|
|
|
(p, ) p p px
|
|
|
|
|
|
|
|
|
|
+
|
|
|
|
|
|
|
|
|
|
G
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
(p,
|
|
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
px
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
y
|
|
|
|
|
|
|
|
|
|
(R)
|
|
|
|
|
G (p,
|
|
|
|
|
|
|
|
|
|
(y)
|
|
|
|
|
) (p,
|
|
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
= xz,y(2b2P 1)(k = 0, ) + xz,y(2b2P 2)(k = 0, )
|
|
|
|
|
|
|
|
|
|
(47k)
|
|
|
|
|
|
|
|
|
|
xz,y(2b2P 1)(k
|
|
|
|
|
|
|
|
|
|
=
|
|
|
|
|
|
|
|
|
|
0, )
|
|
|
|
|
|
|
|
|
|
=
|
|
|
|
|
|
|
|
|
|
lim
|
|
|
|
|
p0
|
|
|
|
|
|
|
|
|
|
-
|
|
|
|
|
|
|
|
|
|
2ievF2 c
|
|
|
|
|
|
|
|
|
|
kx kx
|
|
|
|
|
|
|
|
|
|
d 2i
|
|
|
|
|
|
|
|
|
|
p
|
|
|
|
|
|
|
|
|
|
(nF
|
|
|
|
|
|
|
|
|
|
()
|
|
|
|
|
|
|
|
|
|
-
|
|
|
|
|
|
|
|
|
|
nF
|
|
|
|
|
|
|
|
|
|
(
|
|
|
|
|
|
|
|
|
|
+
|
|
|
|
|
|
|
|
|
|
))
|
|
|
|
|
|
|
|
|
|
p
|
|
|
|
|
|
|
|
|
|
cos 2
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
p px
|
|
|
|
|
|
|
|
|
|
(R)
|
|
|
|
|
|
|
|
|
|
(A)
|
|
|
|
|
|
|
|
|
|
<EFBFBD>
|
|
|
|
|
|
|
|
|
|
Tr
|
|
|
|
|
|
|
|
|
|
(A)
|
|
|
|
|
G
|
|
|
|
|
|
|
|
|
|
(p,
|
|
|
|
|
|
|
|
|
|
)y
|
|
|
|
|
|
|
|
|
|
G
|
|
|
|
|
|
|
|
|
|
(p,
|
|
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
(y)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
(p,
|
|
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
- Tr
|
|
|
|
|
|
|
|
|
|
G
|
|
|
|
|
|
|
|
|
|
(p,
|
|
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
y
|
|
|
|
|
|
|
|
|
|
(R)
|
|
|
|
|
G (p,
|
|
|
|
|
|
|
|
|
|
(y)
|
|
|
|
|
) (p,
|
|
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
p
|
|
|
|
|
|
|
|
|
|
p
|
|
|
|
|
|
|
|
|
|
= - 2ievF2 c
|
|
|
|
|
|
|
|
|
|
d 2i
|
|
|
|
|
|
|
|
|
|
(nF
|
|
|
|
|
|
|
|
|
|
()
|
|
|
|
|
|
|
|
|
|
-
|
|
|
|
|
|
|
|
|
|
nF
|
|
|
|
|
|
|
|
|
|
(
|
|
|
|
|
|
|
|
|
|
+
|
|
|
|
|
|
|
|
|
|
))
|
|
|
|
|
|
|
|
|
|
1 2
|
|
|
|
|
|
|
|
|
|
<EFBFBD>
|
|
|
|
|
|
|
|
|
|
1 4
|
|
|
|
|
|
|
|
|
|
2s ()
|
|
|
|
|
|
|
|
|
|
400() - 4(00()) - 2aa() + 2(aa())
|
|
|
|
|
|
|
|
|
|
+0py () a0() + 0a() - (a0()) - (0a())
|
|
|
|
|
|
|
|
|
|
+i3px() 30a() - 3a0() + 3(0a()) - 3(a0())
|
|
|
|
|
|
|
|
|
|
+ O( ) EF
|
|
|
|
|
|
|
|
|
|
(47l)
|
|
|
|
|
|
|
|
|
|
xz,y(2b2P 2)(k
|
|
|
|
|
|
|
|
|
|
=
|
|
|
|
|
|
|
|
|
|
0, )
|
|
|
|
|
|
|
|
|
|
=
|
|
|
|
|
|
|
|
|
|
lim
|
|
|
|
|
p0
|
|
|
|
|
|
|
|
|
|
-
|
|
|
|
|
|
|
|
|
|
2ievF2 c
|
|
|
|
|
|
|
|
|
|
kx kx
|
|
|
|
|
|
|
|
|
|
d 2i
|
|
|
|
|
|
|
|
|
|
p
|
|
|
|
|
|
|
|
|
|
(nF
|
|
|
|
|
|
|
|
|
|
()
|
|
|
|
|
|
|
|
|
|
-
|
|
|
|
|
|
|
|
|
|
nF
|
|
|
|
|
|
|
|
|
|
(
|
|
|
|
|
|
|
|
|
|
+
|
|
|
|
|
|
|
|
|
|
))
|
|
|
|
|
|
|
|
|
|
p
|
|
|
|
|
|
|
|
|
|
cos 2
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
px
|
|
|
|
|
|
|
|
|
|
(R)
|
|
|
|
|
|
|
|
|
|
(A)
|
|
|
|
|
|
|
|
|
|
<EFBFBD>
|
|
|
|
|
|
|
|
|
|
Tr
|
|
|
|
|
|
|
|
|
|
(A)
|
|
|
|
|
G
|
|
|
|
|
|
|
|
|
|
(p,
|
|
|
|
|
|
|
|
|
|
)y
|
|
|
|
|
|
|
|
|
|
G
|
|
|
|
|
|
|
|
|
|
(p,
|
|
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
(y)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
(p,
|
|
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
- Tr
|
|
|
|
|
|
|
|
|
|
G
|
|
|
|
|
|
|
|
|
|
(p,
|
|
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
y
|
|
|
|
|
|
|
|
|
|
(R)
|
|
|
|
|
G (p,
|
|
|
|
|
|
|
|
|
|
(y)
|
|
|
|
|
) (p,
|
|
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
= - 2ievF2 c
|
|
|
|
|
|
|
|
|
|
d 2i
|
|
|
|
|
|
|
|
|
|
(nF
|
|
|
|
|
|
|
|
|
|
()
|
|
|
|
|
|
|
|
|
|
-
|
|
|
|
|
|
|
|
|
|
nF
|
|
|
|
|
|
|
|
|
|
(
|
|
|
|
|
|
|
|
|
|
+
|
|
|
|
|
|
|
|
|
|
))
|
|
|
|
|
|
|
|
|
|
1 2
|
|
|
|
|
|
|
|
|
|
<EFBFBD>
|
|
|
|
|
|
|
|
|
|
1 4
|
|
|
|
|
|
|
|
|
|
0py ()
|
|
|
|
|
|
|
|
|
|
0a() - a0()
|
|
|
|
|
|
|
|
|
|
- 3px()
|
|
|
|
|
|
|
|
|
|
i0a() + ia0()
|
|
|
|
|
|
|
|
|
|
+ O( ) EF
|
|
|
|
|
|
|
|
|
|
(47m)
|
|
|
|
|
|
|
|
|
|
xz,y(2b3)(k = 0, ) = xz,y(2b3P 1)(k = 0, ) + xz,y(2b3P 2)(k = 0, )
|
|
|
|
|
|
|
|
|
|
(47n)
|
|
|
|
|
|
|
|
|
|
21
|
|
|
|
|
|
|
|
|
|
xz,y(2b3P 1)(k
|
|
|
|
|
|
|
|
|
|
=
|
|
|
|
|
|
|
|
|
|
0, )
|
|
|
|
|
|
|
|
|
|
=
|
|
|
|
|
|
|
|
|
|
lim
|
|
|
|
|
k0
|
|
|
|
|
|
|
|
|
|
-
|
|
|
|
|
|
|
|
|
|
2ievF2 c
|
|
|
|
|
|
|
|
|
|
ky kx
|
|
|
|
|
|
|
|
|
|
d 2i
|
|
|
|
|
|
|
|
|
|
p
|
|
|
|
|
|
|
|
|
|
(nF
|
|
|
|
|
|
|
|
|
|
()
|
|
|
|
|
|
|
|
|
|
-
|
|
|
|
|
|
|
|
|
|
nF
|
|
|
|
|
|
|
|
|
|
(
|
|
|
|
|
|
|
|
|
|
+
|
|
|
|
|
|
|
|
|
|
))
|
|
|
|
|
|
|
|
|
|
p
|
|
|
|
|
|
|
|
|
|
cos 2
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
p py
|
|
|
|
|
|
|
|
|
|
(R)
|
|
|
|
|
|
|
|
|
|
(A)
|
|
|
|
|
|
|
|
|
|
<EFBFBD>
|
|
|
|
|
|
|
|
|
|
Tr
|
|
|
|
|
|
|
|
|
|
(A)
|
|
|
|
|
G
|
|
|
|
|
|
|
|
|
|
(p,
|
|
|
|
|
|
|
|
|
|
)y
|
|
|
|
|
|
|
|
|
|
G
|
|
|
|
|
|
|
|
|
|
(p,
|
|
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
(y)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
(p,
|
|
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
- Tr
|
|
|
|
|
|
|
|
|
|
G
|
|
|
|
|
|
|
|
|
|
(p,
|
|
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
y
|
|
|
|
|
|
|
|
|
|
(R)
|
|
|
|
|
G (p,
|
|
|
|
|
|
|
|
|
|
(y)
|
|
|
|
|
) (p,
|
|
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
p
|
|
|
|
|
|
|
|
|
|
p
|
|
|
|
|
|
|
|
|
|
= - 2ievF2 c
|
|
|
|
|
|
|
|
|
|
d 2i
|
|
|
|
|
|
|
|
|
|
(nF
|
|
|
|
|
|
|
|
|
|
()
|
|
|
|
|
|
|
|
|
|
-
|
|
|
|
|
|
|
|
|
|
nF
|
|
|
|
|
|
|
|
|
|
(
|
|
|
|
|
|
|
|
|
|
+
|
|
|
|
|
|
|
|
|
|
))
|
|
|
|
|
|
|
|
|
|
1 2
|
|
|
|
|
|
|
|
|
|
<EFBFBD>
|
|
|
|
|
|
|
|
|
|
1 4
|
|
|
|
|
|
|
|
|
|
1s() (2aa() - 2(aa()))
|
|
|
|
|
|
|
|
|
|
+0px() a0() + 0a() - (a0()) - (0a())
|
|
|
|
|
|
|
|
|
|
+3py () a0() - 0a() + (a0()) - (0a())
|
|
|
|
|
|
|
|
|
|
+ O( ) EF
|
|
|
|
|
|
|
|
|
|
(47o)
|
|
|
|
|
|
|
|
|
|
xz,y(2b3P 2)(k
|
|
|
|
|
|
|
|
|
|
=
|
|
|
|
|
|
|
|
|
|
0, )
|
|
|
|
|
|
|
|
|
|
=
|
|
|
|
|
|
|
|
|
|
lim
|
|
|
|
|
k0
|
|
|
|
|
|
|
|
|
|
-
|
|
|
|
|
|
|
|
|
|
2ievF2 c
|
|
|
|
|
|
|
|
|
|
ky kx
|
|
|
|
|
|
|
|
|
|
d 2i
|
|
|
|
|
|
|
|
|
|
p
|
|
|
|
|
|
|
|
|
|
(nF
|
|
|
|
|
|
|
|
|
|
()
|
|
|
|
|
|
|
|
|
|
-
|
|
|
|
|
|
|
|
|
|
nF
|
|
|
|
|
|
|
|
|
|
(
|
|
|
|
|
|
|
|
|
|
+
|
|
|
|
|
|
|
|
|
|
))
|
|
|
|
|
|
|
|
|
|
p
|
|
|
|
|
|
|
|
|
|
sin 2
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
py
|
|
|
|
|
|
|
|
|
|
(R)
|
|
|
|
|
|
|
|
|
|
(A)
|
|
|
|
|
|
|
|
|
|
<EFBFBD>
|
|
|
|
|
|
|
|
|
|
Tr
|
|
|
|
|
|
|
|
|
|
(A)
|
|
|
|
|
G
|
|
|
|
|
|
|
|
|
|
(p,
|
|
|
|
|
|
|
|
|
|
)x
|
|
|
|
|
|
|
|
|
|
G
|
|
|
|
|
|
|
|
|
|
(p,
|
|
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
(y)
|
|
|
|
|
(p,
|
|
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
- Tr
|
|
|
|
|
|
|
|
|
|
G
|
|
|
|
|
|
|
|
|
|
(p,
|
|
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
xG(R)
|
|
|
|
|
|
|
|
|
|
(p,
|
|
|
|
|
|
|
|
|
|
(y)
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
(p,
|
|
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
= - 2ievF2 c
|
|
|
|
|
|
|
|
|
|
d 2i
|
|
|
|
|
|
|
|
|
|
(nF
|
|
|
|
|
|
|
|
|
|
()
|
|
|
|
|
|
|
|
|
|
-
|
|
|
|
|
|
|
|
|
|
nF
|
|
|
|
|
|
|
|
|
|
(
|
|
|
|
|
|
|
|
|
|
+
|
|
|
|
|
|
|
|
|
|
))
|
|
|
|
|
|
|
|
|
|
1 2
|
|
|
|
|
|
|
|
|
|
<EFBFBD>
|
|
|
|
|
|
|
|
|
|
1 4
|
|
|
|
|
|
|
|
|
|
30px ()
|
|
|
|
|
|
|
|
|
|
a0() - 0a()
|
|
|
|
|
|
|
|
|
|
- 3py ()
|
|
|
|
|
|
|
|
|
|
0a() + a0()
|
|
|
|
|
|
|
|
|
|
+ O( )
|
|
|
|
|
EF
|
|
|
|
|
|
|
|
|
|
(47p)
|
|
|
|
|
|
|
|
|
|
Therefore, summing up all the different contributions, we finally obtain the SHE correlation function,
|
|
|
|
|
|
|
|
|
|
z,(2)(p = 0, ) = 2ievF2 c
|
|
|
|
|
|
|
|
|
|
d 2i
|
|
|
|
|
|
|
|
|
|
(nF
|
|
|
|
|
|
|
|
|
|
()
|
|
|
|
|
|
|
|
|
|
-
|
|
|
|
|
|
|
|
|
|
nF
|
|
|
|
|
|
|
|
|
|
(
|
|
|
|
|
|
|
|
|
|
+
|
|
|
|
|
|
|
|
|
|
))
|
|
|
|
|
|
|
|
|
|
<EFBFBD> 21 0px() 0a() - a0() + 0py () a0() - 0a()
|
|
|
|
|
|
|
|
|
|
1s() 00() - aa() - (00()) + (aa()) +2s() aa() - 00() - (aa()) + (00()) +3px() ia0() - i0a() + i(a0()) - i(0a())
|
|
|
|
|
|
|
|
|
|
+3py () 0a() - a0() + (0a()) - (a0())
|
|
|
|
|
|
|
|
|
|
+
|
|
|
|
|
|
|
|
|
|
O(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
(48)
|
|
|
|
|
|
|
|
|
|
Using
|
|
|
|
|
|
|
|
|
|
the
|
|
|
|
|
|
|
|
|
|
results
|
|
|
|
|
|
|
|
|
|
for
|
|
|
|
|
|
|
|
|
|
ij ( )
|
|
|
|
|
|
|
|
|
|
and
|
|
|
|
|
|
|
|
|
|
ij ( )
|
|
|
|
|
|
|
|
|
|
from
|
|
|
|
|
|
|
|
|
|
above,
|
|
|
|
|
|
|
|
|
|
where
|
|
|
|
|
|
|
|
|
|
0a() - a0()
|
|
|
|
|
|
|
|
|
|
=
|
|
|
|
|
|
|
|
|
|
-
|
|
|
|
|
|
|
|
|
|
i 2vF2
|
|
|
|
|
|
|
|
|
|
,
|
|
|
|
|
|
|
|
|
|
Im[aa() - 00()]
|
|
|
|
|
|
|
|
|
|
=
|
|
|
|
|
|
|
|
|
|
-1 2vF2
|
|
|
|
|
|
|
|
|
|
, (0-a)
|
|
|
|
|
8(0 +a )
|
|
|
|
|
|
|
|
|
|
and
|
|
|
|
|
|
|
|
|
|
Re[0a() - a0()]
|
|
|
|
|
|
|
|
|
|
=
|
|
|
|
|
|
|
|
|
|
1 2vF2
|
|
|
|
|
|
|
|
|
|
4(0 +a )
|
|
|
|
|
|
|
|
|
|
=
|
|
|
|
|
|
|
|
|
|
, N0()
|
|
|
|
|
4(0 +a )
|
|
|
|
|
|
|
|
|
|
we
|
|
|
|
|
|
|
|
|
|
see
|
|
|
|
|
|
|
|
|
|
that
|
|
|
|
|
|
|
|
|
|
the
|
|
|
|
|
|
|
|
|
|
main
|
|
|
|
|
|
|
|
|
|
O(
|
|
|
|
|
|
|
|
|
|
1
|
|
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
contributions
|
|
|
|
|
|
|
|
|
|
come
|
|
|
|
|
|
|
|
|
|
from
|
|
|
|
|
|
|
|
|
|
the
|
|
|
|
|
|
|
|
|
|
3px ( )
|
|
|
|
|
|
|
|
|
|
scattering
|
|
|
|
|
|
|
|
|
|
channel.
|
|
|
|
|
|
|
|
|
|
The uniform DC longitudinal charge and spin-Hall conductivity are given by yy =
|
|
|
|
|
|
|
|
|
|
-lim0
|
|
|
|
|
|
|
|
|
|
lim
|
|
|
|
|
k0
|
|
|
|
|
|
|
|
|
|
Im
|
|
|
|
|
|
|
|
|
|
y y (k ,)
|
|
|
|
|
|
|
|
|
|
,
|
|
|
|
|
|
|
|
|
|
xzy
|
|
|
|
|
|
|
|
|
|
=
|
|
|
|
|
|
|
|
|
|
-lim0
|
|
|
|
|
|
|
|
|
|
lim
|
|
|
|
|
k0
|
|
|
|
|
|
|
|
|
|
I
|
|
|
|
|
|
|
|
|
|
m
|
|
|
|
|
|
|
|
|
|
xz y (k,)
|
|
|
|
|
|
|
|
|
|
,
|
|
|
|
|
|
|
|
|
|
and keeping
|
|
|
|
|
|
|
|
|
|
only
|
|
|
|
|
|
|
|
|
|
the
|
|
|
|
|
|
|
|
|
|
O(
|
|
|
|
|
|
|
|
|
|
1
|
|
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
terms,
|
|
|
|
|
|
|
|
|
|
they
|
|
|
|
|
|
|
|
|
|
22
|
|
|
|
|
|
|
|
|
|
are,
|
|
|
|
|
|
|
|
|
|
yy
|
|
|
|
|
|
|
|
|
|
=
|
|
|
|
|
|
|
|
|
|
1 2
|
|
|
|
|
|
|
|
|
|
(evF )2 Re
|
|
|
|
|
|
|
|
|
|
220(EF ) 00(EF )
|
|
|
|
|
|
|
|
|
|
=
|
|
|
|
|
|
|
|
|
|
(evF )2
|
|
|
|
|
|
|
|
|
|
N0(EF ) 2t
|
|
|
|
|
|
|
|
|
|
+
|
|
|
|
|
|
|
|
|
|
O
|
|
|
|
|
|
|
|
|
|
EF
|
|
|
|
|
|
|
|
|
|
(49)
|
|
|
|
|
|
|
|
|
|
xzy,(2)
|
|
|
|
|
|
|
|
|
|
=
|
|
|
|
|
|
|
|
|
|
h<EFBFBD>evF2 Im
|
|
|
|
|
|
|
|
|
|
i3px(EF )
|
|
|
|
|
|
|
|
|
|
Re[0a(EF ) - a0(EF )]
|
|
|
|
|
|
|
|
|
|
=
|
|
|
|
|
|
|
|
|
|
-h<>evF2
|
|
|
|
|
|
|
|
|
|
N0(EF ) 2t 0
|
|
|
|
|
|
|
|
|
|
s +
|
|
|
|
|
|
|
|
|
|
a
|
|
|
|
|
|
|
|
|
|
+
|
|
|
|
|
|
|
|
|
|
O
|
|
|
|
|
|
|
|
|
|
EF
|
|
|
|
|
|
|
|
|
|
(50)
|
|
|
|
|
|
|
|
|
|
yy
|
|
|
|
|
|
|
|
|
|
=
|
|
|
|
|
|
|
|
|
|
h<EFBFBD>evF 2
|
|
|
|
|
|
|
|
|
|
Re
|
|
|
|
|
|
|
|
|
|
22s(EF )00(EF )
|
|
|
|
|
|
|
|
|
|
=
|
|
|
|
|
|
|
|
|
|
h<EFBFBD>evF
|
|
|
|
|
|
|
|
|
|
N0(EF 2t
|
|
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
+
|
|
|
|
|
|
|
|
|
|
O
|
|
|
|
|
|
|
|
|
|
EF
|
|
|
|
|
|
|
|
|
|
(51)
|
|
|
|
|
|
|
|
|
|
Hence, we see that the SHE is driven by scattering between the s and p-wave electrons
|
|
|
|
|
|
|
|
|
|
due to the symmetric spin-flip T S term, which occurs at 3rd-order in perturbation. Eq. 40e,
|
|
|
|
|
|
|
|
|
|
3px (EF )
|
|
|
|
|
|
|
|
|
|
=
|
|
|
|
|
|
|
|
|
|
- s t
|
|
|
|
|
|
|
|
|
|
-
|
|
|
|
|
|
|
|
|
|
i 31+asym,2 t
|
|
|
|
|
|
|
|
|
|
+
|
|
|
|
|
|
|
|
|
|
, 3s asy m,1
|
|
|
|
|
2t (0 +a )
|
|
|
|
|
|
|
|
|
|
shows
|
|
|
|
|
|
|
|
|
|
that
|
|
|
|
|
|
|
|
|
|
the
|
|
|
|
|
|
|
|
|
|
asymmetric
|
|
|
|
|
|
|
|
|
|
spin-flip
|
|
|
|
|
|
|
|
|
|
term
|
|
|
|
|
|
|
|
|
|
TA
|
|
|
|
|
|
|
|
|
|
also
|
|
|
|
|
|
|
|
|
|
contributes but as a sub-leading term, .
|
|
|
|
|
|
|
|
|
|
[1] J. Rammer, Quantum Transport Theory, Frontiers in Physics (Book 99) (Westview Press, 2004). [2] G. D. Mahan, Many-Particle Physics, 3rd ed., Physics of Solids and Liquids (Springer US,
|
|
|
|
|
2000).
|
|
|
|
|
|
|
|
|
|
23
|
|
|
|
|
|
|
|
|
|
|