|
|
|
# -*- coding: utf-8 -*-
|
|
|
|
# Natural Language Toolkit: IBM Model 4
|
|
|
|
#
|
|
|
|
# Copyright (C) 2001-2020 NLTK Project
|
|
|
|
# Author: Tah Wei Hoon <hoon.tw@gmail.com>
|
|
|
|
# URL: <http://nltk.org/>
|
|
|
|
# For license information, see LICENSE.TXT
|
|
|
|
|
|
|
|
"""
|
|
|
|
Translation model that reorders output words based on their type and
|
|
|
|
distance from other related words in the output sentence.
|
|
|
|
|
|
|
|
IBM Model 4 improves the distortion model of Model 3, motivated by the
|
|
|
|
observation that certain words tend to be re-ordered in a predictable
|
|
|
|
way relative to one another. For example, <adjective><noun> in English
|
|
|
|
usually has its order flipped as <noun><adjective> in French.
|
|
|
|
|
|
|
|
Model 4 requires words in the source and target vocabularies to be
|
|
|
|
categorized into classes. This can be linguistically driven, like parts
|
|
|
|
of speech (adjective, nouns, prepositions, etc). Word classes can also
|
|
|
|
be obtained by statistical methods. The original IBM Model 4 uses an
|
|
|
|
information theoretic approach to group words into 50 classes for each
|
|
|
|
vocabulary.
|
|
|
|
|
|
|
|
Terminology:
|
|
|
|
Cept:
|
|
|
|
A source word with non-zero fertility i.e. aligned to one or more
|
|
|
|
target words.
|
|
|
|
Tablet:
|
|
|
|
The set of target word(s) aligned to a cept.
|
|
|
|
Head of cept:
|
|
|
|
The first word of the tablet of that cept.
|
|
|
|
Center of cept:
|
|
|
|
The average position of the words in that cept's tablet. If the
|
|
|
|
value is not an integer, the ceiling is taken.
|
|
|
|
For example, for a tablet with words in positions 2, 5, 6 in the
|
|
|
|
target sentence, the center of the corresponding cept is
|
|
|
|
ceil((2 + 5 + 6) / 3) = 5
|
|
|
|
Displacement:
|
|
|
|
For a head word, defined as (position of head word - position of
|
|
|
|
previous cept's center). Can be positive or negative.
|
|
|
|
For a non-head word, defined as (position of non-head word -
|
|
|
|
position of previous word in the same tablet). Always positive,
|
|
|
|
because successive words in a tablet are assumed to appear to the
|
|
|
|
right of the previous word.
|
|
|
|
|
|
|
|
In contrast to Model 3 which reorders words in a tablet independently of
|
|
|
|
other words, Model 4 distinguishes between three cases.
|
|
|
|
(1) Words generated by NULL are distributed uniformly.
|
|
|
|
(2) For a head word t, its position is modeled by the probability
|
|
|
|
d_head(displacement | word_class_s(s),word_class_t(t)),
|
|
|
|
where s is the previous cept, and word_class_s and word_class_t maps
|
|
|
|
s and t to a source and target language word class respectively.
|
|
|
|
(3) For a non-head word t, its position is modeled by the probability
|
|
|
|
d_non_head(displacement | word_class_t(t))
|
|
|
|
|
|
|
|
The EM algorithm used in Model 4 is:
|
|
|
|
E step - In the training data, collect counts, weighted by prior
|
|
|
|
probabilities.
|
|
|
|
(a) count how many times a source language word is translated
|
|
|
|
into a target language word
|
|
|
|
(b) for a particular word class, count how many times a head
|
|
|
|
word is located at a particular displacement from the
|
|
|
|
previous cept's center
|
|
|
|
(c) for a particular word class, count how many times a
|
|
|
|
non-head word is located at a particular displacement from
|
|
|
|
the previous target word
|
|
|
|
(d) count how many times a source word is aligned to phi number
|
|
|
|
of target words
|
|
|
|
(e) count how many times NULL is aligned to a target word
|
|
|
|
|
|
|
|
M step - Estimate new probabilities based on the counts from the E step
|
|
|
|
|
|
|
|
Like Model 3, there are too many possible alignments to consider. Thus,
|
|
|
|
a hill climbing approach is used to sample good candidates.
|
|
|
|
|
|
|
|
|
|
|
|
Notations:
|
|
|
|
i: Position in the source sentence
|
|
|
|
Valid values are 0 (for NULL), 1, 2, ..., length of source sentence
|
|
|
|
j: Position in the target sentence
|
|
|
|
Valid values are 1, 2, ..., length of target sentence
|
|
|
|
l: Number of words in the source sentence, excluding NULL
|
|
|
|
m: Number of words in the target sentence
|
|
|
|
s: A word in the source language
|
|
|
|
t: A word in the target language
|
|
|
|
phi: Fertility, the number of target words produced by a source word
|
|
|
|
p1: Probability that a target word produced by a source word is
|
|
|
|
accompanied by another target word that is aligned to NULL
|
|
|
|
p0: 1 - p1
|
|
|
|
dj: Displacement, Δj
|
|
|
|
|
|
|
|
|
|
|
|
References:
|
|
|
|
Philipp Koehn. 2010. Statistical Machine Translation.
|
|
|
|
Cambridge University Press, New York.
|
|
|
|
|
|
|
|
Peter E Brown, Stephen A. Della Pietra, Vincent J. Della Pietra, and
|
|
|
|
Robert L. Mercer. 1993. The Mathematics of Statistical Machine
|
|
|
|
Translation: Parameter Estimation. Computational Linguistics, 19 (2),
|
|
|
|
263-311.
|
|
|
|
"""
|
|
|
|
|
|
|
|
import warnings
|
|
|
|
from collections import defaultdict
|
|
|
|
from math import factorial
|
|
|
|
|
|
|
|
from nltk.translate import AlignedSent
|
|
|
|
from nltk.translate import Alignment
|
|
|
|
from nltk.translate import IBMModel
|
|
|
|
from nltk.translate import IBMModel3
|
|
|
|
from nltk.translate.ibm_model import Counts
|
|
|
|
from nltk.translate.ibm_model import longest_target_sentence_length
|
|
|
|
|
|
|
|
|
|
|
|
class IBMModel4(IBMModel):
|
|
|
|
"""
|
|
|
|
Translation model that reorders output words based on their type and
|
|
|
|
their distance from other related words in the output sentence
|
|
|
|
|
|
|
|
>>> bitext = []
|
|
|
|
>>> bitext.append(AlignedSent(['klein', 'ist', 'das', 'haus'], ['the', 'house', 'is', 'small']))
|
|
|
|
>>> bitext.append(AlignedSent(['das', 'haus', 'war', 'ja', 'groß'], ['the', 'house', 'was', 'big']))
|
|
|
|
>>> bitext.append(AlignedSent(['das', 'buch', 'ist', 'ja', 'klein'], ['the', 'book', 'is', 'small']))
|
|
|
|
>>> bitext.append(AlignedSent(['ein', 'haus', 'ist', 'klein'], ['a', 'house', 'is', 'small']))
|
|
|
|
>>> bitext.append(AlignedSent(['das', 'haus'], ['the', 'house']))
|
|
|
|
>>> bitext.append(AlignedSent(['das', 'buch'], ['the', 'book']))
|
|
|
|
>>> bitext.append(AlignedSent(['ein', 'buch'], ['a', 'book']))
|
|
|
|
>>> bitext.append(AlignedSent(['ich', 'fasse', 'das', 'buch', 'zusammen'], ['i', 'summarize', 'the', 'book']))
|
|
|
|
>>> bitext.append(AlignedSent(['fasse', 'zusammen'], ['summarize']))
|
|
|
|
>>> src_classes = {'the': 0, 'a': 0, 'small': 1, 'big': 1, 'house': 2, 'book': 2, 'is': 3, 'was': 3, 'i': 4, 'summarize': 5 }
|
|
|
|
>>> trg_classes = {'das': 0, 'ein': 0, 'haus': 1, 'buch': 1, 'klein': 2, 'groß': 2, 'ist': 3, 'war': 3, 'ja': 4, 'ich': 5, 'fasse': 6, 'zusammen': 6 }
|
|
|
|
|
|
|
|
>>> ibm4 = IBMModel4(bitext, 5, src_classes, trg_classes)
|
|
|
|
|
|
|
|
>>> print(round(ibm4.translation_table['buch']['book'], 3))
|
|
|
|
1.0
|
|
|
|
>>> print(round(ibm4.translation_table['das']['book'], 3))
|
|
|
|
0.0
|
|
|
|
>>> print(round(ibm4.translation_table['ja'][None], 3))
|
|
|
|
1.0
|
|
|
|
|
|
|
|
>>> print(round(ibm4.head_distortion_table[1][0][1], 3))
|
|
|
|
1.0
|
|
|
|
>>> print(round(ibm4.head_distortion_table[2][0][1], 3))
|
|
|
|
0.0
|
|
|
|
>>> print(round(ibm4.non_head_distortion_table[3][6], 3))
|
|
|
|
0.5
|
|
|
|
|
|
|
|
>>> print(round(ibm4.fertility_table[2]['summarize'], 3))
|
|
|
|
1.0
|
|
|
|
>>> print(round(ibm4.fertility_table[1]['book'], 3))
|
|
|
|
1.0
|
|
|
|
|
|
|
|
>>> print(ibm4.p1)
|
|
|
|
0.033...
|
|
|
|
|
|
|
|
>>> test_sentence = bitext[2]
|
|
|
|
>>> test_sentence.words
|
|
|
|
['das', 'buch', 'ist', 'ja', 'klein']
|
|
|
|
>>> test_sentence.mots
|
|
|
|
['the', 'book', 'is', 'small']
|
|
|
|
>>> test_sentence.alignment
|
|
|
|
Alignment([(0, 0), (1, 1), (2, 2), (3, None), (4, 3)])
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(
|
|
|
|
self,
|
|
|
|
sentence_aligned_corpus,
|
|
|
|
iterations,
|
|
|
|
source_word_classes,
|
|
|
|
target_word_classes,
|
|
|
|
probability_tables=None,
|
|
|
|
):
|
|
|
|
"""
|
|
|
|
Train on ``sentence_aligned_corpus`` and create a lexical
|
|
|
|
translation model, distortion models, a fertility model, and a
|
|
|
|
model for generating NULL-aligned words.
|
|
|
|
|
|
|
|
Translation direction is from ``AlignedSent.mots`` to
|
|
|
|
``AlignedSent.words``.
|
|
|
|
|
|
|
|
:param sentence_aligned_corpus: Sentence-aligned parallel corpus
|
|
|
|
:type sentence_aligned_corpus: list(AlignedSent)
|
|
|
|
|
|
|
|
:param iterations: Number of iterations to run training algorithm
|
|
|
|
:type iterations: int
|
|
|
|
|
|
|
|
:param source_word_classes: Lookup table that maps a source word
|
|
|
|
to its word class, the latter represented by an integer id
|
|
|
|
:type source_word_classes: dict[str]: int
|
|
|
|
|
|
|
|
:param target_word_classes: Lookup table that maps a target word
|
|
|
|
to its word class, the latter represented by an integer id
|
|
|
|
:type target_word_classes: dict[str]: int
|
|
|
|
|
|
|
|
:param probability_tables: Optional. Use this to pass in custom
|
|
|
|
probability values. If not specified, probabilities will be
|
|
|
|
set to a uniform distribution, or some other sensible value.
|
|
|
|
If specified, all the following entries must be present:
|
|
|
|
``translation_table``, ``alignment_table``,
|
|
|
|
``fertility_table``, ``p1``, ``head_distortion_table``,
|
|
|
|
``non_head_distortion_table``. See ``IBMModel`` and
|
|
|
|
``IBMModel4`` for the type and purpose of these tables.
|
|
|
|
:type probability_tables: dict[str]: object
|
|
|
|
"""
|
|
|
|
super(IBMModel4, self).__init__(sentence_aligned_corpus)
|
|
|
|
self.reset_probabilities()
|
|
|
|
self.src_classes = source_word_classes
|
|
|
|
self.trg_classes = target_word_classes
|
|
|
|
|
|
|
|
if probability_tables is None:
|
|
|
|
# Get probabilities from IBM model 3
|
|
|
|
ibm3 = IBMModel3(sentence_aligned_corpus, iterations)
|
|
|
|
self.translation_table = ibm3.translation_table
|
|
|
|
self.alignment_table = ibm3.alignment_table
|
|
|
|
self.fertility_table = ibm3.fertility_table
|
|
|
|
self.p1 = ibm3.p1
|
|
|
|
self.set_uniform_probabilities(sentence_aligned_corpus)
|
|
|
|
else:
|
|
|
|
# Set user-defined probabilities
|
|
|
|
self.translation_table = probability_tables["translation_table"]
|
|
|
|
self.alignment_table = probability_tables["alignment_table"]
|
|
|
|
self.fertility_table = probability_tables["fertility_table"]
|
|
|
|
self.p1 = probability_tables["p1"]
|
|
|
|
self.head_distortion_table = probability_tables["head_distortion_table"]
|
|
|
|
self.non_head_distortion_table = probability_tables[
|
|
|
|
"non_head_distortion_table"
|
|
|
|
]
|
|
|
|
|
|
|
|
for n in range(0, iterations):
|
|
|
|
self.train(sentence_aligned_corpus)
|
|
|
|
|
|
|
|
def reset_probabilities(self):
|
|
|
|
super(IBMModel4, self).reset_probabilities()
|
|
|
|
self.head_distortion_table = defaultdict(
|
|
|
|
lambda: defaultdict(lambda: defaultdict(lambda: self.MIN_PROB))
|
|
|
|
)
|
|
|
|
"""
|
|
|
|
dict[int][int][int]: float. Probability(displacement of head
|
|
|
|
word | word class of previous cept,target word class).
|
|
|
|
Values accessed as ``distortion_table[dj][src_class][trg_class]``.
|
|
|
|
"""
|
|
|
|
|
|
|
|
self.non_head_distortion_table = defaultdict(
|
|
|
|
lambda: defaultdict(lambda: self.MIN_PROB)
|
|
|
|
)
|
|
|
|
"""
|
|
|
|
dict[int][int]: float. Probability(displacement of non-head
|
|
|
|
word | target word class).
|
|
|
|
Values accessed as ``distortion_table[dj][trg_class]``.
|
|
|
|
"""
|
|
|
|
|
|
|
|
def set_uniform_probabilities(self, sentence_aligned_corpus):
|
|
|
|
"""
|
|
|
|
Set distortion probabilities uniformly to
|
|
|
|
1 / cardinality of displacement values
|
|
|
|
"""
|
|
|
|
max_m = longest_target_sentence_length(sentence_aligned_corpus)
|
|
|
|
|
|
|
|
# The maximum displacement is m-1, when a word is in the last
|
|
|
|
# position m of the target sentence and the previously placed
|
|
|
|
# word is in the first position.
|
|
|
|
# Conversely, the minimum displacement is -(m-1).
|
|
|
|
# Thus, the displacement range is (m-1) - (-(m-1)). Note that
|
|
|
|
# displacement cannot be zero and is not included in the range.
|
|
|
|
if max_m <= 1:
|
|
|
|
initial_prob = IBMModel.MIN_PROB
|
|
|
|
else:
|
|
|
|
initial_prob = 1 / (2 * (max_m - 1))
|
|
|
|
if initial_prob < IBMModel.MIN_PROB:
|
|
|
|
warnings.warn(
|
|
|
|
"A target sentence is too long ("
|
|
|
|
+ str(max_m)
|
|
|
|
+ " words). Results may be less accurate."
|
|
|
|
)
|
|
|
|
|
|
|
|
for dj in range(1, max_m):
|
|
|
|
self.head_distortion_table[dj] = defaultdict(
|
|
|
|
lambda: defaultdict(lambda: initial_prob)
|
|
|
|
)
|
|
|
|
self.head_distortion_table[-dj] = defaultdict(
|
|
|
|
lambda: defaultdict(lambda: initial_prob)
|
|
|
|
)
|
|
|
|
self.non_head_distortion_table[dj] = defaultdict(lambda: initial_prob)
|
|
|
|
self.non_head_distortion_table[-dj] = defaultdict(lambda: initial_prob)
|
|
|
|
|
|
|
|
def train(self, parallel_corpus):
|
|
|
|
counts = Model4Counts()
|
|
|
|
for aligned_sentence in parallel_corpus:
|
|
|
|
m = len(aligned_sentence.words)
|
|
|
|
|
|
|
|
# Sample the alignment space
|
|
|
|
sampled_alignments, best_alignment = self.sample(aligned_sentence)
|
|
|
|
# Record the most probable alignment
|
|
|
|
aligned_sentence.alignment = Alignment(
|
|
|
|
best_alignment.zero_indexed_alignment()
|
|
|
|
)
|
|
|
|
|
|
|
|
# E step (a): Compute normalization factors to weigh counts
|
|
|
|
total_count = self.prob_of_alignments(sampled_alignments)
|
|
|
|
|
|
|
|
# E step (b): Collect counts
|
|
|
|
for alignment_info in sampled_alignments:
|
|
|
|
count = self.prob_t_a_given_s(alignment_info)
|
|
|
|
normalized_count = count / total_count
|
|
|
|
|
|
|
|
for j in range(1, m + 1):
|
|
|
|
counts.update_lexical_translation(
|
|
|
|
normalized_count, alignment_info, j
|
|
|
|
)
|
|
|
|
counts.update_distortion(
|
|
|
|
normalized_count,
|
|
|
|
alignment_info,
|
|
|
|
j,
|
|
|
|
self.src_classes,
|
|
|
|
self.trg_classes,
|
|
|
|
)
|
|
|
|
|
|
|
|
counts.update_null_generation(normalized_count, alignment_info)
|
|
|
|
counts.update_fertility(normalized_count, alignment_info)
|
|
|
|
|
|
|
|
# M step: Update probabilities with maximum likelihood estimates
|
|
|
|
# If any probability is less than MIN_PROB, clamp it to MIN_PROB
|
|
|
|
existing_alignment_table = self.alignment_table
|
|
|
|
self.reset_probabilities()
|
|
|
|
self.alignment_table = existing_alignment_table # don't retrain
|
|
|
|
|
|
|
|
self.maximize_lexical_translation_probabilities(counts)
|
|
|
|
self.maximize_distortion_probabilities(counts)
|
|
|
|
self.maximize_fertility_probabilities(counts)
|
|
|
|
self.maximize_null_generation_probabilities(counts)
|
|
|
|
|
|
|
|
def maximize_distortion_probabilities(self, counts):
|
|
|
|
head_d_table = self.head_distortion_table
|
|
|
|
for dj, src_classes in counts.head_distortion.items():
|
|
|
|
for s_cls, trg_classes in src_classes.items():
|
|
|
|
for t_cls in trg_classes:
|
|
|
|
estimate = (
|
|
|
|
counts.head_distortion[dj][s_cls][t_cls]
|
|
|
|
/ counts.head_distortion_for_any_dj[s_cls][t_cls]
|
|
|
|
)
|
|
|
|
head_d_table[dj][s_cls][t_cls] = max(estimate, IBMModel.MIN_PROB)
|
|
|
|
|
|
|
|
non_head_d_table = self.non_head_distortion_table
|
|
|
|
for dj, trg_classes in counts.non_head_distortion.items():
|
|
|
|
for t_cls in trg_classes:
|
|
|
|
estimate = (
|
|
|
|
counts.non_head_distortion[dj][t_cls]
|
|
|
|
/ counts.non_head_distortion_for_any_dj[t_cls]
|
|
|
|
)
|
|
|
|
non_head_d_table[dj][t_cls] = max(estimate, IBMModel.MIN_PROB)
|
|
|
|
|
|
|
|
def prob_t_a_given_s(self, alignment_info):
|
|
|
|
"""
|
|
|
|
Probability of target sentence and an alignment given the
|
|
|
|
source sentence
|
|
|
|
"""
|
|
|
|
return IBMModel4.model4_prob_t_a_given_s(alignment_info, self)
|
|
|
|
|
|
|
|
@staticmethod # exposed for Model 5 to use
|
|
|
|
def model4_prob_t_a_given_s(alignment_info, ibm_model):
|
|
|
|
probability = 1.0
|
|
|
|
MIN_PROB = IBMModel.MIN_PROB
|
|
|
|
|
|
|
|
def null_generation_term():
|
|
|
|
# Binomial distribution: B(m - null_fertility, p1)
|
|
|
|
value = 1.0
|
|
|
|
p1 = ibm_model.p1
|
|
|
|
p0 = 1 - p1
|
|
|
|
null_fertility = alignment_info.fertility_of_i(0)
|
|
|
|
m = len(alignment_info.trg_sentence) - 1
|
|
|
|
value *= pow(p1, null_fertility) * pow(p0, m - 2 * null_fertility)
|
|
|
|
if value < MIN_PROB:
|
|
|
|
return MIN_PROB
|
|
|
|
|
|
|
|
# Combination: (m - null_fertility) choose null_fertility
|
|
|
|
for i in range(1, null_fertility + 1):
|
|
|
|
value *= (m - null_fertility - i + 1) / i
|
|
|
|
return value
|
|
|
|
|
|
|
|
def fertility_term():
|
|
|
|
value = 1.0
|
|
|
|
src_sentence = alignment_info.src_sentence
|
|
|
|
for i in range(1, len(src_sentence)):
|
|
|
|
fertility = alignment_info.fertility_of_i(i)
|
|
|
|
value *= (
|
|
|
|
factorial(fertility)
|
|
|
|
* ibm_model.fertility_table[fertility][src_sentence[i]]
|
|
|
|
)
|
|
|
|
if value < MIN_PROB:
|
|
|
|
return MIN_PROB
|
|
|
|
return value
|
|
|
|
|
|
|
|
def lexical_translation_term(j):
|
|
|
|
t = alignment_info.trg_sentence[j]
|
|
|
|
i = alignment_info.alignment[j]
|
|
|
|
s = alignment_info.src_sentence[i]
|
|
|
|
return ibm_model.translation_table[t][s]
|
|
|
|
|
|
|
|
def distortion_term(j):
|
|
|
|
t = alignment_info.trg_sentence[j]
|
|
|
|
i = alignment_info.alignment[j]
|
|
|
|
if i == 0:
|
|
|
|
# case 1: t is aligned to NULL
|
|
|
|
return 1.0
|
|
|
|
if alignment_info.is_head_word(j):
|
|
|
|
# case 2: t is the first word of a tablet
|
|
|
|
previous_cept = alignment_info.previous_cept(j)
|
|
|
|
src_class = None
|
|
|
|
if previous_cept is not None:
|
|
|
|
previous_s = alignment_info.src_sentence[previous_cept]
|
|
|
|
src_class = ibm_model.src_classes[previous_s]
|
|
|
|
trg_class = ibm_model.trg_classes[t]
|
|
|
|
dj = j - alignment_info.center_of_cept(previous_cept)
|
|
|
|
return ibm_model.head_distortion_table[dj][src_class][trg_class]
|
|
|
|
|
|
|
|
# case 3: t is a subsequent word of a tablet
|
|
|
|
previous_position = alignment_info.previous_in_tablet(j)
|
|
|
|
trg_class = ibm_model.trg_classes[t]
|
|
|
|
dj = j - previous_position
|
|
|
|
return ibm_model.non_head_distortion_table[dj][trg_class]
|
|
|
|
|
|
|
|
# end nested functions
|
|
|
|
|
|
|
|
# Abort computation whenever probability falls below MIN_PROB at
|
|
|
|
# any point, since MIN_PROB can be considered as zero
|
|
|
|
probability *= null_generation_term()
|
|
|
|
if probability < MIN_PROB:
|
|
|
|
return MIN_PROB
|
|
|
|
|
|
|
|
probability *= fertility_term()
|
|
|
|
if probability < MIN_PROB:
|
|
|
|
return MIN_PROB
|
|
|
|
|
|
|
|
for j in range(1, len(alignment_info.trg_sentence)):
|
|
|
|
probability *= lexical_translation_term(j)
|
|
|
|
if probability < MIN_PROB:
|
|
|
|
return MIN_PROB
|
|
|
|
|
|
|
|
probability *= distortion_term(j)
|
|
|
|
if probability < MIN_PROB:
|
|
|
|
return MIN_PROB
|
|
|
|
|
|
|
|
return probability
|
|
|
|
|
|
|
|
|
|
|
|
class Model4Counts(Counts):
|
|
|
|
"""
|
|
|
|
Data object to store counts of various parameters during training.
|
|
|
|
Includes counts for distortion.
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self):
|
|
|
|
super(Model4Counts, self).__init__()
|
|
|
|
self.head_distortion = defaultdict(
|
|
|
|
lambda: defaultdict(lambda: defaultdict(lambda: 0.0))
|
|
|
|
)
|
|
|
|
self.head_distortion_for_any_dj = defaultdict(lambda: defaultdict(lambda: 0.0))
|
|
|
|
self.non_head_distortion = defaultdict(lambda: defaultdict(lambda: 0.0))
|
|
|
|
self.non_head_distortion_for_any_dj = defaultdict(lambda: 0.0)
|
|
|
|
|
|
|
|
def update_distortion(self, count, alignment_info, j, src_classes, trg_classes):
|
|
|
|
i = alignment_info.alignment[j]
|
|
|
|
t = alignment_info.trg_sentence[j]
|
|
|
|
if i == 0:
|
|
|
|
# case 1: t is aligned to NULL
|
|
|
|
pass
|
|
|
|
elif alignment_info.is_head_word(j):
|
|
|
|
# case 2: t is the first word of a tablet
|
|
|
|
previous_cept = alignment_info.previous_cept(j)
|
|
|
|
if previous_cept is not None:
|
|
|
|
previous_src_word = alignment_info.src_sentence[previous_cept]
|
|
|
|
src_class = src_classes[previous_src_word]
|
|
|
|
else:
|
|
|
|
src_class = None
|
|
|
|
trg_class = trg_classes[t]
|
|
|
|
dj = j - alignment_info.center_of_cept(previous_cept)
|
|
|
|
self.head_distortion[dj][src_class][trg_class] += count
|
|
|
|
self.head_distortion_for_any_dj[src_class][trg_class] += count
|
|
|
|
else:
|
|
|
|
# case 3: t is a subsequent word of a tablet
|
|
|
|
previous_j = alignment_info.previous_in_tablet(j)
|
|
|
|
trg_class = trg_classes[t]
|
|
|
|
dj = j - previous_j
|
|
|
|
self.non_head_distortion[dj][trg_class] += count
|
|
|
|
self.non_head_distortion_for_any_dj[trg_class] += count
|