|
|
|
.. Copyright (C) 2001-2020 NLTK Project
|
|
|
|
.. For license information, see LICENSE.TXT
|
|
|
|
|
|
|
|
==============================================================================
|
|
|
|
Glue Semantics
|
|
|
|
==============================================================================
|
|
|
|
|
|
|
|
.. include:: ../../../nltk_book/definitions.rst
|
|
|
|
|
|
|
|
|
|
|
|
======================
|
|
|
|
Linear logic
|
|
|
|
======================
|
|
|
|
|
|
|
|
>>> from nltk.sem import logic
|
|
|
|
>>> from nltk.sem.glue import *
|
|
|
|
>>> from nltk.sem.linearlogic import *
|
|
|
|
|
|
|
|
>>> from nltk.sem.linearlogic import Expression
|
|
|
|
>>> read_expr = Expression.fromstring
|
|
|
|
|
|
|
|
Parser
|
|
|
|
|
|
|
|
>>> print(read_expr(r'f'))
|
|
|
|
f
|
|
|
|
>>> print(read_expr(r'(g -o f)'))
|
|
|
|
(g -o f)
|
|
|
|
>>> print(read_expr(r'(g -o (h -o f))'))
|
|
|
|
(g -o (h -o f))
|
|
|
|
>>> print(read_expr(r'((g -o G) -o G)'))
|
|
|
|
((g -o G) -o G)
|
|
|
|
>>> print(read_expr(r'(g -o f)(g)'))
|
|
|
|
(g -o f)(g)
|
|
|
|
>>> print(read_expr(r'((g -o G) -o G)((g -o f))'))
|
|
|
|
((g -o G) -o G)((g -o f))
|
|
|
|
|
|
|
|
Simplify
|
|
|
|
|
|
|
|
>>> print(read_expr(r'f').simplify())
|
|
|
|
f
|
|
|
|
>>> print(read_expr(r'(g -o f)').simplify())
|
|
|
|
(g -o f)
|
|
|
|
>>> print(read_expr(r'((g -o G) -o G)').simplify())
|
|
|
|
((g -o G) -o G)
|
|
|
|
>>> print(read_expr(r'(g -o f)(g)').simplify())
|
|
|
|
f
|
|
|
|
>>> try: read_expr(r'(g -o f)(f)').simplify()
|
|
|
|
... except LinearLogicApplicationException as e: print(e)
|
|
|
|
...
|
|
|
|
Cannot apply (g -o f) to f. Cannot unify g with f given {}
|
|
|
|
>>> print(read_expr(r'(G -o f)(g)').simplify())
|
|
|
|
f
|
|
|
|
>>> print(read_expr(r'((g -o G) -o G)((g -o f))').simplify())
|
|
|
|
f
|
|
|
|
|
|
|
|
Test BindingDict
|
|
|
|
|
|
|
|
>>> h = ConstantExpression('h')
|
|
|
|
>>> g = ConstantExpression('g')
|
|
|
|
>>> f = ConstantExpression('f')
|
|
|
|
|
|
|
|
>>> H = VariableExpression('H')
|
|
|
|
>>> G = VariableExpression('G')
|
|
|
|
>>> F = VariableExpression('F')
|
|
|
|
|
|
|
|
>>> d1 = BindingDict({H: h})
|
|
|
|
>>> d2 = BindingDict({F: f, G: F})
|
|
|
|
>>> d12 = d1 + d2
|
|
|
|
>>> all12 = ['%s: %s' % (v, d12[v]) for v in d12.d]
|
|
|
|
>>> all12.sort()
|
|
|
|
>>> print(all12)
|
|
|
|
['F: f', 'G: f', 'H: h']
|
|
|
|
|
|
|
|
>>> BindingDict([(F,f),(G,g),(H,h)]) == BindingDict({F:f, G:g, H:h})
|
|
|
|
True
|
|
|
|
|
|
|
|
>>> d4 = BindingDict({F: f})
|
|
|
|
>>> try: d4[F] = g
|
|
|
|
... except VariableBindingException as e: print(e)
|
|
|
|
Variable F already bound to another value
|
|
|
|
|
|
|
|
Test Unify
|
|
|
|
|
|
|
|
>>> try: f.unify(g, BindingDict())
|
|
|
|
... except UnificationException as e: print(e)
|
|
|
|
...
|
|
|
|
Cannot unify f with g given {}
|
|
|
|
|
|
|
|
>>> f.unify(G, BindingDict()) == BindingDict({G: f})
|
|
|
|
True
|
|
|
|
>>> try: f.unify(G, BindingDict({G: h}))
|
|
|
|
... except UnificationException as e: print(e)
|
|
|
|
...
|
|
|
|
Cannot unify f with G given {G: h}
|
|
|
|
>>> f.unify(G, BindingDict({G: f})) == BindingDict({G: f})
|
|
|
|
True
|
|
|
|
>>> f.unify(G, BindingDict({H: f})) == BindingDict({G: f, H: f})
|
|
|
|
True
|
|
|
|
|
|
|
|
>>> G.unify(f, BindingDict()) == BindingDict({G: f})
|
|
|
|
True
|
|
|
|
>>> try: G.unify(f, BindingDict({G: h}))
|
|
|
|
... except UnificationException as e: print(e)
|
|
|
|
...
|
|
|
|
Cannot unify G with f given {G: h}
|
|
|
|
>>> G.unify(f, BindingDict({G: f})) == BindingDict({G: f})
|
|
|
|
True
|
|
|
|
>>> G.unify(f, BindingDict({H: f})) == BindingDict({G: f, H: f})
|
|
|
|
True
|
|
|
|
|
|
|
|
>>> G.unify(F, BindingDict()) == BindingDict({G: F})
|
|
|
|
True
|
|
|
|
>>> try: G.unify(F, BindingDict({G: H}))
|
|
|
|
... except UnificationException as e: print(e)
|
|
|
|
...
|
|
|
|
Cannot unify G with F given {G: H}
|
|
|
|
>>> G.unify(F, BindingDict({G: F})) == BindingDict({G: F})
|
|
|
|
True
|
|
|
|
>>> G.unify(F, BindingDict({H: F})) == BindingDict({G: F, H: F})
|
|
|
|
True
|
|
|
|
|
|
|
|
Test Compile
|
|
|
|
|
|
|
|
>>> print(read_expr('g').compile_pos(Counter(), GlueFormula))
|
|
|
|
(<ConstantExpression g>, [])
|
|
|
|
>>> print(read_expr('(g -o f)').compile_pos(Counter(), GlueFormula))
|
|
|
|
(<ImpExpression (g -o f)>, [])
|
|
|
|
>>> print(read_expr('(g -o (h -o f))').compile_pos(Counter(), GlueFormula))
|
|
|
|
(<ImpExpression (g -o (h -o f))>, [])
|
|
|
|
|
|
|
|
|
|
|
|
======================
|
|
|
|
Glue
|
|
|
|
======================
|
|
|
|
|
|
|
|
Demo of "John walks"
|
|
|
|
--------------------
|
|
|
|
|
|
|
|
>>> john = GlueFormula("John", "g")
|
|
|
|
>>> print(john)
|
|
|
|
John : g
|
|
|
|
>>> walks = GlueFormula(r"\x.walks(x)", "(g -o f)")
|
|
|
|
>>> print(walks)
|
|
|
|
\x.walks(x) : (g -o f)
|
|
|
|
>>> print(walks.applyto(john))
|
|
|
|
\x.walks(x)(John) : (g -o f)(g)
|
|
|
|
>>> print(walks.applyto(john).simplify())
|
|
|
|
walks(John) : f
|
|
|
|
|
|
|
|
|
|
|
|
Demo of "A dog walks"
|
|
|
|
---------------------
|
|
|
|
|
|
|
|
>>> a = GlueFormula("\P Q.some x.(P(x) and Q(x))", "((gv -o gr) -o ((g -o G) -o G))")
|
|
|
|
>>> print(a)
|
|
|
|
\P Q.exists x.(P(x) & Q(x)) : ((gv -o gr) -o ((g -o G) -o G))
|
|
|
|
>>> man = GlueFormula(r"\x.man(x)", "(gv -o gr)")
|
|
|
|
>>> print(man)
|
|
|
|
\x.man(x) : (gv -o gr)
|
|
|
|
>>> walks = GlueFormula(r"\x.walks(x)", "(g -o f)")
|
|
|
|
>>> print(walks)
|
|
|
|
\x.walks(x) : (g -o f)
|
|
|
|
>>> a_man = a.applyto(man)
|
|
|
|
>>> print(a_man.simplify())
|
|
|
|
\Q.exists x.(man(x) & Q(x)) : ((g -o G) -o G)
|
|
|
|
>>> a_man_walks = a_man.applyto(walks)
|
|
|
|
>>> print(a_man_walks.simplify())
|
|
|
|
exists x.(man(x) & walks(x)) : f
|
|
|
|
|
|
|
|
|
|
|
|
Demo of 'every girl chases a dog'
|
|
|
|
---------------------------------
|
|
|
|
|
|
|
|
Individual words:
|
|
|
|
|
|
|
|
>>> every = GlueFormula("\P Q.all x.(P(x) -> Q(x))", "((gv -o gr) -o ((g -o G) -o G))")
|
|
|
|
>>> print(every)
|
|
|
|
\P Q.all x.(P(x) -> Q(x)) : ((gv -o gr) -o ((g -o G) -o G))
|
|
|
|
>>> girl = GlueFormula(r"\x.girl(x)", "(gv -o gr)")
|
|
|
|
>>> print(girl)
|
|
|
|
\x.girl(x) : (gv -o gr)
|
|
|
|
>>> chases = GlueFormula(r"\x y.chases(x,y)", "(g -o (h -o f))")
|
|
|
|
>>> print(chases)
|
|
|
|
\x y.chases(x,y) : (g -o (h -o f))
|
|
|
|
>>> a = GlueFormula("\P Q.some x.(P(x) and Q(x))", "((hv -o hr) -o ((h -o H) -o H))")
|
|
|
|
>>> print(a)
|
|
|
|
\P Q.exists x.(P(x) & Q(x)) : ((hv -o hr) -o ((h -o H) -o H))
|
|
|
|
>>> dog = GlueFormula(r"\x.dog(x)", "(hv -o hr)")
|
|
|
|
>>> print(dog)
|
|
|
|
\x.dog(x) : (hv -o hr)
|
|
|
|
|
|
|
|
Noun Quantification can only be done one way:
|
|
|
|
|
|
|
|
>>> every_girl = every.applyto(girl)
|
|
|
|
>>> print(every_girl.simplify())
|
|
|
|
\Q.all x.(girl(x) -> Q(x)) : ((g -o G) -o G)
|
|
|
|
>>> a_dog = a.applyto(dog)
|
|
|
|
>>> print(a_dog.simplify())
|
|
|
|
\Q.exists x.(dog(x) & Q(x)) : ((h -o H) -o H)
|
|
|
|
|
|
|
|
The first reading is achieved by combining 'chases' with 'a dog' first.
|
|
|
|
Since 'a girl' requires something of the form '(h -o H)' we must
|
|
|
|
get rid of the 'g' in the glue of 'see'. We will do this with
|
|
|
|
the '-o elimination' rule. So, x1 will be our subject placeholder.
|
|
|
|
|
|
|
|
>>> xPrime = GlueFormula("x1", "g")
|
|
|
|
>>> print(xPrime)
|
|
|
|
x1 : g
|
|
|
|
>>> xPrime_chases = chases.applyto(xPrime)
|
|
|
|
>>> print(xPrime_chases.simplify())
|
|
|
|
\y.chases(x1,y) : (h -o f)
|
|
|
|
>>> xPrime_chases_a_dog = a_dog.applyto(xPrime_chases)
|
|
|
|
>>> print(xPrime_chases_a_dog.simplify())
|
|
|
|
exists x.(dog(x) & chases(x1,x)) : f
|
|
|
|
|
|
|
|
Now we can retract our subject placeholder using lambda-abstraction and
|
|
|
|
combine with the true subject.
|
|
|
|
|
|
|
|
>>> chases_a_dog = xPrime_chases_a_dog.lambda_abstract(xPrime)
|
|
|
|
>>> print(chases_a_dog.simplify())
|
|
|
|
\x1.exists x.(dog(x) & chases(x1,x)) : (g -o f)
|
|
|
|
>>> every_girl_chases_a_dog = every_girl.applyto(chases_a_dog)
|
|
|
|
>>> r1 = every_girl_chases_a_dog.simplify()
|
|
|
|
>>> r2 = GlueFormula(r'all x.(girl(x) -> exists z1.(dog(z1) & chases(x,z1)))', 'f')
|
|
|
|
>>> r1 == r2
|
|
|
|
True
|
|
|
|
|
|
|
|
The second reading is achieved by combining 'every girl' with 'chases' first.
|
|
|
|
|
|
|
|
>>> xPrime = GlueFormula("x1", "g")
|
|
|
|
>>> print(xPrime)
|
|
|
|
x1 : g
|
|
|
|
>>> xPrime_chases = chases.applyto(xPrime)
|
|
|
|
>>> print(xPrime_chases.simplify())
|
|
|
|
\y.chases(x1,y) : (h -o f)
|
|
|
|
>>> yPrime = GlueFormula("x2", "h")
|
|
|
|
>>> print(yPrime)
|
|
|
|
x2 : h
|
|
|
|
>>> xPrime_chases_yPrime = xPrime_chases.applyto(yPrime)
|
|
|
|
>>> print(xPrime_chases_yPrime.simplify())
|
|
|
|
chases(x1,x2) : f
|
|
|
|
>>> chases_yPrime = xPrime_chases_yPrime.lambda_abstract(xPrime)
|
|
|
|
>>> print(chases_yPrime.simplify())
|
|
|
|
\x1.chases(x1,x2) : (g -o f)
|
|
|
|
>>> every_girl_chases_yPrime = every_girl.applyto(chases_yPrime)
|
|
|
|
>>> print(every_girl_chases_yPrime.simplify())
|
|
|
|
all x.(girl(x) -> chases(x,x2)) : f
|
|
|
|
>>> every_girl_chases = every_girl_chases_yPrime.lambda_abstract(yPrime)
|
|
|
|
>>> print(every_girl_chases.simplify())
|
|
|
|
\x2.all x.(girl(x) -> chases(x,x2)) : (h -o f)
|
|
|
|
>>> every_girl_chases_a_dog = a_dog.applyto(every_girl_chases)
|
|
|
|
>>> r1 = every_girl_chases_a_dog.simplify()
|
|
|
|
>>> r2 = GlueFormula(r'exists x.(dog(x) & all z2.(girl(z2) -> chases(z2,x)))', 'f')
|
|
|
|
>>> r1 == r2
|
|
|
|
True
|
|
|
|
|
|
|
|
|
|
|
|
Compilation
|
|
|
|
-----------
|
|
|
|
|
|
|
|
>>> for cp in GlueFormula('m', '(b -o a)').compile(Counter()): print(cp)
|
|
|
|
m : (b -o a) : {1}
|
|
|
|
>>> for cp in GlueFormula('m', '((c -o b) -o a)').compile(Counter()): print(cp)
|
|
|
|
v1 : c : {1}
|
|
|
|
m : (b[1] -o a) : {2}
|
|
|
|
>>> for cp in GlueFormula('m', '((d -o (c -o b)) -o a)').compile(Counter()): print(cp)
|
|
|
|
v1 : c : {1}
|
|
|
|
v2 : d : {2}
|
|
|
|
m : (b[1, 2] -o a) : {3}
|
|
|
|
>>> for cp in GlueFormula('m', '((d -o e) -o ((c -o b) -o a))').compile(Counter()): print(cp)
|
|
|
|
v1 : d : {1}
|
|
|
|
v2 : c : {2}
|
|
|
|
m : (e[1] -o (b[2] -o a)) : {3}
|
|
|
|
>>> for cp in GlueFormula('m', '(((d -o c) -o b) -o a)').compile(Counter()): print(cp)
|
|
|
|
v1 : (d -o c) : {1}
|
|
|
|
m : (b[1] -o a) : {2}
|
|
|
|
>>> for cp in GlueFormula('m', '((((e -o d) -o c) -o b) -o a)').compile(Counter()): print(cp)
|
|
|
|
v1 : e : {1}
|
|
|
|
v2 : (d[1] -o c) : {2}
|
|
|
|
m : (b[2] -o a) : {3}
|
|
|
|
|
|
|
|
|
|
|
|
Demo of 'a man walks' using Compilation
|
|
|
|
---------------------------------------
|
|
|
|
|
|
|
|
Premises
|
|
|
|
|
|
|
|
>>> a = GlueFormula('\\P Q.some x.(P(x) and Q(x))', '((gv -o gr) -o ((g -o G) -o G))')
|
|
|
|
>>> print(a)
|
|
|
|
\P Q.exists x.(P(x) & Q(x)) : ((gv -o gr) -o ((g -o G) -o G))
|
|
|
|
|
|
|
|
>>> man = GlueFormula('\\x.man(x)', '(gv -o gr)')
|
|
|
|
>>> print(man)
|
|
|
|
\x.man(x) : (gv -o gr)
|
|
|
|
|
|
|
|
>>> walks = GlueFormula('\\x.walks(x)', '(g -o f)')
|
|
|
|
>>> print(walks)
|
|
|
|
\x.walks(x) : (g -o f)
|
|
|
|
|
|
|
|
Compiled Premises:
|
|
|
|
|
|
|
|
>>> counter = Counter()
|
|
|
|
>>> ahc = a.compile(counter)
|
|
|
|
>>> g1 = ahc[0]
|
|
|
|
>>> print(g1)
|
|
|
|
v1 : gv : {1}
|
|
|
|
>>> g2 = ahc[1]
|
|
|
|
>>> print(g2)
|
|
|
|
v2 : g : {2}
|
|
|
|
>>> g3 = ahc[2]
|
|
|
|
>>> print(g3)
|
|
|
|
\P Q.exists x.(P(x) & Q(x)) : (gr[1] -o (G[2] -o G)) : {3}
|
|
|
|
>>> g4 = man.compile(counter)[0]
|
|
|
|
>>> print(g4)
|
|
|
|
\x.man(x) : (gv -o gr) : {4}
|
|
|
|
>>> g5 = walks.compile(counter)[0]
|
|
|
|
>>> print(g5)
|
|
|
|
\x.walks(x) : (g -o f) : {5}
|
|
|
|
|
|
|
|
Derivation:
|
|
|
|
|
|
|
|
>>> g14 = g4.applyto(g1)
|
|
|
|
>>> print(g14.simplify())
|
|
|
|
man(v1) : gr : {1, 4}
|
|
|
|
>>> g134 = g3.applyto(g14)
|
|
|
|
>>> print(g134.simplify())
|
|
|
|
\Q.exists x.(man(x) & Q(x)) : (G[2] -o G) : {1, 3, 4}
|
|
|
|
>>> g25 = g5.applyto(g2)
|
|
|
|
>>> print(g25.simplify())
|
|
|
|
walks(v2) : f : {2, 5}
|
|
|
|
>>> g12345 = g134.applyto(g25)
|
|
|
|
>>> print(g12345.simplify())
|
|
|
|
exists x.(man(x) & walks(x)) : f : {1, 2, 3, 4, 5}
|
|
|
|
|
|
|
|
---------------------------------
|
|
|
|
Dependency Graph to Glue Formulas
|
|
|
|
---------------------------------
|
|
|
|
>>> from nltk.corpus.reader.dependency import DependencyGraph
|
|
|
|
|
|
|
|
>>> depgraph = DependencyGraph("""1 John _ NNP NNP _ 2 SUBJ _ _
|
|
|
|
... 2 sees _ VB VB _ 0 ROOT _ _
|
|
|
|
... 3 a _ ex_quant ex_quant _ 4 SPEC _ _
|
|
|
|
... 4 dog _ NN NN _ 2 OBJ _ _
|
|
|
|
... """)
|
|
|
|
>>> gfl = GlueDict('nltk:grammars/sample_grammars/glue.semtype').to_glueformula_list(depgraph)
|
|
|
|
>>> print(gfl) # doctest: +SKIP
|
|
|
|
[\x y.sees(x,y) : (f -o (i -o g)),
|
|
|
|
\x.dog(x) : (iv -o ir),
|
|
|
|
\P Q.exists x.(P(x) & Q(x)) : ((iv -o ir) -o ((i -o I3) -o I3)),
|
|
|
|
\P Q.exists x.(P(x) & Q(x)) : ((fv -o fr) -o ((f -o F4) -o F4)),
|
|
|
|
\x.John(x) : (fv -o fr)]
|
|
|
|
>>> glue = Glue()
|
|
|
|
>>> for r in sorted([r.simplify().normalize() for r in glue.get_readings(glue.gfl_to_compiled(gfl))], key=str):
|
|
|
|
... print(r)
|
|
|
|
exists z1.(John(z1) & exists z2.(dog(z2) & sees(z1,z2)))
|
|
|
|
exists z1.(dog(z1) & exists z2.(John(z2) & sees(z2,z1)))
|
|
|
|
|
|
|
|
-----------------------------------
|
|
|
|
Dependency Graph to LFG f-structure
|
|
|
|
-----------------------------------
|
|
|
|
>>> from nltk.sem.lfg import FStructure
|
|
|
|
|
|
|
|
>>> fstruct = FStructure.read_depgraph(depgraph)
|
|
|
|
|
|
|
|
>>> print(fstruct) # doctest: +SKIP
|
|
|
|
f:[pred 'sees'
|
|
|
|
obj h:[pred 'dog'
|
|
|
|
spec 'a']
|
|
|
|
subj g:[pred 'John']]
|
|
|
|
|
|
|
|
>>> fstruct.to_depgraph().tree().pprint()
|
|
|
|
(sees (dog a) John)
|
|
|
|
|
|
|
|
---------------------------------
|
|
|
|
LFG f-structure to Glue
|
|
|
|
---------------------------------
|
|
|
|
>>> fstruct.to_glueformula_list(GlueDict('nltk:grammars/sample_grammars/glue.semtype')) # doctest: +SKIP
|
|
|
|
[\x y.sees(x,y) : (i -o (g -o f)),
|
|
|
|
\x.dog(x) : (gv -o gr),
|
|
|
|
\P Q.exists x.(P(x) & Q(x)) : ((gv -o gr) -o ((g -o G3) -o G3)),
|
|
|
|
\P Q.exists x.(P(x) & Q(x)) : ((iv -o ir) -o ((i -o I4) -o I4)),
|
|
|
|
\x.John(x) : (iv -o ir)]
|
|
|
|
|
|
|
|
.. see gluesemantics_malt.doctest for more
|