You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

790 lines
31 KiB
Python

5 years ago
# Natural Language Toolkit: Arc-Standard and Arc-eager Transition Based Parsers
#
# Author: Long Duong <longdt219@gmail.com>
#
# Copyright (C) 2001-2020 NLTK Project
5 years ago
# URL: <http://nltk.org/>
# For license information, see LICENSE.TXT
import tempfile
import pickle
from os import remove
from copy import deepcopy
from operator import itemgetter
try:
from numpy import array
from scipy import sparse
from sklearn.datasets import load_svmlight_file
from sklearn import svm
except ImportError:
pass
from nltk.parse import ParserI, DependencyGraph, DependencyEvaluator
class Configuration(object):
"""
Class for holding configuration which is the partial analysis of the input sentence.
The transition based parser aims at finding set of operators that transfer the initial
configuration to the terminal configuration.
The configuration includes:
- Stack: for storing partially proceeded words
- Buffer: for storing remaining input words
- Set of arcs: for storing partially built dependency tree
This class also provides a method to represent a configuration as list of features.
"""
def __init__(self, dep_graph):
"""
:param dep_graph: the representation of an input in the form of dependency graph.
:type dep_graph: DependencyGraph where the dependencies are not specified.
"""
# dep_graph.nodes contain list of token for a sentence
self.stack = [0] # The root element
self.buffer = list(range(1, len(dep_graph.nodes))) # The rest is in the buffer
self.arcs = [] # empty set of arc
self._tokens = dep_graph.nodes
self._max_address = len(self.buffer)
def __str__(self):
return (
"Stack : "
5 years ago
+ str(self.stack)
+ " Buffer : "
5 years ago
+ str(self.buffer)
+ " Arcs : "
5 years ago
+ str(self.arcs)
)
def _check_informative(self, feat, flag=False):
"""
Check whether a feature is informative
The flag control whether "_" is informative or not
"""
if feat is None:
return False
if feat == "":
5 years ago
return False
if flag is False:
if feat == "_":
5 years ago
return False
return True
def extract_features(self):
"""
Extract the set of features for the current configuration. Implement standard features as describe in
Table 3.2 (page 31) in Dependency Parsing book by Sandra Kubler, Ryan McDonal, Joakim Nivre.
Please note that these features are very basic.
:return: list(str)
"""
result = []
# Todo : can come up with more complicated features set for better
# performance.
if len(self.stack) > 0:
# Stack 0
stack_idx0 = self.stack[len(self.stack) - 1]
token = self._tokens[stack_idx0]
if self._check_informative(token["word"], True):
result.append("STK_0_FORM_" + token["word"])
if "lemma" in token and self._check_informative(token["lemma"]):
result.append("STK_0_LEMMA_" + token["lemma"])
if self._check_informative(token["tag"]):
result.append("STK_0_POS_" + token["tag"])
if "feats" in token and self._check_informative(token["feats"]):
feats = token["feats"].split("|")
5 years ago
for feat in feats:
result.append("STK_0_FEATS_" + feat)
5 years ago
# Stack 1
if len(self.stack) > 1:
stack_idx1 = self.stack[len(self.stack) - 2]
token = self._tokens[stack_idx1]
if self._check_informative(token["tag"]):
result.append("STK_1_POS_" + token["tag"])
5 years ago
# Left most, right most dependency of stack[0]
left_most = 1000000
right_most = -1
dep_left_most = ""
dep_right_most = ""
5 years ago
for (wi, r, wj) in self.arcs:
if wi == stack_idx0:
if (wj > wi) and (wj > right_most):
right_most = wj
dep_right_most = r
if (wj < wi) and (wj < left_most):
left_most = wj
dep_left_most = r
if self._check_informative(dep_left_most):
result.append("STK_0_LDEP_" + dep_left_most)
5 years ago
if self._check_informative(dep_right_most):
result.append("STK_0_RDEP_" + dep_right_most)
5 years ago
# Check Buffered 0
if len(self.buffer) > 0:
# Buffer 0
buffer_idx0 = self.buffer[0]
token = self._tokens[buffer_idx0]
if self._check_informative(token["word"], True):
result.append("BUF_0_FORM_" + token["word"])
if "lemma" in token and self._check_informative(token["lemma"]):
result.append("BUF_0_LEMMA_" + token["lemma"])
if self._check_informative(token["tag"]):
result.append("BUF_0_POS_" + token["tag"])
if "feats" in token and self._check_informative(token["feats"]):
feats = token["feats"].split("|")
5 years ago
for feat in feats:
result.append("BUF_0_FEATS_" + feat)
5 years ago
# Buffer 1
if len(self.buffer) > 1:
buffer_idx1 = self.buffer[1]
token = self._tokens[buffer_idx1]
if self._check_informative(token["word"], True):
result.append("BUF_1_FORM_" + token["word"])
if self._check_informative(token["tag"]):
result.append("BUF_1_POS_" + token["tag"])
5 years ago
if len(self.buffer) > 2:
buffer_idx2 = self.buffer[2]
token = self._tokens[buffer_idx2]
if self._check_informative(token["tag"]):
result.append("BUF_2_POS_" + token["tag"])
5 years ago
if len(self.buffer) > 3:
buffer_idx3 = self.buffer[3]
token = self._tokens[buffer_idx3]
if self._check_informative(token["tag"]):
result.append("BUF_3_POS_" + token["tag"])
5 years ago
# Left most, right most dependency of stack[0]
left_most = 1000000
right_most = -1
dep_left_most = ""
dep_right_most = ""
5 years ago
for (wi, r, wj) in self.arcs:
if wi == buffer_idx0:
if (wj > wi) and (wj > right_most):
right_most = wj
dep_right_most = r
if (wj < wi) and (wj < left_most):
left_most = wj
dep_left_most = r
if self._check_informative(dep_left_most):
result.append("BUF_0_LDEP_" + dep_left_most)
5 years ago
if self._check_informative(dep_right_most):
result.append("BUF_0_RDEP_" + dep_right_most)
5 years ago
return result
class Transition(object):
"""
This class defines a set of transition which is applied to a configuration to get another configuration
Note that for different parsing algorithm, the transition is different.
"""
# Define set of transitions
LEFT_ARC = "LEFTARC"
RIGHT_ARC = "RIGHTARC"
SHIFT = "SHIFT"
REDUCE = "REDUCE"
5 years ago
def __init__(self, alg_option):
"""
:param alg_option: the algorithm option of this parser. Currently support `arc-standard` and `arc-eager` algorithm
:type alg_option: str
"""
self._algo = alg_option
if alg_option not in [
TransitionParser.ARC_STANDARD,
TransitionParser.ARC_EAGER,
]:
raise ValueError(
" Currently we only support %s and %s "
% (TransitionParser.ARC_STANDARD, TransitionParser.ARC_EAGER)
)
def left_arc(self, conf, relation):
"""
Note that the algorithm for left-arc is quite similar except for precondition for both arc-standard and arc-eager
:param configuration: is the current configuration
:return : A new configuration or -1 if the pre-condition is not satisfied
"""
if (len(conf.buffer) <= 0) or (len(conf.stack) <= 0):
return -1
if conf.buffer[0] == 0:
# here is the Root element
return -1
idx_wi = conf.stack[len(conf.stack) - 1]
flag = True
if self._algo == TransitionParser.ARC_EAGER:
for (idx_parent, r, idx_child) in conf.arcs:
if idx_child == idx_wi:
flag = False
if flag:
conf.stack.pop()
idx_wj = conf.buffer[0]
conf.arcs.append((idx_wj, relation, idx_wi))
else:
return -1
def right_arc(self, conf, relation):
"""
Note that the algorithm for right-arc is DIFFERENT for arc-standard and arc-eager
:param configuration: is the current configuration
:return : A new configuration or -1 if the pre-condition is not satisfied
"""
if (len(conf.buffer) <= 0) or (len(conf.stack) <= 0):
return -1
if self._algo == TransitionParser.ARC_STANDARD:
idx_wi = conf.stack.pop()
idx_wj = conf.buffer[0]
conf.buffer[0] = idx_wi
conf.arcs.append((idx_wi, relation, idx_wj))
else: # arc-eager
idx_wi = conf.stack[len(conf.stack) - 1]
idx_wj = conf.buffer.pop(0)
conf.stack.append(idx_wj)
conf.arcs.append((idx_wi, relation, idx_wj))
def reduce(self, conf):
"""
Note that the algorithm for reduce is only available for arc-eager
:param configuration: is the current configuration
:return : A new configuration or -1 if the pre-condition is not satisfied
"""
if self._algo != TransitionParser.ARC_EAGER:
return -1
if len(conf.stack) <= 0:
return -1
idx_wi = conf.stack[len(conf.stack) - 1]
flag = False
for (idx_parent, r, idx_child) in conf.arcs:
if idx_child == idx_wi:
flag = True
if flag:
conf.stack.pop() # reduce it
else:
return -1
def shift(self, conf):
"""
Note that the algorithm for shift is the SAME for arc-standard and arc-eager
:param configuration: is the current configuration
:return : A new configuration or -1 if the pre-condition is not satisfied
"""
if len(conf.buffer) <= 0:
return -1
idx_wi = conf.buffer.pop(0)
conf.stack.append(idx_wi)
class TransitionParser(ParserI):
"""
Class for transition based parser. Implement 2 algorithms which are "arc-standard" and "arc-eager"
"""
ARC_STANDARD = "arc-standard"
ARC_EAGER = "arc-eager"
5 years ago
def __init__(self, algorithm):
"""
:param algorithm: the algorithm option of this parser. Currently support `arc-standard` and `arc-eager` algorithm
:type algorithm: str
"""
if not (algorithm in [self.ARC_STANDARD, self.ARC_EAGER]):
raise ValueError(
" Currently we only support %s and %s "
% (self.ARC_STANDARD, self.ARC_EAGER)
)
self._algorithm = algorithm
self._dictionary = {}
self._transition = {}
self._match_transition = {}
def _get_dep_relation(self, idx_parent, idx_child, depgraph):
p_node = depgraph.nodes[idx_parent]
c_node = depgraph.nodes[idx_child]
if c_node["word"] is None:
5 years ago
return None # Root word
if c_node["head"] == p_node["address"]:
return c_node["rel"]
5 years ago
else:
return None
def _convert_to_binary_features(self, features):
"""
:param features: list of feature string which is needed to convert to binary features
:type features: list(str)
:return : string of binary features in libsvm format which is 'featureID:value' pairs
"""
unsorted_result = []
for feature in features:
self._dictionary.setdefault(feature, len(self._dictionary))
unsorted_result.append(self._dictionary[feature])
# Default value of each feature is 1.0
return " ".join(
str(featureID) + ":1.0" for featureID in sorted(unsorted_result)
5 years ago
)
def _is_projective(self, depgraph):
arc_list = []
for key in depgraph.nodes:
node = depgraph.nodes[key]
if "head" in node:
childIdx = node["address"]
parentIdx = node["head"]
5 years ago
if parentIdx is not None:
arc_list.append((parentIdx, childIdx))
for (parentIdx, childIdx) in arc_list:
# Ensure that childIdx < parentIdx
if childIdx > parentIdx:
temp = childIdx
childIdx = parentIdx
parentIdx = temp
for k in range(childIdx + 1, parentIdx):
for m in range(len(depgraph.nodes)):
if (m < childIdx) or (m > parentIdx):
if (k, m) in arc_list:
return False
if (m, k) in arc_list:
return False
return True
def _write_to_file(self, key, binary_features, input_file):
"""
write the binary features to input file and update the transition dictionary
"""
self._transition.setdefault(key, len(self._transition) + 1)
self._match_transition[self._transition[key]] = key
input_str = str(self._transition[key]) + " " + binary_features + "\n"
input_file.write(input_str.encode("utf-8"))
5 years ago
def _create_training_examples_arc_std(self, depgraphs, input_file):
"""
Create the training example in the libsvm format and write it to the input_file.
Reference : Page 32, Chapter 3. Dependency Parsing by Sandra Kubler, Ryan McDonal and Joakim Nivre (2009)
"""
operation = Transition(self.ARC_STANDARD)
count_proj = 0
training_seq = []
for depgraph in depgraphs:
if not self._is_projective(depgraph):
continue
count_proj += 1
conf = Configuration(depgraph)
while len(conf.buffer) > 0:
b0 = conf.buffer[0]
features = conf.extract_features()
binary_features = self._convert_to_binary_features(features)
if len(conf.stack) > 0:
s0 = conf.stack[len(conf.stack) - 1]
# Left-arc operation
rel = self._get_dep_relation(b0, s0, depgraph)
if rel is not None:
key = Transition.LEFT_ARC + ":" + rel
5 years ago
self._write_to_file(key, binary_features, input_file)
operation.left_arc(conf, rel)
training_seq.append(key)
continue
# Right-arc operation
rel = self._get_dep_relation(s0, b0, depgraph)
if rel is not None:
precondition = True
# Get the max-index of buffer
maxID = conf._max_address
for w in range(maxID + 1):
if w != b0:
relw = self._get_dep_relation(b0, w, depgraph)
if relw is not None:
if (b0, relw, w) not in conf.arcs:
precondition = False
if precondition:
key = Transition.RIGHT_ARC + ":" + rel
5 years ago
self._write_to_file(key, binary_features, input_file)
operation.right_arc(conf, rel)
training_seq.append(key)
continue
# Shift operation as the default
key = Transition.SHIFT
self._write_to_file(key, binary_features, input_file)
operation.shift(conf)
training_seq.append(key)
print(" Number of training examples : " + str(len(depgraphs)))
print(" Number of valid (projective) examples : " + str(count_proj))
return training_seq
def _create_training_examples_arc_eager(self, depgraphs, input_file):
"""
Create the training example in the libsvm format and write it to the input_file.
Reference : 'A Dynamic Oracle for Arc-Eager Dependency Parsing' by Joav Goldberg and Joakim Nivre
"""
operation = Transition(self.ARC_EAGER)
countProj = 0
training_seq = []
for depgraph in depgraphs:
if not self._is_projective(depgraph):
continue
countProj += 1
conf = Configuration(depgraph)
while len(conf.buffer) > 0:
b0 = conf.buffer[0]
features = conf.extract_features()
binary_features = self._convert_to_binary_features(features)
if len(conf.stack) > 0:
s0 = conf.stack[len(conf.stack) - 1]
# Left-arc operation
rel = self._get_dep_relation(b0, s0, depgraph)
if rel is not None:
key = Transition.LEFT_ARC + ":" + rel
5 years ago
self._write_to_file(key, binary_features, input_file)
operation.left_arc(conf, rel)
training_seq.append(key)
continue
# Right-arc operation
rel = self._get_dep_relation(s0, b0, depgraph)
if rel is not None:
key = Transition.RIGHT_ARC + ":" + rel
5 years ago
self._write_to_file(key, binary_features, input_file)
operation.right_arc(conf, rel)
training_seq.append(key)
continue
# reduce operation
flag = False
for k in range(s0):
if self._get_dep_relation(k, b0, depgraph) is not None:
flag = True
if self._get_dep_relation(b0, k, depgraph) is not None:
flag = True
if flag:
key = Transition.REDUCE
self._write_to_file(key, binary_features, input_file)
operation.reduce(conf)
training_seq.append(key)
continue
# Shift operation as the default
key = Transition.SHIFT
self._write_to_file(key, binary_features, input_file)
operation.shift(conf)
training_seq.append(key)
print(" Number of training examples : " + str(len(depgraphs)))
print(" Number of valid (projective) examples : " + str(countProj))
return training_seq
def train(self, depgraphs, modelfile, verbose=True):
"""
:param depgraphs : list of DependencyGraph as the training data
:type depgraphs : DependencyGraph
:param modelfile : file name to save the trained model
:type modelfile : str
"""
try:
input_file = tempfile.NamedTemporaryFile(
prefix="transition_parse.train", dir=tempfile.gettempdir(), delete=False
5 years ago
)
if self._algorithm == self.ARC_STANDARD:
self._create_training_examples_arc_std(depgraphs, input_file)
else:
self._create_training_examples_arc_eager(depgraphs, input_file)
input_file.close()
# Using the temporary file to train the libsvm classifier
x_train, y_train = load_svmlight_file(input_file.name)
# The parameter is set according to the paper:
# Algorithms for Deterministic Incremental Dependency Parsing by Joakim Nivre
# Todo : because of probability = True => very slow due to
# cross-validation. Need to improve the speed here
model = svm.SVC(
kernel="poly",
5 years ago
degree=2,
coef0=0,
gamma=0.2,
C=0.5,
verbose=verbose,
probability=True,
)
model.fit(x_train, y_train)
# Save the model to file name (as pickle)
pickle.dump(model, open(modelfile, "wb"))
5 years ago
finally:
remove(input_file.name)
def parse(self, depgraphs, modelFile):
"""
:param depgraphs: the list of test sentence, each sentence is represented as a dependency graph where the 'head' information is dummy
:type depgraphs: list(DependencyGraph)
:param modelfile: the model file
:type modelfile: str
:return: list (DependencyGraph) with the 'head' and 'rel' information
"""
result = []
# First load the model
model = pickle.load(open(modelFile, "rb"))
5 years ago
operation = Transition(self._algorithm)
for depgraph in depgraphs:
conf = Configuration(depgraph)
while len(conf.buffer) > 0:
features = conf.extract_features()
col = []
row = []
data = []
for feature in features:
if feature in self._dictionary:
col.append(self._dictionary[feature])
row.append(0)
data.append(1.0)
np_col = array(sorted(col)) # NB : index must be sorted
np_row = array(row)
np_data = array(data)
x_test = sparse.csr_matrix(
(np_data, (np_row, np_col)), shape=(1, len(self._dictionary))
)
# It's best to use decision function as follow BUT it's not supported yet for sparse SVM
# Using decision funcion to build the votes array
# dec_func = model.decision_function(x_test)[0]
# votes = {}
# k = 0
# for i in range(len(model.classes_)):
# for j in range(i+1, len(model.classes_)):
# #if dec_func[k] > 0:
# votes.setdefault(i,0)
# votes[i] +=1
# else:
# votes.setdefault(j,0)
# votes[j] +=1
# k +=1
# Sort votes according to the values
# sorted_votes = sorted(votes.items(), key=itemgetter(1), reverse=True)
# We will use predict_proba instead of decision_function
prob_dict = {}
pred_prob = model.predict_proba(x_test)[0]
for i in range(len(pred_prob)):
prob_dict[i] = pred_prob[i]
sorted_Prob = sorted(prob_dict.items(), key=itemgetter(1), reverse=True)
# Note that SHIFT is always a valid operation
for (y_pred_idx, confidence) in sorted_Prob:
# y_pred = model.predict(x_test)[0]
# From the prediction match to the operation
y_pred = model.classes_[y_pred_idx]
if y_pred in self._match_transition:
strTransition = self._match_transition[y_pred]
baseTransition = strTransition.split(":")[0]
if baseTransition == Transition.LEFT_ARC:
if (
operation.left_arc(conf, strTransition.split(":")[1])
!= -1
):
break
elif baseTransition == Transition.RIGHT_ARC:
if (
operation.right_arc(conf, strTransition.split(":")[1])
!= -1
):
break
elif baseTransition == Transition.REDUCE:
if operation.reduce(conf) != -1:
break
elif baseTransition == Transition.SHIFT:
if operation.shift(conf) != -1:
break
else:
raise ValueError(
"The predicted transition is not recognized, expected errors"
)
# Finish with operations build the dependency graph from Conf.arcs
new_depgraph = deepcopy(depgraph)
for key in new_depgraph.nodes:
node = new_depgraph.nodes[key]
node["rel"] = ""
5 years ago
# With the default, all the token depend on the Root
node["head"] = 0
5 years ago
for (head, rel, child) in conf.arcs:
c_node = new_depgraph.nodes[child]
c_node["head"] = head
c_node["rel"] = rel
5 years ago
result.append(new_depgraph)
return result
def demo():
"""
>>> from nltk.parse import DependencyGraph, DependencyEvaluator
>>> from nltk.parse.transitionparser import TransitionParser, Configuration, Transition
>>> gold_sent = DependencyGraph(\"""
... Economic JJ 2 ATT
... news NN 3 SBJ
... has VBD 0 ROOT
... little JJ 5 ATT
... effect NN 3 OBJ
... on IN 5 ATT
... financial JJ 8 ATT
... markets NNS 6 PC
... . . 3 PU
... \""")
>>> conf = Configuration(gold_sent)
###################### Check the Initial Feature ########################
>>> print(', '.join(conf.extract_features()))
STK_0_POS_TOP, BUF_0_FORM_Economic, BUF_0_LEMMA_Economic, BUF_0_POS_JJ, BUF_1_FORM_news, BUF_1_POS_NN, BUF_2_POS_VBD, BUF_3_POS_JJ
###################### Check The Transition #######################
Check the Initialized Configuration
>>> print(conf)
Stack : [0] Buffer : [1, 2, 3, 4, 5, 6, 7, 8, 9] Arcs : []
A. Do some transition checks for ARC-STANDARD
>>> operation = Transition('arc-standard')
>>> operation.shift(conf)
>>> operation.left_arc(conf, "ATT")
>>> operation.shift(conf)
>>> operation.left_arc(conf,"SBJ")
>>> operation.shift(conf)
>>> operation.shift(conf)
>>> operation.left_arc(conf, "ATT")
>>> operation.shift(conf)
>>> operation.shift(conf)
>>> operation.shift(conf)
>>> operation.left_arc(conf, "ATT")
Middle Configuration and Features Check
>>> print(conf)
Stack : [0, 3, 5, 6] Buffer : [8, 9] Arcs : [(2, 'ATT', 1), (3, 'SBJ', 2), (5, 'ATT', 4), (8, 'ATT', 7)]
>>> print(', '.join(conf.extract_features()))
STK_0_FORM_on, STK_0_LEMMA_on, STK_0_POS_IN, STK_1_POS_NN, BUF_0_FORM_markets, BUF_0_LEMMA_markets, BUF_0_POS_NNS, BUF_1_FORM_., BUF_1_POS_., BUF_0_LDEP_ATT
>>> operation.right_arc(conf, "PC")
>>> operation.right_arc(conf, "ATT")
>>> operation.right_arc(conf, "OBJ")
>>> operation.shift(conf)
>>> operation.right_arc(conf, "PU")
>>> operation.right_arc(conf, "ROOT")
>>> operation.shift(conf)
Terminated Configuration Check
>>> print(conf)
Stack : [0] Buffer : [] Arcs : [(2, 'ATT', 1), (3, 'SBJ', 2), (5, 'ATT', 4), (8, 'ATT', 7), (6, 'PC', 8), (5, 'ATT', 6), (3, 'OBJ', 5), (3, 'PU', 9), (0, 'ROOT', 3)]
B. Do some transition checks for ARC-EAGER
>>> conf = Configuration(gold_sent)
>>> operation = Transition('arc-eager')
>>> operation.shift(conf)
>>> operation.left_arc(conf,'ATT')
>>> operation.shift(conf)
>>> operation.left_arc(conf,'SBJ')
>>> operation.right_arc(conf,'ROOT')
>>> operation.shift(conf)
>>> operation.left_arc(conf,'ATT')
>>> operation.right_arc(conf,'OBJ')
>>> operation.right_arc(conf,'ATT')
>>> operation.shift(conf)
>>> operation.left_arc(conf,'ATT')
>>> operation.right_arc(conf,'PC')
>>> operation.reduce(conf)
>>> operation.reduce(conf)
>>> operation.reduce(conf)
>>> operation.right_arc(conf,'PU')
>>> print(conf)
Stack : [0, 3, 9] Buffer : [] Arcs : [(2, 'ATT', 1), (3, 'SBJ', 2), (0, 'ROOT', 3), (5, 'ATT', 4), (3, 'OBJ', 5), (5, 'ATT', 6), (8, 'ATT', 7), (6, 'PC', 8), (3, 'PU', 9)]
###################### Check The Training Function #######################
A. Check the ARC-STANDARD training
>>> import tempfile
>>> import os
>>> input_file = tempfile.NamedTemporaryFile(prefix='transition_parse.train', dir=tempfile.gettempdir(), delete=False)
>>> parser_std = TransitionParser('arc-standard')
>>> print(', '.join(parser_std._create_training_examples_arc_std([gold_sent], input_file)))
Number of training examples : 1
Number of valid (projective) examples : 1
SHIFT, LEFTARC:ATT, SHIFT, LEFTARC:SBJ, SHIFT, SHIFT, LEFTARC:ATT, SHIFT, SHIFT, SHIFT, LEFTARC:ATT, RIGHTARC:PC, RIGHTARC:ATT, RIGHTARC:OBJ, SHIFT, RIGHTARC:PU, RIGHTARC:ROOT, SHIFT
>>> parser_std.train([gold_sent],'temp.arcstd.model', verbose=False)
Number of training examples : 1
Number of valid (projective) examples : 1
>>> remove(input_file.name)
B. Check the ARC-EAGER training
>>> input_file = tempfile.NamedTemporaryFile(prefix='transition_parse.train', dir=tempfile.gettempdir(),delete=False)
>>> parser_eager = TransitionParser('arc-eager')
>>> print(', '.join(parser_eager._create_training_examples_arc_eager([gold_sent], input_file)))
Number of training examples : 1
Number of valid (projective) examples : 1
SHIFT, LEFTARC:ATT, SHIFT, LEFTARC:SBJ, RIGHTARC:ROOT, SHIFT, LEFTARC:ATT, RIGHTARC:OBJ, RIGHTARC:ATT, SHIFT, LEFTARC:ATT, RIGHTARC:PC, REDUCE, REDUCE, REDUCE, RIGHTARC:PU
>>> parser_eager.train([gold_sent],'temp.arceager.model', verbose=False)
Number of training examples : 1
Number of valid (projective) examples : 1
>>> remove(input_file.name)
###################### Check The Parsing Function ########################
A. Check the ARC-STANDARD parser
>>> result = parser_std.parse([gold_sent], 'temp.arcstd.model')
>>> de = DependencyEvaluator(result, [gold_sent])
>>> de.eval() >= (0, 0)
True
B. Check the ARC-EAGER parser
>>> result = parser_eager.parse([gold_sent], 'temp.arceager.model')
>>> de = DependencyEvaluator(result, [gold_sent])
>>> de.eval() >= (0, 0)
True
Remove test temporary files
>>> remove('temp.arceager.model')
>>> remove('temp.arcstd.model')
Note that result is very poor because of only one training example.
"""