|
|
|
# Natural Language Toolkit: Agreement Metrics
|
|
|
|
#
|
|
|
|
# Copyright (C) 2001-2020 NLTK Project
|
|
|
|
# Author: Tom Lippincott <tom@cs.columbia.edu>
|
|
|
|
# URL: <http://nltk.org/>
|
|
|
|
# For license information, see LICENSE.TXT
|
|
|
|
#
|
|
|
|
|
|
|
|
"""
|
|
|
|
Implementations of inter-annotator agreement coefficients surveyed by Artstein
|
|
|
|
and Poesio (2007), Inter-Coder Agreement for Computational Linguistics.
|
|
|
|
|
|
|
|
An agreement coefficient calculates the amount that annotators agreed on label
|
|
|
|
assignments beyond what is expected by chance.
|
|
|
|
|
|
|
|
In defining the AnnotationTask class, we use naming conventions similar to the
|
|
|
|
paper's terminology. There are three types of objects in an annotation task:
|
|
|
|
|
|
|
|
the coders (variables "c" and "C")
|
|
|
|
the items to be annotated (variables "i" and "I")
|
|
|
|
the potential categories to be assigned (variables "k" and "K")
|
|
|
|
|
|
|
|
Additionally, it is often the case that we don't want to treat two different
|
|
|
|
labels as complete disagreement, and so the AnnotationTask constructor can also
|
|
|
|
take a distance metric as a final argument. Distance metrics are simply
|
|
|
|
functions that take two arguments, and return a value between 0.0 and 1.0
|
|
|
|
indicating the distance between them. If not supplied, the default is binary
|
|
|
|
comparison between the arguments.
|
|
|
|
|
|
|
|
The simplest way to initialize an AnnotationTask is with a list of triples,
|
|
|
|
each containing a coder's assignment for one object in the task:
|
|
|
|
|
|
|
|
task = AnnotationTask(data=[('c1', '1', 'v1'),('c2', '1', 'v1'),...])
|
|
|
|
|
|
|
|
Note that the data list needs to contain the same number of triples for each
|
|
|
|
individual coder, containing category values for the same set of items.
|
|
|
|
|
|
|
|
Alpha (Krippendorff 1980)
|
|
|
|
Kappa (Cohen 1960)
|
|
|
|
S (Bennet, Albert and Goldstein 1954)
|
|
|
|
Pi (Scott 1955)
|
|
|
|
|
|
|
|
|
|
|
|
TODO: Describe handling of multiple coders and missing data
|
|
|
|
|
|
|
|
Expected results from the Artstein and Poesio survey paper:
|
|
|
|
|
|
|
|
>>> from nltk.metrics.agreement import AnnotationTask
|
|
|
|
>>> import os.path
|
|
|
|
>>> t = AnnotationTask(data=[x.split() for x in open(os.path.join(os.path.dirname(__file__), "artstein_poesio_example.txt"))])
|
|
|
|
>>> t.avg_Ao()
|
|
|
|
0.88
|
|
|
|
>>> t.pi()
|
|
|
|
0.7995322418977615...
|
|
|
|
>>> t.S()
|
|
|
|
0.8199999999999998...
|
|
|
|
|
|
|
|
This would have returned a wrong value (0.0) in @785fb79 as coders are in
|
|
|
|
the wrong order. Subsequently, all values for pi(), S(), and kappa() would
|
|
|
|
have been wrong as they are computed with avg_Ao().
|
|
|
|
>>> t2 = AnnotationTask(data=[('b','1','stat'),('a','1','stat')])
|
|
|
|
>>> t2.avg_Ao()
|
|
|
|
1.0
|
|
|
|
|
|
|
|
The following, of course, also works.
|
|
|
|
>>> t3 = AnnotationTask(data=[('a','1','othr'),('b','1','othr')])
|
|
|
|
>>> t3.avg_Ao()
|
|
|
|
1.0
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
import logging
|
|
|
|
from itertools import groupby
|
|
|
|
from operator import itemgetter
|
|
|
|
|
|
|
|
from nltk.probability import FreqDist, ConditionalFreqDist
|
|
|
|
from nltk.internals import deprecated
|
|
|
|
|
|
|
|
from nltk.metrics.distance import binary_distance
|
|
|
|
|
|
|
|
log = logging.getLogger(__name__)
|
|
|
|
|
|
|
|
|
|
|
|
class AnnotationTask(object):
|
|
|
|
"""Represents an annotation task, i.e. people assign labels to items.
|
|
|
|
|
|
|
|
Notation tries to match notation in Artstein and Poesio (2007).
|
|
|
|
|
|
|
|
In general, coders and items can be represented as any hashable object.
|
|
|
|
Integers, for example, are fine, though strings are more readable.
|
|
|
|
Labels must support the distance functions applied to them, so e.g.
|
|
|
|
a string-edit-distance makes no sense if your labels are integers,
|
|
|
|
whereas interval distance needs numeric values. A notable case of this
|
|
|
|
is the MASI metric, which requires Python sets.
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self, data=None, distance=binary_distance):
|
|
|
|
"""Initialize an annotation task.
|
|
|
|
|
|
|
|
The data argument can be None (to create an empty annotation task) or a sequence of 3-tuples,
|
|
|
|
each representing a coder's labeling of an item:
|
|
|
|
(coder,item,label)
|
|
|
|
|
|
|
|
The distance argument is a function taking two arguments (labels) and producing a numerical distance.
|
|
|
|
The distance from a label to itself should be zero:
|
|
|
|
distance(l,l) = 0
|
|
|
|
"""
|
|
|
|
self.distance = distance
|
|
|
|
self.I = set()
|
|
|
|
self.K = set()
|
|
|
|
self.C = set()
|
|
|
|
self.data = []
|
|
|
|
if data is not None:
|
|
|
|
self.load_array(data)
|
|
|
|
|
|
|
|
def __str__(self):
|
|
|
|
return "\r\n".join(
|
|
|
|
map(
|
|
|
|
lambda x: "%s\t%s\t%s"
|
|
|
|
% (x["coder"], x["item"].replace("_", "\t"), ",".join(x["labels"])),
|
|
|
|
self.data,
|
|
|
|
)
|
|
|
|
)
|
|
|
|
|
|
|
|
def load_array(self, array):
|
|
|
|
"""Load an sequence of annotation results, appending to any data already loaded.
|
|
|
|
|
|
|
|
The argument is a sequence of 3-tuples, each representing a coder's labeling of an item:
|
|
|
|
(coder,item,label)
|
|
|
|
"""
|
|
|
|
for coder, item, labels in array:
|
|
|
|
self.C.add(coder)
|
|
|
|
self.K.add(labels)
|
|
|
|
self.I.add(item)
|
|
|
|
self.data.append({"coder": coder, "labels": labels, "item": item})
|
|
|
|
|
|
|
|
def agr(self, cA, cB, i, data=None):
|
|
|
|
"""Agreement between two coders on a given item
|
|
|
|
|
|
|
|
"""
|
|
|
|
data = data or self.data
|
|
|
|
# cfedermann: we don't know what combination of coder/item will come
|
|
|
|
# first in x; to avoid StopIteration problems due to assuming an order
|
|
|
|
# cA,cB, we allow either for k1 and then look up the missing as k2.
|
|
|
|
k1 = next((x for x in data if x["coder"] in (cA, cB) and x["item"] == i))
|
|
|
|
if k1["coder"] == cA:
|
|
|
|
k2 = next((x for x in data if x["coder"] == cB and x["item"] == i))
|
|
|
|
else:
|
|
|
|
k2 = next((x for x in data if x["coder"] == cA and x["item"] == i))
|
|
|
|
|
|
|
|
ret = 1.0 - float(self.distance(k1["labels"], k2["labels"]))
|
|
|
|
log.debug("Observed agreement between %s and %s on %s: %f", cA, cB, i, ret)
|
|
|
|
log.debug(
|
|
|
|
'Distance between "%r" and "%r": %f', k1["labels"], k2["labels"], 1.0 - ret
|
|
|
|
)
|
|
|
|
return ret
|
|
|
|
|
|
|
|
def Nk(self, k):
|
|
|
|
return float(sum(1 for x in self.data if x["labels"] == k))
|
|
|
|
|
|
|
|
def Nik(self, i, k):
|
|
|
|
return float(sum(1 for x in self.data if x["item"] == i and x["labels"] == k))
|
|
|
|
|
|
|
|
def Nck(self, c, k):
|
|
|
|
return float(sum(1 for x in self.data if x["coder"] == c and x["labels"] == k))
|
|
|
|
|
|
|
|
@deprecated("Use Nk, Nik or Nck instead")
|
|
|
|
def N(self, k=None, i=None, c=None):
|
|
|
|
"""Implements the "n-notation" used in Artstein and Poesio (2007)
|
|
|
|
|
|
|
|
"""
|
|
|
|
if k is not None and i is None and c is None:
|
|
|
|
ret = self.Nk(k)
|
|
|
|
elif k is not None and i is not None and c is None:
|
|
|
|
ret = self.Nik(i, k)
|
|
|
|
elif k is not None and c is not None and i is None:
|
|
|
|
ret = self.Nck(c, k)
|
|
|
|
else:
|
|
|
|
raise ValueError(
|
|
|
|
"You must pass either i or c, not both! (k=%r,i=%r,c=%r)" % (k, i, c)
|
|
|
|
)
|
|
|
|
log.debug("Count on N[%s,%s,%s]: %d", k, i, c, ret)
|
|
|
|
return ret
|
|
|
|
|
|
|
|
def _grouped_data(self, field, data=None):
|
|
|
|
data = data or self.data
|
|
|
|
return groupby(sorted(data, key=itemgetter(field)), itemgetter(field))
|
|
|
|
|
|
|
|
def Ao(self, cA, cB):
|
|
|
|
"""Observed agreement between two coders on all items.
|
|
|
|
|
|
|
|
"""
|
|
|
|
data = self._grouped_data(
|
|
|
|
"item", (x for x in self.data if x["coder"] in (cA, cB))
|
|
|
|
)
|
|
|
|
ret = sum(self.agr(cA, cB, item, item_data) for item, item_data in data) / len(
|
|
|
|
self.I
|
|
|
|
)
|
|
|
|
log.debug("Observed agreement between %s and %s: %f", cA, cB, ret)
|
|
|
|
return ret
|
|
|
|
|
|
|
|
def _pairwise_average(self, function):
|
|
|
|
"""
|
|
|
|
Calculates the average of function results for each coder pair
|
|
|
|
"""
|
|
|
|
total = 0
|
|
|
|
n = 0
|
|
|
|
s = self.C.copy()
|
|
|
|
for cA in self.C:
|
|
|
|
s.remove(cA)
|
|
|
|
for cB in s:
|
|
|
|
total += function(cA, cB)
|
|
|
|
n += 1
|
|
|
|
ret = total / n
|
|
|
|
return ret
|
|
|
|
|
|
|
|
def avg_Ao(self):
|
|
|
|
"""Average observed agreement across all coders and items.
|
|
|
|
|
|
|
|
"""
|
|
|
|
ret = self._pairwise_average(self.Ao)
|
|
|
|
log.debug("Average observed agreement: %f", ret)
|
|
|
|
return ret
|
|
|
|
|
|
|
|
def Do_Kw_pairwise(self, cA, cB, max_distance=1.0):
|
|
|
|
"""The observed disagreement for the weighted kappa coefficient.
|
|
|
|
|
|
|
|
"""
|
|
|
|
total = 0.0
|
|
|
|
data = (x for x in self.data if x["coder"] in (cA, cB))
|
|
|
|
for i, itemdata in self._grouped_data("item", data):
|
|
|
|
# we should have two items; distance doesn't care which comes first
|
|
|
|
total += self.distance(next(itemdata)["labels"], next(itemdata)["labels"])
|
|
|
|
|
|
|
|
ret = total / (len(self.I) * max_distance)
|
|
|
|
log.debug("Observed disagreement between %s and %s: %f", cA, cB, ret)
|
|
|
|
return ret
|
|
|
|
|
|
|
|
def Do_Kw(self, max_distance=1.0):
|
|
|
|
"""Averaged over all labelers
|
|
|
|
|
|
|
|
"""
|
|
|
|
ret = self._pairwise_average(
|
|
|
|
lambda cA, cB: self.Do_Kw_pairwise(cA, cB, max_distance)
|
|
|
|
)
|
|
|
|
log.debug("Observed disagreement: %f", ret)
|
|
|
|
return ret
|
|
|
|
|
|
|
|
# Agreement Coefficients
|
|
|
|
def S(self):
|
|
|
|
"""Bennett, Albert and Goldstein 1954
|
|
|
|
|
|
|
|
"""
|
|
|
|
Ae = 1.0 / len(self.K)
|
|
|
|
ret = (self.avg_Ao() - Ae) / (1.0 - Ae)
|
|
|
|
return ret
|
|
|
|
|
|
|
|
def pi(self):
|
|
|
|
"""Scott 1955; here, multi-pi.
|
|
|
|
Equivalent to K from Siegel and Castellan (1988).
|
|
|
|
|
|
|
|
"""
|
|
|
|
total = 0.0
|
|
|
|
label_freqs = FreqDist(x["labels"] for x in self.data)
|
|
|
|
for k, f in label_freqs.items():
|
|
|
|
total += f ** 2
|
|
|
|
Ae = total / ((len(self.I) * len(self.C)) ** 2)
|
|
|
|
return (self.avg_Ao() - Ae) / (1 - Ae)
|
|
|
|
|
|
|
|
def Ae_kappa(self, cA, cB):
|
|
|
|
Ae = 0.0
|
|
|
|
nitems = float(len(self.I))
|
|
|
|
label_freqs = ConditionalFreqDist((x["labels"], x["coder"]) for x in self.data)
|
|
|
|
for k in label_freqs.conditions():
|
|
|
|
Ae += (label_freqs[k][cA] / nitems) * (label_freqs[k][cB] / nitems)
|
|
|
|
return Ae
|
|
|
|
|
|
|
|
def kappa_pairwise(self, cA, cB):
|
|
|
|
"""
|
|
|
|
|
|
|
|
"""
|
|
|
|
Ae = self.Ae_kappa(cA, cB)
|
|
|
|
ret = (self.Ao(cA, cB) - Ae) / (1.0 - Ae)
|
|
|
|
log.debug("Expected agreement between %s and %s: %f", cA, cB, Ae)
|
|
|
|
return ret
|
|
|
|
|
|
|
|
def kappa(self):
|
|
|
|
"""Cohen 1960
|
|
|
|
Averages naively over kappas for each coder pair.
|
|
|
|
|
|
|
|
"""
|
|
|
|
return self._pairwise_average(self.kappa_pairwise)
|
|
|
|
|
|
|
|
def multi_kappa(self):
|
|
|
|
"""Davies and Fleiss 1982
|
|
|
|
Averages over observed and expected agreements for each coder pair.
|
|
|
|
|
|
|
|
"""
|
|
|
|
Ae = self._pairwise_average(self.Ae_kappa)
|
|
|
|
return (self.avg_Ao() - Ae) / (1.0 - Ae)
|
|
|
|
|
|
|
|
def Disagreement(self, label_freqs):
|
|
|
|
total_labels = sum(label_freqs.values())
|
|
|
|
pairs = 0.0
|
|
|
|
for j, nj in label_freqs.items():
|
|
|
|
for l, nl in label_freqs.items():
|
|
|
|
pairs += float(nj * nl) * self.distance(l, j)
|
|
|
|
return 1.0 * pairs / (total_labels * (total_labels - 1))
|
|
|
|
|
|
|
|
def alpha(self):
|
|
|
|
"""Krippendorff 1980
|
|
|
|
|
|
|
|
"""
|
|
|
|
# check for degenerate cases
|
|
|
|
if len(self.K) == 0:
|
|
|
|
raise ValueError("Cannot calculate alpha, no data present!")
|
|
|
|
if len(self.K) == 1:
|
|
|
|
log.debug("Only one annotation value, allpha returning 1.")
|
|
|
|
return 1
|
|
|
|
if len(self.C) == 1 and len(self.I) == 1:
|
|
|
|
raise ValueError("Cannot calculate alpha, only one coder and item present!")
|
|
|
|
|
|
|
|
total_disagreement = 0.0
|
|
|
|
total_ratings = 0
|
|
|
|
all_valid_labels_freq = FreqDist([])
|
|
|
|
|
|
|
|
total_do = 0.0 # Total observed disagreement for all items.
|
|
|
|
for i, itemdata in self._grouped_data("item"):
|
|
|
|
label_freqs = FreqDist(x["labels"] for x in itemdata)
|
|
|
|
labels_count = sum(label_freqs.values())
|
|
|
|
if labels_count < 2:
|
|
|
|
# Ignore the item.
|
|
|
|
continue
|
|
|
|
all_valid_labels_freq += label_freqs
|
|
|
|
total_do += self.Disagreement(label_freqs) * labels_count
|
|
|
|
|
|
|
|
do = total_do / sum(all_valid_labels_freq.values())
|
|
|
|
|
|
|
|
de = self.Disagreement(all_valid_labels_freq) # Expected disagreement.
|
|
|
|
k_alpha = 1.0 - do / de
|
|
|
|
|
|
|
|
return k_alpha
|
|
|
|
|
|
|
|
def weighted_kappa_pairwise(self, cA, cB, max_distance=1.0):
|
|
|
|
"""Cohen 1968
|
|
|
|
|
|
|
|
"""
|
|
|
|
total = 0.0
|
|
|
|
label_freqs = ConditionalFreqDist(
|
|
|
|
(x["coder"], x["labels"]) for x in self.data if x["coder"] in (cA, cB)
|
|
|
|
)
|
|
|
|
for j in self.K:
|
|
|
|
for l in self.K:
|
|
|
|
total += label_freqs[cA][j] * label_freqs[cB][l] * self.distance(j, l)
|
|
|
|
De = total / (max_distance * pow(len(self.I), 2))
|
|
|
|
log.debug("Expected disagreement between %s and %s: %f", cA, cB, De)
|
|
|
|
Do = self.Do_Kw_pairwise(cA, cB)
|
|
|
|
ret = 1.0 - (Do / De)
|
|
|
|
return ret
|
|
|
|
|
|
|
|
def weighted_kappa(self, max_distance=1.0):
|
|
|
|
"""Cohen 1968
|
|
|
|
|
|
|
|
"""
|
|
|
|
return self._pairwise_average(
|
|
|
|
lambda cA, cB: self.weighted_kappa_pairwise(cA, cB, max_distance)
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
|
|
|
|
import re
|
|
|
|
import optparse
|
|
|
|
from nltk.metrics import distance
|
|
|
|
|
|
|
|
# process command-line arguments
|
|
|
|
parser = optparse.OptionParser()
|
|
|
|
parser.add_option(
|
|
|
|
"-d",
|
|
|
|
"--distance",
|
|
|
|
dest="distance",
|
|
|
|
default="binary_distance",
|
|
|
|
help="distance metric to use",
|
|
|
|
)
|
|
|
|
parser.add_option(
|
|
|
|
"-a",
|
|
|
|
"--agreement",
|
|
|
|
dest="agreement",
|
|
|
|
default="kappa",
|
|
|
|
help="agreement coefficient to calculate",
|
|
|
|
)
|
|
|
|
parser.add_option(
|
|
|
|
"-e",
|
|
|
|
"--exclude",
|
|
|
|
dest="exclude",
|
|
|
|
action="append",
|
|
|
|
default=[],
|
|
|
|
help="coder names to exclude (may be specified multiple times)",
|
|
|
|
)
|
|
|
|
parser.add_option(
|
|
|
|
"-i",
|
|
|
|
"--include",
|
|
|
|
dest="include",
|
|
|
|
action="append",
|
|
|
|
default=[],
|
|
|
|
help="coder names to include, same format as exclude",
|
|
|
|
)
|
|
|
|
parser.add_option(
|
|
|
|
"-f",
|
|
|
|
"--file",
|
|
|
|
dest="file",
|
|
|
|
help="file to read labelings from, each line with three columns: 'labeler item labels'",
|
|
|
|
)
|
|
|
|
parser.add_option(
|
|
|
|
"-v",
|
|
|
|
"--verbose",
|
|
|
|
dest="verbose",
|
|
|
|
default="0",
|
|
|
|
help="how much debugging to print on stderr (0-4)",
|
|
|
|
)
|
|
|
|
parser.add_option(
|
|
|
|
"-c",
|
|
|
|
"--columnsep",
|
|
|
|
dest="columnsep",
|
|
|
|
default="\t",
|
|
|
|
help="char/string that separates the three columns in the file, defaults to tab",
|
|
|
|
)
|
|
|
|
parser.add_option(
|
|
|
|
"-l",
|
|
|
|
"--labelsep",
|
|
|
|
dest="labelsep",
|
|
|
|
default=",",
|
|
|
|
help="char/string that separates labels (if labelers can assign more than one), defaults to comma",
|
|
|
|
)
|
|
|
|
parser.add_option(
|
|
|
|
"-p",
|
|
|
|
"--presence",
|
|
|
|
dest="presence",
|
|
|
|
default=None,
|
|
|
|
help="convert each labeling into 1 or 0, based on presence of LABEL",
|
|
|
|
)
|
|
|
|
parser.add_option(
|
|
|
|
"-T",
|
|
|
|
"--thorough",
|
|
|
|
dest="thorough",
|
|
|
|
default=False,
|
|
|
|
action="store_true",
|
|
|
|
help="calculate agreement for every subset of the annotators",
|
|
|
|
)
|
|
|
|
(options, remainder) = parser.parse_args()
|
|
|
|
|
|
|
|
if not options.file:
|
|
|
|
parser.print_help()
|
|
|
|
exit()
|
|
|
|
|
|
|
|
logging.basicConfig(level=50 - 10 * int(options.verbose))
|
|
|
|
|
|
|
|
# read in data from the specified file
|
|
|
|
data = []
|
|
|
|
with open(options.file, "r") as infile:
|
|
|
|
for l in infile:
|
|
|
|
toks = l.split(options.columnsep)
|
|
|
|
coder, object_, labels = (
|
|
|
|
toks[0],
|
|
|
|
str(toks[1:-1]),
|
|
|
|
frozenset(toks[-1].strip().split(options.labelsep)),
|
|
|
|
)
|
|
|
|
if (
|
|
|
|
(options.include == options.exclude)
|
|
|
|
or (len(options.include) > 0 and coder in options.include)
|
|
|
|
or (len(options.exclude) > 0 and coder not in options.exclude)
|
|
|
|
):
|
|
|
|
data.append((coder, object_, labels))
|
|
|
|
|
|
|
|
if options.presence:
|
|
|
|
task = AnnotationTask(
|
|
|
|
data, getattr(distance, options.distance)(options.presence)
|
|
|
|
)
|
|
|
|
else:
|
|
|
|
task = AnnotationTask(data, getattr(distance, options.distance))
|
|
|
|
|
|
|
|
if options.thorough:
|
|
|
|
pass
|
|
|
|
else:
|
|
|
|
print(getattr(task, options.agreement)())
|
|
|
|
|
|
|
|
logging.shutdown()
|