You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

36 lines
915 B
Python

5 years ago
# Natural Language Toolkit: Wordfreq Application
#
# Copyright (C) 2001-2020 NLTK Project
5 years ago
# Author: Sumukh Ghodke <sghodke@csse.unimelb.edu.au>
# URL: <http://nltk.org/>
# For license information, see LICENSE.TXT
from matplotlib import pylab
from nltk.text import Text
from nltk.corpus import gutenberg
def plot_word_freq_dist(text):
fd = text.vocab()
samples = [item for item, _ in fd.most_common(50)]
values = [fd[sample] for sample in samples]
values = [sum(values[: i + 1]) * 100.0 / fd.N() for i in range(len(values))]
pylab.title(text.name)
pylab.xlabel("Samples")
pylab.ylabel("Cumulative Percentage")
pylab.plot(values)
pylab.xticks(range(len(samples)), [str(s) for s in samples], rotation=90)
pylab.show()
def app():
t1 = Text(gutenberg.words("melville-moby_dick.txt"))
5 years ago
plot_word_freq_dist(t1)
if __name__ == "__main__":
5 years ago
app()
__all__ = ["app"]