You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

331 lines
12 KiB
Python

from __future__ import print_function, division, absolute_import
import os
import pytest
from random import random
from time import sleep
from .. import Parallel, delayed, parallel_backend
from ..parallel import ThreadingBackend
from .._dask import DaskDistributedBackend, TimeoutError
distributed = pytest.importorskip('distributed')
from distributed import Client, LocalCluster
from distributed.metrics import time
from distributed.utils_test import cluster, inc
def noop(*args, **kwargs):
pass
def slow_raise_value_error(condition, duration=0.05):
sleep(duration)
if condition:
raise ValueError("condition evaluated to True")
def test_simple(loop):
with cluster() as (s, [a, b]):
with Client(s['address'], loop=loop) as client: # noqa: F841
with parallel_backend('dask') as (ba, _):
seq = Parallel()(delayed(inc)(i) for i in range(10))
assert seq == [inc(i) for i in range(10)]
with pytest.raises(ValueError):
Parallel()(delayed(slow_raise_value_error)(i == 3)
for i in range(10))
seq = Parallel()(delayed(inc)(i) for i in range(10))
assert seq == [inc(i) for i in range(10)]
def random2():
return random()
def test_dont_assume_function_purity(loop):
with cluster() as (s, [a, b]):
with Client(s['address'], loop=loop) as client: # noqa: F841
with parallel_backend('dask') as (ba, _):
x, y = Parallel()(delayed(random2)() for i in range(2))
assert x != y
def test_dask_funcname(loop):
with cluster() as (s, [a, b]):
with Client(s['address'], loop=loop) as client:
with parallel_backend('dask') as (ba, _):
x, y = Parallel()(delayed(inc)(i) for i in range(2))
def f(dask_scheduler):
return list(dask_scheduler.transition_log)
log = client.run_on_scheduler(f)
assert all(tup[0].startswith('inc-batch') for tup in log)
def add5(a, b, c, d=0, e=0):
return a + b + c + d + e
class CountSerialized(object):
def __init__(self, x):
self.x = x
self.count = 0
def __add__(self, other):
return self.x + getattr(other, 'x', other)
__radd__ = __add__
def __reduce__(self):
self.count += 1
return (CountSerialized, (self.x,))
def test_manual_scatter(loop):
x = CountSerialized(1)
y = CountSerialized(2)
z = CountSerialized(3)
with cluster() as (s, [a, b]):
with Client(s['address'], loop=loop) as client: # noqa: F841
with parallel_backend('dask', scatter=[x, y]) as (ba, _):
f = delayed(add5)
tasks = [f(x, y, z, d=4, e=5),
f(x, z, y, d=5, e=4),
f(y, x, z, d=x, e=5),
f(z, z, x, d=z, e=y)]
expected = [func(*args, **kwargs)
for func, args, kwargs in tasks]
results = Parallel()(tasks)
# Scatter must take a list/tuple
with pytest.raises(TypeError):
with parallel_backend('dask', loop=loop, scatter=1):
pass
assert results == expected
# Scattered variables only serialized once
assert x.count == 1
assert y.count == 1
assert z.count == 4
def test_auto_scatter(loop):
np = pytest.importorskip('numpy')
data1 = np.ones(int(1e4), dtype=np.uint8)
data2 = np.ones(int(1e4), dtype=np.uint8)
data_to_process = ([data1] * 4) + ([data2] * 4)
def count_events(event_name, client):
worker_events = client.run(lambda dask_worker: dask_worker.log)
event_counts = {}
for w, events in worker_events.items():
event_counts[w] = len([event for event in list(events)
if event[1] == event_name])
return event_counts
with cluster() as (s, [a, b]):
with Client(s['address'], loop=loop) as client:
with parallel_backend('dask') as (ba, _):
# Passing the same data as arg and kwarg triggers a single
# scatter operation whose result is reused.
Parallel()(delayed(noop)(data, data, i, opt=data)
for i, data in enumerate(data_to_process))
# By default large array are automatically scattered with
# broadcast=1 which means that one worker must directly receive
# the data from the scatter operation once.
counts = count_events('receive-from-scatter', client)
assert counts[a['address']] + counts[b['address']] == 2
with cluster() as (s, [a, b]):
with Client(s['address'], loop=loop) as client:
with parallel_backend('dask') as (ba, _):
Parallel()(delayed(noop)(data1[:3], i) for i in range(5))
# Small arrays are passed within the task definition without going
# through a scatter operation.
counts = count_events('receive-from-scatter', client)
assert counts[a['address']] == 0
assert counts[b['address']] == 0
def test_nested_backend_context_manager(loop):
def get_nested_pids():
pids = set(Parallel(n_jobs=2)(delayed(os.getpid)() for _ in range(2)))
pids |= set(Parallel(n_jobs=2)(delayed(os.getpid)() for _ in range(2)))
return pids
with cluster() as (s, [a, b]):
with Client(s['address'], loop=loop) as client:
with parallel_backend('dask') as (ba, _):
pid_groups = Parallel(n_jobs=2)(
delayed(get_nested_pids)()
for _ in range(10)
)
for pid_group in pid_groups:
assert len(set(pid_group)) <= 2
# No deadlocks
with Client(s['address'], loop=loop) as client: # noqa: F841
with parallel_backend('dask') as (ba, _):
pid_groups = Parallel(n_jobs=2)(
delayed(get_nested_pids)()
for _ in range(10)
)
for pid_group in pid_groups:
assert len(set(pid_group)) <= 2
def test_nested_backend_context_manager_implicit_n_jobs(loop):
# Check that Parallel with no explicit n_jobs value automatically selects
# all the dask workers, including in nested calls.
def _backend_type(p):
return p._backend.__class__.__name__
def get_nested_implicit_n_jobs():
with Parallel() as p:
return _backend_type(p), p.n_jobs
with cluster() as (s, [a, b]):
with Client(s['address'], loop=loop) as client: # noqa: F841
with parallel_backend('dask') as (ba, _):
with Parallel() as p:
assert _backend_type(p) == "DaskDistributedBackend"
assert p.n_jobs == -1
all_nested_n_jobs = p(
delayed(get_nested_implicit_n_jobs)()
for _ in range(2)
)
for backend_type, nested_n_jobs in all_nested_n_jobs:
assert backend_type == "DaskDistributedBackend"
assert nested_n_jobs == -1
def test_errors(loop):
with pytest.raises(ValueError) as info:
with parallel_backend('dask'):
pass
assert "create a dask client" in str(info.value).lower()
def test_correct_nested_backend(loop):
with cluster() as (s, [a, b]):
with Client(s['address'], loop=loop) as client: # noqa: F841
# No requirement, should be us
with parallel_backend('dask') as (ba, _):
result = Parallel(n_jobs=2)(
delayed(outer)(nested_require=None) for _ in range(1))
assert isinstance(result[0][0][0], DaskDistributedBackend)
# Require threads, should be threading
with parallel_backend('dask') as (ba, _):
result = Parallel(n_jobs=2)(
delayed(outer)(nested_require='sharedmem')
for _ in range(1))
assert isinstance(result[0][0][0], ThreadingBackend)
def outer(nested_require):
return Parallel(n_jobs=2, prefer='threads')(
delayed(middle)(nested_require) for _ in range(1)
)
def middle(require):
return Parallel(n_jobs=2, require=require)(
delayed(inner)() for _ in range(1)
)
def inner():
return Parallel()._backend
def test_secede_with_no_processes(loop):
# https://github.com/dask/distributed/issues/1775
with Client(loop=loop, processes=False, set_as_default=True):
with parallel_backend('dask'):
Parallel(n_jobs=4)(delayed(id)(i) for i in range(2))
def _worker_address(_):
from distributed import get_worker
return get_worker().address
def test_dask_backend_keywords(loop):
with cluster() as (s, [a, b]):
with Client(s['address'], loop=loop) as client: # noqa: F841
with parallel_backend('dask', workers=a['address']) as (ba, _):
seq = Parallel()(
delayed(_worker_address)(i) for i in range(10))
assert seq == [a['address']] * 10
with parallel_backend('dask', workers=b['address']) as (ba, _):
seq = Parallel()(
delayed(_worker_address)(i) for i in range(10))
assert seq == [b['address']] * 10
def test_cleanup(loop):
with Client(processes=False, loop=loop) as client:
with parallel_backend('dask'):
Parallel()(delayed(inc)(i) for i in range(10))
start = time()
while client.cluster.scheduler.tasks:
sleep(0.01)
assert time() < start + 5
assert not client.futures
@pytest.mark.parametrize("cluster_strategy", ["adaptive", "late_scaling"])
@pytest.mark.skipif(
distributed.__version__ <= '2.1.1' and distributed.__version__ >= '1.28.0',
reason="distributed bug - https://github.com/dask/distributed/pull/2841")
def test_wait_for_workers(cluster_strategy):
cluster = LocalCluster(n_workers=0, processes=False, threads_per_worker=2)
client = Client(cluster)
if cluster_strategy == "adaptive":
cluster.adapt(minimum=0, maximum=2)
elif cluster_strategy == "late_scaling":
# Tell the cluster to start workers but this is a non-blocking call
# and new workers might take time to connect. In this case the Parallel
# call should wait for at least one worker to come up before starting
# to schedule work.
cluster.scale(2)
try:
with parallel_backend('dask'):
# The following should wait a bit for at least one worker to
# become available.
Parallel()(delayed(inc)(i) for i in range(10))
finally:
client.close()
cluster.close()
def test_wait_for_workers_timeout():
# Start a cluster with 0 worker:
cluster = LocalCluster(n_workers=0, processes=False, threads_per_worker=2)
client = Client(cluster)
try:
with parallel_backend('dask', wait_for_workers_timeout=0.1):
# Short timeout: DaskDistributedBackend
msg = "DaskDistributedBackend has no worker after 0.1 seconds."
with pytest.raises(TimeoutError, match=msg):
Parallel()(delayed(inc)(i) for i in range(10))
with parallel_backend('dask', wait_for_workers_timeout=0):
# No timeout: fallback to generic joblib failure:
msg = "DaskDistributedBackend has no active worker"
with pytest.raises(RuntimeError, match=msg):
Parallel()(delayed(inc)(i) for i in range(10))
finally:
client.close()
cluster.close()