You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

234 lines
7.2 KiB
Python

5 years ago
#### PATTERN | EN ##################################################################################
# -*- coding: utf-8 -*-
# Copyright (c) 2010 University of Antwerp, Belgium
# Author: Tom De Smedt <tom@organisms.be>
# License: BSD (see LICENSE.txt for details).
# http://www.clips.ua.ac.be/pages/pattern
####################################################################################################
# English linguistical tools using fast regular expressions.
from __future__ import unicode_literals
from __future__ import division
from builtins import str, bytes, dict, int
from builtins import map, zip, filter
from builtins import object, range
import os
import sys
try:
MODULE = os.path.dirname(os.path.realpath(__file__))
except:
MODULE = ""
sys.path.insert(0, os.path.join(MODULE, "..", "..", "..", ".."))
# Import parser base classes.
from pattern.text import (
Lexicon, Model, Morphology, Context, Parser as _Parser, ngrams, pprint, commandline,
PUNCTUATION
)
# Import parser universal tagset.
from pattern.text import (
penntreebank2universal,
PTB, PENN, UNIVERSAL,
NOUN, VERB, ADJ, ADV, PRON, DET, PREP, ADP, NUM, CONJ, INTJ, PRT, PUNC, X
)
# Import parse tree base classes.
from pattern.text.tree import (
Tree, Text, Sentence, Slice, Chunk, PNPChunk, Chink, Word, table,
SLASH, WORD, POS, CHUNK, PNP, REL, ANCHOR, LEMMA, AND, OR
)
# Import sentiment analysis base classes.
from pattern.text import (
Sentiment as _Sentiment, NOUN, VERB, ADJECTIVE, ADVERB
)
# Import spelling base class.
from pattern.text import (
Spelling
)
# Import verb tenses.
from pattern.text import (
INFINITIVE, PRESENT, PAST, FUTURE,
FIRST, SECOND, THIRD,
SINGULAR, PLURAL, SG, PL,
PROGRESSIVE,
PARTICIPLE
)
# Import inflection functions.
from pattern.text.en.inflect import (
article, referenced, DEFINITE, INDEFINITE,
pluralize, singularize, NOUN, VERB, ADJECTIVE,
grade, comparative, superlative, COMPARATIVE, SUPERLATIVE,
verbs, conjugate, lemma, lexeme, tenses,
predicative, attributive
)
# Import quantification functions.
from pattern.text.en.inflect_quantify import (
number, numerals, quantify, reflect
)
# Import mood & modality functions.
from pattern.text.en.modality import (
mood, INDICATIVE, IMPERATIVE, CONDITIONAL, SUBJUNCTIVE,
modality, uncertain, EPISTEMIC,
negated
)
# Import all submodules.
from pattern.text.en import inflect
from pattern.text.en import wordnet
from pattern.text.en import wordlist
sys.path.pop(0)
#--- ENGLISH PARSER --------------------------------------------------------------------------------
def find_lemmata(tokens):
""" Annotates the tokens with lemmata for plural nouns and conjugated verbs,
where each token is a [word, part-of-speech] list.
"""
for token in tokens:
word, pos, lemma = token[0], token[1], token[0]
# cats => cat
if pos == "NNS":
lemma = singularize(word)
# sat => sit
if pos.startswith(("VB", "MD")):
lemma = conjugate(word, INFINITIVE) or word
token.append(lemma.lower())
return tokens
class Parser(_Parser):
def find_lemmata(self, tokens, **kwargs):
return find_lemmata(tokens)
def find_tags(self, tokens, **kwargs):
if kwargs.get("tagset") in (PENN, None):
kwargs.setdefault("map", lambda token, tag: (token, tag))
if kwargs.get("tagset") == UNIVERSAL:
kwargs.setdefault("map", lambda token, tag: penntreebank2universal(token, tag))
return _Parser.find_tags(self, tokens, **kwargs)
class Sentiment(_Sentiment):
def load(self, path=None):
_Sentiment.load(self, path)
# Map "terrible" to adverb "terribly" (+1% accuracy)
if not path:
for w, pos in list(dict.items(self)):
if "JJ" in pos:
if w.endswith("y"):
w = w[:-1] + "i"
if w.endswith("le"):
w = w[:-2]
p, s, i = pos["JJ"]
self.annotate(w + "ly", "RB", p, s, i)
parser = Parser(
lexicon = os.path.join(MODULE, "en-lexicon.txt"), # A dict of known words => most frequent tag.
frequency = os.path.join(MODULE, "en-frequency.txt"), # A dict of word frequency.
model = os.path.join(MODULE, "en-model.slp"), # A SLP classifier trained on WSJ (01-07).
morphology = os.path.join(MODULE, "en-morphology.txt"), # A set of suffix rules (e.g., -ly = adverb).
context = os.path.join(MODULE, "en-context.txt"), # A set of contextual rules.
entities = os.path.join(MODULE, "en-entities.txt"), # A dict of named entities: John = NNP-PERS.
default = ("NN", "NNP", "CD"),
language = "en"
)
lexicon = parser.lexicon # Expose lexicon.
sentiment = Sentiment(
path = os.path.join(MODULE, "en-sentiment.xml"),
synset = "wordnet_id",
negations = ("no", "not", "n't", "never"),
modifiers = ("RB",),
modifier = lambda w: w.endswith("ly"),
tokenizer = parser.find_tokens,
language = "en"
)
spelling = Spelling(
path=os.path.join(MODULE, "en-spelling.txt")
)
def tokenize(s, *args, **kwargs):
""" Returns a list of sentences, where punctuation marks have been split from words.
"""
return parser.find_tokens(s, *args, **kwargs)
def parse(s, *args, **kwargs):
""" Returns a tagged Unicode string.
"""
return parser.parse(s, *args, **kwargs)
def parsetree(s, *args, **kwargs):
""" Returns a parsed Text from the given string.
"""
return Text(parse(s, *args, **kwargs))
def tree(s, token=[WORD, POS, CHUNK, PNP, REL, LEMMA]):
""" Returns a parsed Text from the given parsed string.
"""
return Text(s, token)
def tag(s, tokenize=True, encoding="utf-8", **kwargs):
""" Returns a list of (token, tag)-tuples from the given string.
"""
tags = []
for sentence in parse(s, tokenize, True, False, False, False, encoding, **kwargs).split():
for token in sentence:
tags.append((token[0], token[1]))
return tags
def keywords(s, top=10, **kwargs):
""" Returns a sorted list of keywords in the given string.
"""
return parser.find_keywords(s, **dict({
"frequency": parser.frequency,
"top": top,
"pos": ("NN",),
"ignore": ("rt",)}, **kwargs))
def suggest(w):
""" Returns a list of (word, confidence)-tuples of spelling corrections.
"""
return spelling.suggest(w)
def polarity(s, **kwargs):
""" Returns the sentence polarity (positive/negative) between -1.0 and 1.0.
"""
return sentiment(s, **kwargs)[0]
def subjectivity(s, **kwargs):
""" Returns the sentence subjectivity (objective/subjective) between 0.0 and 1.0.
"""
return sentiment(s, **kwargs)[1]
def positive(s, threshold=0.1, **kwargs):
""" Returns True if the given sentence has a positive sentiment (polarity >= threshold).
"""
return polarity(s, **kwargs) >= threshold
split = tree # Backwards compatibility.
#---------------------------------------------------------------------------------------------------
# python -m pattern.en xml -s "The cat sat on the mat." -OTCL
if __name__ == "__main__":
commandline(parse)