|
|
|
# Natural Language Toolkit: Interface to the Mace4 Model Builder
|
|
|
|
#
|
|
|
|
# Author: Dan Garrette <dhgarrette@gmail.com>
|
|
|
|
# Ewan Klein <ewan@inf.ed.ac.uk>
|
|
|
|
|
|
|
|
# URL: <http://nltk.org/>
|
|
|
|
# For license information, see LICENSE.TXT
|
|
|
|
|
|
|
|
"""
|
|
|
|
A model builder that makes use of the external 'Mace4' package.
|
|
|
|
"""
|
|
|
|
|
|
|
|
import os
|
|
|
|
import tempfile
|
|
|
|
|
|
|
|
from nltk.sem.logic import is_indvar
|
|
|
|
from nltk.sem import Valuation, Expression
|
|
|
|
|
|
|
|
from nltk.inference.api import ModelBuilder, BaseModelBuilderCommand
|
|
|
|
from nltk.inference.prover9 import Prover9CommandParent, Prover9Parent
|
|
|
|
|
|
|
|
|
|
|
|
class MaceCommand(Prover9CommandParent, BaseModelBuilderCommand):
|
|
|
|
"""
|
|
|
|
A ``MaceCommand`` specific to the ``Mace`` model builder. It contains
|
|
|
|
a print_assumptions() method that is used to print the list
|
|
|
|
of assumptions in multiple formats.
|
|
|
|
"""
|
|
|
|
|
|
|
|
_interpformat_bin = None
|
|
|
|
|
|
|
|
def __init__(self, goal=None, assumptions=None, max_models=500, model_builder=None):
|
|
|
|
"""
|
|
|
|
:param goal: Input expression to prove
|
|
|
|
:type goal: sem.Expression
|
|
|
|
:param assumptions: Input expressions to use as assumptions in
|
|
|
|
the proof.
|
|
|
|
:type assumptions: list(sem.Expression)
|
|
|
|
:param max_models: The maximum number of models that Mace will try before
|
|
|
|
simply returning false. (Use 0 for no maximum.)
|
|
|
|
:type max_models: int
|
|
|
|
"""
|
|
|
|
if model_builder is not None:
|
|
|
|
assert isinstance(model_builder, Mace)
|
|
|
|
else:
|
|
|
|
model_builder = Mace(max_models)
|
|
|
|
|
|
|
|
BaseModelBuilderCommand.__init__(self, model_builder, goal, assumptions)
|
|
|
|
|
|
|
|
@property
|
|
|
|
def valuation(mbc):
|
|
|
|
return mbc.model("valuation")
|
|
|
|
|
|
|
|
def _convert2val(self, valuation_str):
|
|
|
|
"""
|
|
|
|
Transform the output file into an NLTK-style Valuation.
|
|
|
|
|
|
|
|
:return: A model if one is generated; None otherwise.
|
|
|
|
:rtype: sem.Valuation
|
|
|
|
"""
|
|
|
|
valuation_standard_format = self._transform_output(valuation_str, "standard")
|
|
|
|
|
|
|
|
val = []
|
|
|
|
for line in valuation_standard_format.splitlines(False):
|
|
|
|
l = line.strip()
|
|
|
|
|
|
|
|
if l.startswith("interpretation"):
|
|
|
|
# find the number of entities in the model
|
|
|
|
num_entities = int(l[l.index("(") + 1 : l.index(",")].strip())
|
|
|
|
|
|
|
|
elif l.startswith("function") and l.find("_") == -1:
|
|
|
|
# replace the integer identifier with a corresponding alphabetic character
|
|
|
|
name = l[l.index("(") + 1 : l.index(",")].strip()
|
|
|
|
if is_indvar(name):
|
|
|
|
name = name.upper()
|
|
|
|
value = int(l[l.index("[") + 1 : l.index("]")].strip())
|
|
|
|
val.append((name, MaceCommand._make_model_var(value)))
|
|
|
|
|
|
|
|
elif l.startswith("relation"):
|
|
|
|
l = l[l.index("(") + 1 :]
|
|
|
|
if "(" in l:
|
|
|
|
# relation is not nullary
|
|
|
|
name = l[: l.index("(")].strip()
|
|
|
|
values = [
|
|
|
|
int(v.strip())
|
|
|
|
for v in l[l.index("[") + 1 : l.index("]")].split(",")
|
|
|
|
]
|
|
|
|
val.append(
|
|
|
|
(name, MaceCommand._make_relation_set(num_entities, values))
|
|
|
|
)
|
|
|
|
else:
|
|
|
|
# relation is nullary
|
|
|
|
name = l[: l.index(",")].strip()
|
|
|
|
value = int(l[l.index("[") + 1 : l.index("]")].strip())
|
|
|
|
val.append((name, value == 1))
|
|
|
|
|
|
|
|
return Valuation(val)
|
|
|
|
|
|
|
|
@staticmethod
|
|
|
|
def _make_relation_set(num_entities, values):
|
|
|
|
"""
|
|
|
|
Convert a Mace4-style relation table into a dictionary.
|
|
|
|
|
|
|
|
:param num_entities: the number of entities in the model; determines the row length in the table.
|
|
|
|
:type num_entities: int
|
|
|
|
:param values: a list of 1's and 0's that represent whether a relation holds in a Mace4 model.
|
|
|
|
:type values: list of int
|
|
|
|
"""
|
|
|
|
r = set()
|
|
|
|
for position in [pos for (pos, v) in enumerate(values) if v == 1]:
|
|
|
|
r.add(
|
|
|
|
tuple(MaceCommand._make_relation_tuple(position, values, num_entities))
|
|
|
|
)
|
|
|
|
return r
|
|
|
|
|
|
|
|
@staticmethod
|
|
|
|
def _make_relation_tuple(position, values, num_entities):
|
|
|
|
if len(values) == 1:
|
|
|
|
return []
|
|
|
|
else:
|
|
|
|
sublist_size = len(values) // num_entities
|
|
|
|
sublist_start = position // sublist_size
|
|
|
|
sublist_position = int(position % sublist_size)
|
|
|
|
|
|
|
|
sublist = values[
|
|
|
|
sublist_start * sublist_size : (sublist_start + 1) * sublist_size
|
|
|
|
]
|
|
|
|
return [
|
|
|
|
MaceCommand._make_model_var(sublist_start)
|
|
|
|
] + MaceCommand._make_relation_tuple(
|
|
|
|
sublist_position, sublist, num_entities
|
|
|
|
)
|
|
|
|
|
|
|
|
@staticmethod
|
|
|
|
def _make_model_var(value):
|
|
|
|
"""
|
|
|
|
Pick an alphabetic character as identifier for an entity in the model.
|
|
|
|
|
|
|
|
:param value: where to index into the list of characters
|
|
|
|
:type value: int
|
|
|
|
"""
|
|
|
|
letter = [
|
|
|
|
"a",
|
|
|
|
"b",
|
|
|
|
"c",
|
|
|
|
"d",
|
|
|
|
"e",
|
|
|
|
"f",
|
|
|
|
"g",
|
|
|
|
"h",
|
|
|
|
"i",
|
|
|
|
"j",
|
|
|
|
"k",
|
|
|
|
"l",
|
|
|
|
"m",
|
|
|
|
"n",
|
|
|
|
"o",
|
|
|
|
"p",
|
|
|
|
"q",
|
|
|
|
"r",
|
|
|
|
"s",
|
|
|
|
"t",
|
|
|
|
"u",
|
|
|
|
"v",
|
|
|
|
"w",
|
|
|
|
"x",
|
|
|
|
"y",
|
|
|
|
"z",
|
|
|
|
][value]
|
|
|
|
num = value // 26
|
|
|
|
return letter + str(num) if num > 0 else letter
|
|
|
|
|
|
|
|
def _decorate_model(self, valuation_str, format):
|
|
|
|
"""
|
|
|
|
Print out a Mace4 model using any Mace4 ``interpformat`` format.
|
|
|
|
See http://www.cs.unm.edu/~mccune/mace4/manual/ for details.
|
|
|
|
|
|
|
|
:param valuation_str: str with the model builder's output
|
|
|
|
:param format: str indicating the format for displaying
|
|
|
|
models. Defaults to 'standard' format.
|
|
|
|
:return: str
|
|
|
|
"""
|
|
|
|
if not format:
|
|
|
|
return valuation_str
|
|
|
|
elif format == "valuation":
|
|
|
|
return self._convert2val(valuation_str)
|
|
|
|
else:
|
|
|
|
return self._transform_output(valuation_str, format)
|
|
|
|
|
|
|
|
def _transform_output(self, valuation_str, format):
|
|
|
|
"""
|
|
|
|
Transform the output file into any Mace4 ``interpformat`` format.
|
|
|
|
|
|
|
|
:param format: Output format for displaying models.
|
|
|
|
:type format: str
|
|
|
|
"""
|
|
|
|
if format in [
|
|
|
|
"standard",
|
|
|
|
"standard2",
|
|
|
|
"portable",
|
|
|
|
"tabular",
|
|
|
|
"raw",
|
|
|
|
"cooked",
|
|
|
|
"xml",
|
|
|
|
"tex",
|
|
|
|
]:
|
|
|
|
return self._call_interpformat(valuation_str, [format])[0]
|
|
|
|
else:
|
|
|
|
raise LookupError("The specified format does not exist")
|
|
|
|
|
|
|
|
def _call_interpformat(self, input_str, args=[], verbose=False):
|
|
|
|
"""
|
|
|
|
Call the ``interpformat`` binary with the given input.
|
|
|
|
|
|
|
|
:param input_str: A string whose contents are used as stdin.
|
|
|
|
:param args: A list of command-line arguments.
|
|
|
|
:return: A tuple (stdout, returncode)
|
|
|
|
:see: ``config_prover9``
|
|
|
|
"""
|
|
|
|
if self._interpformat_bin is None:
|
|
|
|
self._interpformat_bin = self._modelbuilder._find_binary(
|
|
|
|
"interpformat", verbose
|
|
|
|
)
|
|
|
|
|
|
|
|
return self._modelbuilder._call(
|
|
|
|
input_str, self._interpformat_bin, args, verbose
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
class Mace(Prover9Parent, ModelBuilder):
|
|
|
|
_mace4_bin = None
|
|
|
|
|
|
|
|
def __init__(self, end_size=500):
|
|
|
|
self._end_size = end_size
|
|
|
|
"""The maximum model size that Mace will try before
|
|
|
|
simply returning false. (Use -1 for no maximum.)"""
|
|
|
|
|
|
|
|
def _build_model(self, goal=None, assumptions=None, verbose=False):
|
|
|
|
"""
|
|
|
|
Use Mace4 to build a first order model.
|
|
|
|
|
|
|
|
:return: ``True`` if a model was found (i.e. Mace returns value of 0),
|
|
|
|
else ``False``
|
|
|
|
"""
|
|
|
|
if not assumptions:
|
|
|
|
assumptions = []
|
|
|
|
|
|
|
|
stdout, returncode = self._call_mace4(
|
|
|
|
self.prover9_input(goal, assumptions), verbose=verbose
|
|
|
|
)
|
|
|
|
return (returncode == 0, stdout)
|
|
|
|
|
|
|
|
def _call_mace4(self, input_str, args=[], verbose=False):
|
|
|
|
"""
|
|
|
|
Call the ``mace4`` binary with the given input.
|
|
|
|
|
|
|
|
:param input_str: A string whose contents are used as stdin.
|
|
|
|
:param args: A list of command-line arguments.
|
|
|
|
:return: A tuple (stdout, returncode)
|
|
|
|
:see: ``config_prover9``
|
|
|
|
"""
|
|
|
|
if self._mace4_bin is None:
|
|
|
|
self._mace4_bin = self._find_binary("mace4", verbose)
|
|
|
|
|
|
|
|
updated_input_str = ""
|
|
|
|
if self._end_size > 0:
|
|
|
|
updated_input_str += "assign(end_size, %d).\n\n" % self._end_size
|
|
|
|
updated_input_str += input_str
|
|
|
|
|
|
|
|
return self._call(updated_input_str, self._mace4_bin, args, verbose)
|
|
|
|
|
|
|
|
|
|
|
|
def spacer(num=30):
|
|
|
|
print("-" * num)
|
|
|
|
|
|
|
|
|
|
|
|
def decode_result(found):
|
|
|
|
"""
|
|
|
|
Decode the result of model_found()
|
|
|
|
|
|
|
|
:param found: The output of model_found()
|
|
|
|
:type found: bool
|
|
|
|
"""
|
|
|
|
return {True: "Countermodel found", False: "No countermodel found", None: "None"}[
|
|
|
|
found
|
|
|
|
]
|
|
|
|
|
|
|
|
|
|
|
|
def test_model_found(arguments):
|
|
|
|
"""
|
|
|
|
Try some proofs and exhibit the results.
|
|
|
|
"""
|
|
|
|
for (goal, assumptions) in arguments:
|
|
|
|
g = Expression.fromstring(goal)
|
|
|
|
alist = [lp.parse(a) for a in assumptions]
|
|
|
|
m = MaceCommand(g, assumptions=alist, max_models=50)
|
|
|
|
found = m.build_model()
|
|
|
|
for a in alist:
|
|
|
|
print(" %s" % a)
|
|
|
|
print("|- %s: %s\n" % (g, decode_result(found)))
|
|
|
|
|
|
|
|
|
|
|
|
def test_build_model(arguments):
|
|
|
|
"""
|
|
|
|
Try to build a ``nltk.sem.Valuation``.
|
|
|
|
"""
|
|
|
|
g = Expression.fromstring("all x.man(x)")
|
|
|
|
alist = [
|
|
|
|
Expression.fromstring(a)
|
|
|
|
for a in [
|
|
|
|
"man(John)",
|
|
|
|
"man(Socrates)",
|
|
|
|
"man(Bill)",
|
|
|
|
"some x.(-(x = John) & man(x) & sees(John,x))",
|
|
|
|
"some x.(-(x = Bill) & man(x))",
|
|
|
|
"all x.some y.(man(x) -> gives(Socrates,x,y))",
|
|
|
|
]
|
|
|
|
]
|
|
|
|
|
|
|
|
m = MaceCommand(g, assumptions=alist)
|
|
|
|
m.build_model()
|
|
|
|
spacer()
|
|
|
|
print("Assumptions and Goal")
|
|
|
|
spacer()
|
|
|
|
for a in alist:
|
|
|
|
print(" %s" % a)
|
|
|
|
print("|- %s: %s\n" % (g, decode_result(m.build_model())))
|
|
|
|
spacer()
|
|
|
|
# print(m.model('standard'))
|
|
|
|
# print(m.model('cooked'))
|
|
|
|
print("Valuation")
|
|
|
|
spacer()
|
|
|
|
print(m.valuation, "\n")
|
|
|
|
|
|
|
|
|
|
|
|
def test_transform_output(argument_pair):
|
|
|
|
"""
|
|
|
|
Transform the model into various Mace4 ``interpformat`` formats.
|
|
|
|
"""
|
|
|
|
g = Expression.fromstring(argument_pair[0])
|
|
|
|
alist = [lp.parse(a) for a in argument_pair[1]]
|
|
|
|
m = MaceCommand(g, assumptions=alist)
|
|
|
|
m.build_model()
|
|
|
|
for a in alist:
|
|
|
|
print(" %s" % a)
|
|
|
|
print("|- %s: %s\n" % (g, m.build_model()))
|
|
|
|
for format in ["standard", "portable", "xml", "cooked"]:
|
|
|
|
spacer()
|
|
|
|
print("Using '%s' format" % format)
|
|
|
|
spacer()
|
|
|
|
print(m.model(format=format))
|
|
|
|
|
|
|
|
|
|
|
|
def test_make_relation_set():
|
|
|
|
print(
|
|
|
|
MaceCommand._make_relation_set(num_entities=3, values=[1, 0, 1])
|
|
|
|
== set([("c",), ("a",)])
|
|
|
|
)
|
|
|
|
print(
|
|
|
|
MaceCommand._make_relation_set(
|
|
|
|
num_entities=3, values=[0, 0, 0, 0, 0, 0, 1, 0, 0]
|
|
|
|
)
|
|
|
|
== set([("c", "a")])
|
|
|
|
)
|
|
|
|
print(
|
|
|
|
MaceCommand._make_relation_set(num_entities=2, values=[0, 0, 1, 0, 0, 0, 1, 0])
|
|
|
|
== set([("a", "b", "a"), ("b", "b", "a")])
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
arguments = [
|
|
|
|
("mortal(Socrates)", ["all x.(man(x) -> mortal(x))", "man(Socrates)"]),
|
|
|
|
("(not mortal(Socrates))", ["all x.(man(x) -> mortal(x))", "man(Socrates)"]),
|
|
|
|
]
|
|
|
|
|
|
|
|
|
|
|
|
def demo():
|
|
|
|
test_model_found(arguments)
|
|
|
|
test_build_model(arguments)
|
|
|
|
test_transform_output(arguments[1])
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
demo()
|