You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
258 lines
9.3 KiB
Python
258 lines
9.3 KiB
Python
5 years ago
|
# Natural Language Toolkit: Expectation Maximization Clusterer
|
||
|
#
|
||
|
# Copyright (C) 2001-2019 NLTK Project
|
||
|
# Author: Trevor Cohn <tacohn@cs.mu.oz.au>
|
||
|
# URL: <http://nltk.org/>
|
||
|
# For license information, see LICENSE.TXT
|
||
|
from __future__ import print_function, unicode_literals
|
||
|
|
||
|
try:
|
||
|
import numpy
|
||
|
except ImportError:
|
||
|
pass
|
||
|
|
||
|
from nltk.compat import python_2_unicode_compatible
|
||
|
from nltk.cluster.util import VectorSpaceClusterer
|
||
|
|
||
|
|
||
|
@python_2_unicode_compatible
|
||
|
class EMClusterer(VectorSpaceClusterer):
|
||
|
"""
|
||
|
The Gaussian EM clusterer models the vectors as being produced by
|
||
|
a mixture of k Gaussian sources. The parameters of these sources
|
||
|
(prior probability, mean and covariance matrix) are then found to
|
||
|
maximise the likelihood of the given data. This is done with the
|
||
|
expectation maximisation algorithm. It starts with k arbitrarily
|
||
|
chosen means, priors and covariance matrices. It then calculates
|
||
|
the membership probabilities for each vector in each of the
|
||
|
clusters; this is the 'E' step. The cluster parameters are then
|
||
|
updated in the 'M' step using the maximum likelihood estimate from
|
||
|
the cluster membership probabilities. This process continues until
|
||
|
the likelihood of the data does not significantly increase.
|
||
|
"""
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
initial_means,
|
||
|
priors=None,
|
||
|
covariance_matrices=None,
|
||
|
conv_threshold=1e-6,
|
||
|
bias=0.1,
|
||
|
normalise=False,
|
||
|
svd_dimensions=None,
|
||
|
):
|
||
|
"""
|
||
|
Creates an EM clusterer with the given starting parameters,
|
||
|
convergence threshold and vector mangling parameters.
|
||
|
|
||
|
:param initial_means: the means of the gaussian cluster centers
|
||
|
:type initial_means: [seq of] numpy array or seq of SparseArray
|
||
|
:param priors: the prior probability for each cluster
|
||
|
:type priors: numpy array or seq of float
|
||
|
:param covariance_matrices: the covariance matrix for each cluster
|
||
|
:type covariance_matrices: [seq of] numpy array
|
||
|
:param conv_threshold: maximum change in likelihood before deemed
|
||
|
convergent
|
||
|
:type conv_threshold: int or float
|
||
|
:param bias: variance bias used to ensure non-singular covariance
|
||
|
matrices
|
||
|
:type bias: float
|
||
|
:param normalise: should vectors be normalised to length 1
|
||
|
:type normalise: boolean
|
||
|
:param svd_dimensions: number of dimensions to use in reducing vector
|
||
|
dimensionsionality with SVD
|
||
|
:type svd_dimensions: int
|
||
|
"""
|
||
|
VectorSpaceClusterer.__init__(self, normalise, svd_dimensions)
|
||
|
self._means = numpy.array(initial_means, numpy.float64)
|
||
|
self._num_clusters = len(initial_means)
|
||
|
self._conv_threshold = conv_threshold
|
||
|
self._covariance_matrices = covariance_matrices
|
||
|
self._priors = priors
|
||
|
self._bias = bias
|
||
|
|
||
|
def num_clusters(self):
|
||
|
return self._num_clusters
|
||
|
|
||
|
def cluster_vectorspace(self, vectors, trace=False):
|
||
|
assert len(vectors) > 0
|
||
|
|
||
|
# set the parameters to initial values
|
||
|
dimensions = len(vectors[0])
|
||
|
means = self._means
|
||
|
priors = self._priors
|
||
|
if not priors:
|
||
|
priors = self._priors = (
|
||
|
numpy.ones(self._num_clusters, numpy.float64) / self._num_clusters
|
||
|
)
|
||
|
covariances = self._covariance_matrices
|
||
|
if not covariances:
|
||
|
covariances = self._covariance_matrices = [
|
||
|
numpy.identity(dimensions, numpy.float64)
|
||
|
for i in range(self._num_clusters)
|
||
|
]
|
||
|
|
||
|
# do the E and M steps until the likelihood plateaus
|
||
|
lastl = self._loglikelihood(vectors, priors, means, covariances)
|
||
|
converged = False
|
||
|
|
||
|
while not converged:
|
||
|
if trace:
|
||
|
print('iteration; loglikelihood', lastl)
|
||
|
# E-step, calculate hidden variables, h[i,j]
|
||
|
h = numpy.zeros((len(vectors), self._num_clusters), numpy.float64)
|
||
|
for i in range(len(vectors)):
|
||
|
for j in range(self._num_clusters):
|
||
|
h[i, j] = priors[j] * self._gaussian(
|
||
|
means[j], covariances[j], vectors[i]
|
||
|
)
|
||
|
h[i, :] /= sum(h[i, :])
|
||
|
|
||
|
# M-step, update parameters - cvm, p, mean
|
||
|
for j in range(self._num_clusters):
|
||
|
covariance_before = covariances[j]
|
||
|
new_covariance = numpy.zeros((dimensions, dimensions), numpy.float64)
|
||
|
new_mean = numpy.zeros(dimensions, numpy.float64)
|
||
|
sum_hj = 0.0
|
||
|
for i in range(len(vectors)):
|
||
|
delta = vectors[i] - means[j]
|
||
|
new_covariance += h[i, j] * numpy.multiply.outer(delta, delta)
|
||
|
sum_hj += h[i, j]
|
||
|
new_mean += h[i, j] * vectors[i]
|
||
|
covariances[j] = new_covariance / sum_hj
|
||
|
means[j] = new_mean / sum_hj
|
||
|
priors[j] = sum_hj / len(vectors)
|
||
|
|
||
|
# bias term to stop covariance matrix being singular
|
||
|
covariances[j] += self._bias * numpy.identity(dimensions, numpy.float64)
|
||
|
|
||
|
# calculate likelihood - FIXME: may be broken
|
||
|
l = self._loglikelihood(vectors, priors, means, covariances)
|
||
|
|
||
|
# check for convergence
|
||
|
if abs(lastl - l) < self._conv_threshold:
|
||
|
converged = True
|
||
|
lastl = l
|
||
|
|
||
|
def classify_vectorspace(self, vector):
|
||
|
best = None
|
||
|
for j in range(self._num_clusters):
|
||
|
p = self._priors[j] * self._gaussian(
|
||
|
self._means[j], self._covariance_matrices[j], vector
|
||
|
)
|
||
|
if not best or p > best[0]:
|
||
|
best = (p, j)
|
||
|
return best[1]
|
||
|
|
||
|
def likelihood_vectorspace(self, vector, cluster):
|
||
|
cid = self.cluster_names().index(cluster)
|
||
|
return self._priors[cluster] * self._gaussian(
|
||
|
self._means[cluster], self._covariance_matrices[cluster], vector
|
||
|
)
|
||
|
|
||
|
def _gaussian(self, mean, cvm, x):
|
||
|
m = len(mean)
|
||
|
assert cvm.shape == (m, m), 'bad sized covariance matrix, %s' % str(cvm.shape)
|
||
|
try:
|
||
|
det = numpy.linalg.det(cvm)
|
||
|
inv = numpy.linalg.inv(cvm)
|
||
|
a = det ** -0.5 * (2 * numpy.pi) ** (-m / 2.0)
|
||
|
dx = x - mean
|
||
|
print(dx, inv)
|
||
|
b = -0.5 * numpy.dot(numpy.dot(dx, inv), dx)
|
||
|
return a * numpy.exp(b)
|
||
|
except OverflowError:
|
||
|
# happens when the exponent is negative infinity - i.e. b = 0
|
||
|
# i.e. the inverse of cvm is huge (cvm is almost zero)
|
||
|
return 0
|
||
|
|
||
|
def _loglikelihood(self, vectors, priors, means, covariances):
|
||
|
llh = 0.0
|
||
|
for vector in vectors:
|
||
|
p = 0
|
||
|
for j in range(len(priors)):
|
||
|
p += priors[j] * self._gaussian(means[j], covariances[j], vector)
|
||
|
llh += numpy.log(p)
|
||
|
return llh
|
||
|
|
||
|
def __repr__(self):
|
||
|
return '<EMClusterer means=%s>' % list(self._means)
|
||
|
|
||
|
|
||
|
def demo():
|
||
|
"""
|
||
|
Non-interactive demonstration of the clusterers with simple 2-D data.
|
||
|
"""
|
||
|
|
||
|
from nltk import cluster
|
||
|
|
||
|
# example from figure 14.10, page 519, Manning and Schutze
|
||
|
|
||
|
vectors = [numpy.array(f) for f in [[0.5, 0.5], [1.5, 0.5], [1, 3]]]
|
||
|
means = [[4, 2], [4, 2.01]]
|
||
|
|
||
|
clusterer = cluster.EMClusterer(means, bias=0.1)
|
||
|
clusters = clusterer.cluster(vectors, True, trace=True)
|
||
|
|
||
|
print('Clustered:', vectors)
|
||
|
print('As: ', clusters)
|
||
|
print()
|
||
|
|
||
|
for c in range(2):
|
||
|
print('Cluster:', c)
|
||
|
print('Prior: ', clusterer._priors[c])
|
||
|
print('Mean: ', clusterer._means[c])
|
||
|
print('Covar: ', clusterer._covariance_matrices[c])
|
||
|
print()
|
||
|
|
||
|
# classify a new vector
|
||
|
vector = numpy.array([2, 2])
|
||
|
print('classify(%s):' % vector, end=' ')
|
||
|
print(clusterer.classify(vector))
|
||
|
|
||
|
# show the classification probabilities
|
||
|
vector = numpy.array([2, 2])
|
||
|
print('classification_probdist(%s):' % vector)
|
||
|
pdist = clusterer.classification_probdist(vector)
|
||
|
for sample in pdist.samples():
|
||
|
print('%s => %.0f%%' % (sample, pdist.prob(sample) * 100))
|
||
|
|
||
|
|
||
|
#
|
||
|
# The following demo code is broken.
|
||
|
#
|
||
|
# # use a set of tokens with 2D indices
|
||
|
# vectors = [numpy.array(f) for f in [[3, 3], [1, 2], [4, 2], [4, 0], [2, 3], [3, 1]]]
|
||
|
|
||
|
# # test the EM clusterer with means given by k-means (2) and
|
||
|
# # dimensionality reduction
|
||
|
# clusterer = cluster.KMeans(2, euclidean_distance, svd_dimensions=1)
|
||
|
# print 'Clusterer:', clusterer
|
||
|
# clusters = clusterer.cluster(vectors)
|
||
|
# means = clusterer.means()
|
||
|
# print 'Means:', clusterer.means()
|
||
|
# print
|
||
|
|
||
|
# clusterer = cluster.EMClusterer(means, svd_dimensions=1)
|
||
|
# clusters = clusterer.cluster(vectors, True)
|
||
|
# print 'Clusterer:', clusterer
|
||
|
# print 'Clustered:', str(vectors)[:60], '...'
|
||
|
# print 'As:', str(clusters)[:60], '...'
|
||
|
# print
|
||
|
|
||
|
# # classify a new vector
|
||
|
# vector = numpy.array([3, 3])
|
||
|
# print 'classify(%s):' % vector,
|
||
|
# print clusterer.classify(vector)
|
||
|
# print
|
||
|
|
||
|
# # show the classification probabilities
|
||
|
# vector = numpy.array([2.2, 2])
|
||
|
# print 'classification_probdist(%s)' % vector
|
||
|
# pdist = clusterer.classification_probdist(vector)
|
||
|
# for sample in pdist:
|
||
|
# print '%s => %.0f%%' % (sample, pdist.prob(sample) *100)
|
||
|
|
||
|
if __name__ == '__main__':
|
||
|
demo()
|