You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
89 lines
2.9 KiB
Python
89 lines
2.9 KiB
Python
"""
|
|
Ensure that we can use pathlib.Path objects in all relevant IO functions.
|
|
"""
|
|
import sys
|
|
|
|
try:
|
|
from pathlib import Path
|
|
except ImportError:
|
|
# Not available. No fallback import, since we'll skip the entire
|
|
# test suite for Python < 3.6.
|
|
pass
|
|
|
|
import numpy as np
|
|
from numpy.testing import assert_
|
|
import pytest
|
|
|
|
import scipy.io
|
|
import scipy.io.wavfile
|
|
from scipy._lib._tmpdirs import tempdir
|
|
import scipy.sparse
|
|
|
|
|
|
@pytest.mark.skipif(sys.version_info < (3, 6),
|
|
reason='Passing path-like objects to IO functions requires Python >= 3.6')
|
|
class TestPaths(object):
|
|
data = np.arange(5).astype(np.int64)
|
|
|
|
def test_savemat(self):
|
|
with tempdir() as temp_dir:
|
|
path = Path(temp_dir) / 'data.mat'
|
|
scipy.io.savemat(path, {'data': self.data})
|
|
assert_(path.is_file())
|
|
|
|
def test_loadmat(self):
|
|
# Save data with string path, load with pathlib.Path
|
|
with tempdir() as temp_dir:
|
|
path = Path(temp_dir) / 'data.mat'
|
|
scipy.io.savemat(str(path), {'data': self.data})
|
|
|
|
mat_contents = scipy.io.loadmat(path)
|
|
assert_((mat_contents['data'] == self.data).all())
|
|
|
|
def test_whosmat(self):
|
|
# Save data with string path, load with pathlib.Path
|
|
with tempdir() as temp_dir:
|
|
path = Path(temp_dir) / 'data.mat'
|
|
scipy.io.savemat(str(path), {'data': self.data})
|
|
|
|
contents = scipy.io.whosmat(path)
|
|
assert_(contents[0] == ('data', (1, 5), 'int64'))
|
|
|
|
def test_readsav(self):
|
|
path = Path(__file__).parent / 'data/scalar_string.sav'
|
|
scipy.io.readsav(path)
|
|
|
|
def test_hb_read(self):
|
|
# Save data with string path, load with pathlib.Path
|
|
with tempdir() as temp_dir:
|
|
data = scipy.sparse.csr_matrix(scipy.sparse.eye(3))
|
|
path = Path(temp_dir) / 'data.hb'
|
|
scipy.io.harwell_boeing.hb_write(str(path), data)
|
|
|
|
data_new = scipy.io.harwell_boeing.hb_read(path)
|
|
assert_((data_new != data).nnz == 0)
|
|
|
|
def test_hb_write(self):
|
|
with tempdir() as temp_dir:
|
|
data = scipy.sparse.csr_matrix(scipy.sparse.eye(3))
|
|
path = Path(temp_dir) / 'data.hb'
|
|
scipy.io.harwell_boeing.hb_write(path, data)
|
|
assert_(path.is_file())
|
|
|
|
def test_netcdf_file(self):
|
|
path = Path(__file__).parent / 'data/example_1.nc'
|
|
scipy.io.netcdf.netcdf_file(path)
|
|
|
|
def test_wavfile_read(self):
|
|
path = Path(__file__).parent / 'data/test-8000Hz-le-2ch-1byteu.wav'
|
|
scipy.io.wavfile.read(path)
|
|
|
|
def test_wavfile_write(self):
|
|
# Read from str path, write to Path
|
|
input_path = Path(__file__).parent / 'data/test-8000Hz-le-2ch-1byteu.wav'
|
|
rate, data = scipy.io.wavfile.read(str(input_path))
|
|
|
|
with tempdir() as temp_dir:
|
|
output_path = Path(temp_dir) / input_path.name
|
|
scipy.io.wavfile.write(output_path, rate, data)
|