You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
326 lines
9.5 KiB
Python
326 lines
9.5 KiB
Python
"""
|
|
Discrete Fourier Transforms - helper.py
|
|
|
|
"""
|
|
from __future__ import division, absolute_import, print_function
|
|
|
|
import collections
|
|
try:
|
|
import threading
|
|
except ImportError:
|
|
import dummy_threading as threading
|
|
from numpy.compat import integer_types
|
|
from numpy.core import integer, empty, arange, asarray, roll
|
|
from numpy.core.overrides import array_function_dispatch, set_module
|
|
|
|
# Created by Pearu Peterson, September 2002
|
|
|
|
__all__ = ['fftshift', 'ifftshift', 'fftfreq', 'rfftfreq']
|
|
|
|
integer_types = integer_types + (integer,)
|
|
|
|
|
|
def _fftshift_dispatcher(x, axes=None):
|
|
return (x,)
|
|
|
|
|
|
@array_function_dispatch(_fftshift_dispatcher, module='numpy.fft')
|
|
def fftshift(x, axes=None):
|
|
"""
|
|
Shift the zero-frequency component to the center of the spectrum.
|
|
|
|
This function swaps half-spaces for all axes listed (defaults to all).
|
|
Note that ``y[0]`` is the Nyquist component only if ``len(x)`` is even.
|
|
|
|
Parameters
|
|
----------
|
|
x : array_like
|
|
Input array.
|
|
axes : int or shape tuple, optional
|
|
Axes over which to shift. Default is None, which shifts all axes.
|
|
|
|
Returns
|
|
-------
|
|
y : ndarray
|
|
The shifted array.
|
|
|
|
See Also
|
|
--------
|
|
ifftshift : The inverse of `fftshift`.
|
|
|
|
Examples
|
|
--------
|
|
>>> freqs = np.fft.fftfreq(10, 0.1)
|
|
>>> freqs
|
|
array([ 0., 1., 2., 3., 4., -5., -4., -3., -2., -1.])
|
|
>>> np.fft.fftshift(freqs)
|
|
array([-5., -4., -3., -2., -1., 0., 1., 2., 3., 4.])
|
|
|
|
Shift the zero-frequency component only along the second axis:
|
|
|
|
>>> freqs = np.fft.fftfreq(9, d=1./9).reshape(3, 3)
|
|
>>> freqs
|
|
array([[ 0., 1., 2.],
|
|
[ 3., 4., -4.],
|
|
[-3., -2., -1.]])
|
|
>>> np.fft.fftshift(freqs, axes=(1,))
|
|
array([[ 2., 0., 1.],
|
|
[-4., 3., 4.],
|
|
[-1., -3., -2.]])
|
|
|
|
"""
|
|
x = asarray(x)
|
|
if axes is None:
|
|
axes = tuple(range(x.ndim))
|
|
shift = [dim // 2 for dim in x.shape]
|
|
elif isinstance(axes, integer_types):
|
|
shift = x.shape[axes] // 2
|
|
else:
|
|
shift = [x.shape[ax] // 2 for ax in axes]
|
|
|
|
return roll(x, shift, axes)
|
|
|
|
|
|
@array_function_dispatch(_fftshift_dispatcher, module='numpy.fft')
|
|
def ifftshift(x, axes=None):
|
|
"""
|
|
The inverse of `fftshift`. Although identical for even-length `x`, the
|
|
functions differ by one sample for odd-length `x`.
|
|
|
|
Parameters
|
|
----------
|
|
x : array_like
|
|
Input array.
|
|
axes : int or shape tuple, optional
|
|
Axes over which to calculate. Defaults to None, which shifts all axes.
|
|
|
|
Returns
|
|
-------
|
|
y : ndarray
|
|
The shifted array.
|
|
|
|
See Also
|
|
--------
|
|
fftshift : Shift zero-frequency component to the center of the spectrum.
|
|
|
|
Examples
|
|
--------
|
|
>>> freqs = np.fft.fftfreq(9, d=1./9).reshape(3, 3)
|
|
>>> freqs
|
|
array([[ 0., 1., 2.],
|
|
[ 3., 4., -4.],
|
|
[-3., -2., -1.]])
|
|
>>> np.fft.ifftshift(np.fft.fftshift(freqs))
|
|
array([[ 0., 1., 2.],
|
|
[ 3., 4., -4.],
|
|
[-3., -2., -1.]])
|
|
|
|
"""
|
|
x = asarray(x)
|
|
if axes is None:
|
|
axes = tuple(range(x.ndim))
|
|
shift = [-(dim // 2) for dim in x.shape]
|
|
elif isinstance(axes, integer_types):
|
|
shift = -(x.shape[axes] // 2)
|
|
else:
|
|
shift = [-(x.shape[ax] // 2) for ax in axes]
|
|
|
|
return roll(x, shift, axes)
|
|
|
|
|
|
@set_module('numpy.fft')
|
|
def fftfreq(n, d=1.0):
|
|
"""
|
|
Return the Discrete Fourier Transform sample frequencies.
|
|
|
|
The returned float array `f` contains the frequency bin centers in cycles
|
|
per unit of the sample spacing (with zero at the start). For instance, if
|
|
the sample spacing is in seconds, then the frequency unit is cycles/second.
|
|
|
|
Given a window length `n` and a sample spacing `d`::
|
|
|
|
f = [0, 1, ..., n/2-1, -n/2, ..., -1] / (d*n) if n is even
|
|
f = [0, 1, ..., (n-1)/2, -(n-1)/2, ..., -1] / (d*n) if n is odd
|
|
|
|
Parameters
|
|
----------
|
|
n : int
|
|
Window length.
|
|
d : scalar, optional
|
|
Sample spacing (inverse of the sampling rate). Defaults to 1.
|
|
|
|
Returns
|
|
-------
|
|
f : ndarray
|
|
Array of length `n` containing the sample frequencies.
|
|
|
|
Examples
|
|
--------
|
|
>>> signal = np.array([-2, 8, 6, 4, 1, 0, 3, 5], dtype=float)
|
|
>>> fourier = np.fft.fft(signal)
|
|
>>> n = signal.size
|
|
>>> timestep = 0.1
|
|
>>> freq = np.fft.fftfreq(n, d=timestep)
|
|
>>> freq
|
|
array([ 0. , 1.25, 2.5 , 3.75, -5. , -3.75, -2.5 , -1.25])
|
|
|
|
"""
|
|
if not isinstance(n, integer_types):
|
|
raise ValueError("n should be an integer")
|
|
val = 1.0 / (n * d)
|
|
results = empty(n, int)
|
|
N = (n-1)//2 + 1
|
|
p1 = arange(0, N, dtype=int)
|
|
results[:N] = p1
|
|
p2 = arange(-(n//2), 0, dtype=int)
|
|
results[N:] = p2
|
|
return results * val
|
|
|
|
|
|
@set_module('numpy.fft')
|
|
def rfftfreq(n, d=1.0):
|
|
"""
|
|
Return the Discrete Fourier Transform sample frequencies
|
|
(for usage with rfft, irfft).
|
|
|
|
The returned float array `f` contains the frequency bin centers in cycles
|
|
per unit of the sample spacing (with zero at the start). For instance, if
|
|
the sample spacing is in seconds, then the frequency unit is cycles/second.
|
|
|
|
Given a window length `n` and a sample spacing `d`::
|
|
|
|
f = [0, 1, ..., n/2-1, n/2] / (d*n) if n is even
|
|
f = [0, 1, ..., (n-1)/2-1, (n-1)/2] / (d*n) if n is odd
|
|
|
|
Unlike `fftfreq` (but like `scipy.fftpack.rfftfreq`)
|
|
the Nyquist frequency component is considered to be positive.
|
|
|
|
Parameters
|
|
----------
|
|
n : int
|
|
Window length.
|
|
d : scalar, optional
|
|
Sample spacing (inverse of the sampling rate). Defaults to 1.
|
|
|
|
Returns
|
|
-------
|
|
f : ndarray
|
|
Array of length ``n//2 + 1`` containing the sample frequencies.
|
|
|
|
Examples
|
|
--------
|
|
>>> signal = np.array([-2, 8, 6, 4, 1, 0, 3, 5, -3, 4], dtype=float)
|
|
>>> fourier = np.fft.rfft(signal)
|
|
>>> n = signal.size
|
|
>>> sample_rate = 100
|
|
>>> freq = np.fft.fftfreq(n, d=1./sample_rate)
|
|
>>> freq
|
|
array([ 0., 10., 20., 30., 40., -50., -40., -30., -20., -10.])
|
|
>>> freq = np.fft.rfftfreq(n, d=1./sample_rate)
|
|
>>> freq
|
|
array([ 0., 10., 20., 30., 40., 50.])
|
|
|
|
"""
|
|
if not isinstance(n, integer_types):
|
|
raise ValueError("n should be an integer")
|
|
val = 1.0/(n*d)
|
|
N = n//2 + 1
|
|
results = arange(0, N, dtype=int)
|
|
return results * val
|
|
|
|
|
|
class _FFTCache(object):
|
|
"""
|
|
Cache for the FFT twiddle factors as an LRU (least recently used) cache.
|
|
|
|
Parameters
|
|
----------
|
|
max_size_in_mb : int
|
|
Maximum memory usage of the cache before items are being evicted.
|
|
max_item_count : int
|
|
Maximum item count of the cache before items are being evicted.
|
|
|
|
Notes
|
|
-----
|
|
Items will be evicted if either limit has been reached upon getting and
|
|
setting. The maximum memory usages is not strictly the given
|
|
``max_size_in_mb`` but rather
|
|
``max(max_size_in_mb, 1.5 * size_of_largest_item)``. Thus the cache will
|
|
never be completely cleared - at least one item will remain and a single
|
|
large item can cause the cache to retain several smaller items even if the
|
|
given maximum cache size has been exceeded.
|
|
"""
|
|
def __init__(self, max_size_in_mb, max_item_count):
|
|
self._max_size_in_bytes = max_size_in_mb * 1024 ** 2
|
|
self._max_item_count = max_item_count
|
|
self._dict = collections.OrderedDict()
|
|
self._lock = threading.Lock()
|
|
|
|
def put_twiddle_factors(self, n, factors):
|
|
"""
|
|
Store twiddle factors for an FFT of length n in the cache.
|
|
|
|
Putting multiple twiddle factors for a certain n will store it multiple
|
|
times.
|
|
|
|
Parameters
|
|
----------
|
|
n : int
|
|
Data length for the FFT.
|
|
factors : ndarray
|
|
The actual twiddle values.
|
|
"""
|
|
with self._lock:
|
|
# Pop + later add to move it to the end for LRU behavior.
|
|
# Internally everything is stored in a dictionary whose values are
|
|
# lists.
|
|
try:
|
|
value = self._dict.pop(n)
|
|
except KeyError:
|
|
value = []
|
|
value.append(factors)
|
|
self._dict[n] = value
|
|
self._prune_cache()
|
|
|
|
def pop_twiddle_factors(self, n):
|
|
"""
|
|
Pop twiddle factors for an FFT of length n from the cache.
|
|
|
|
Will return None if the requested twiddle factors are not available in
|
|
the cache.
|
|
|
|
Parameters
|
|
----------
|
|
n : int
|
|
Data length for the FFT.
|
|
|
|
Returns
|
|
-------
|
|
out : ndarray or None
|
|
The retrieved twiddle factors if available, else None.
|
|
"""
|
|
with self._lock:
|
|
if n not in self._dict or not self._dict[n]:
|
|
return None
|
|
# Pop + later add to move it to the end for LRU behavior.
|
|
all_values = self._dict.pop(n)
|
|
value = all_values.pop()
|
|
# Only put pack if there are still some arrays left in the list.
|
|
if all_values:
|
|
self._dict[n] = all_values
|
|
return value
|
|
|
|
def _prune_cache(self):
|
|
# Always keep at least one item.
|
|
while len(self._dict) > 1 and (
|
|
len(self._dict) > self._max_item_count or self._check_size()):
|
|
self._dict.popitem(last=False)
|
|
|
|
def _check_size(self):
|
|
item_sizes = [sum(_j.nbytes for _j in _i)
|
|
for _i in self._dict.values() if _i]
|
|
if not item_sizes:
|
|
return False
|
|
max_size = max(self._max_size_in_bytes, 1.5 * max(item_sizes))
|
|
return sum(item_sizes) > max_size
|