You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1362 lines
42 KiB
Python
1362 lines
42 KiB
Python
# Copyright Anne M. Archibald 2008
|
|
# Released under the scipy license
|
|
|
|
from __future__ import division, print_function, absolute_import
|
|
|
|
from numpy.testing import (assert_equal, assert_array_equal, assert_,
|
|
assert_almost_equal, assert_array_almost_equal)
|
|
from pytest import raises as assert_raises
|
|
import pytest
|
|
from platform import python_implementation
|
|
import numpy as np
|
|
from scipy.spatial import KDTree, Rectangle, distance_matrix, cKDTree
|
|
from scipy.spatial.ckdtree import cKDTreeNode
|
|
from scipy.spatial import minkowski_distance
|
|
|
|
import itertools
|
|
|
|
def distance_box(a, b, p, boxsize):
|
|
diff = a - b
|
|
diff[diff > 0.5 * boxsize] -= boxsize
|
|
diff[diff < -0.5 * boxsize] += boxsize
|
|
d = minkowski_distance(diff, 0, p)
|
|
return d
|
|
|
|
class ConsistencyTests:
|
|
def distance(self, a, b, p):
|
|
return minkowski_distance(a, b, p)
|
|
|
|
def test_nearest(self):
|
|
x = self.x
|
|
d, i = self.kdtree.query(x, 1)
|
|
assert_almost_equal(d**2,np.sum((x-self.data[i])**2))
|
|
eps = 1e-8
|
|
assert_(np.all(np.sum((self.data-x[np.newaxis,:])**2,axis=1) > d**2-eps))
|
|
|
|
def test_m_nearest(self):
|
|
x = self.x
|
|
m = self.m
|
|
dd, ii = self.kdtree.query(x, m)
|
|
d = np.amax(dd)
|
|
i = ii[np.argmax(dd)]
|
|
assert_almost_equal(d**2,np.sum((x-self.data[i])**2))
|
|
eps = 1e-8
|
|
assert_equal(np.sum(np.sum((self.data-x[np.newaxis,:])**2,axis=1) < d**2+eps),m)
|
|
|
|
def test_points_near(self):
|
|
x = self.x
|
|
d = self.d
|
|
dd, ii = self.kdtree.query(x, k=self.kdtree.n, distance_upper_bound=d)
|
|
eps = 1e-8
|
|
hits = 0
|
|
for near_d, near_i in zip(dd,ii):
|
|
if near_d == np.inf:
|
|
continue
|
|
hits += 1
|
|
assert_almost_equal(near_d**2,np.sum((x-self.data[near_i])**2))
|
|
assert_(near_d < d+eps, "near_d=%g should be less than %g" % (near_d,d))
|
|
assert_equal(np.sum(self.distance(self.data,x,2) < d**2+eps),hits)
|
|
|
|
def test_points_near_l1(self):
|
|
x = self.x
|
|
d = self.d
|
|
dd, ii = self.kdtree.query(x, k=self.kdtree.n, p=1, distance_upper_bound=d)
|
|
eps = 1e-8
|
|
hits = 0
|
|
for near_d, near_i in zip(dd,ii):
|
|
if near_d == np.inf:
|
|
continue
|
|
hits += 1
|
|
assert_almost_equal(near_d,self.distance(x,self.data[near_i],1))
|
|
assert_(near_d < d+eps, "near_d=%g should be less than %g" % (near_d,d))
|
|
assert_equal(np.sum(self.distance(self.data,x,1) < d+eps),hits)
|
|
|
|
def test_points_near_linf(self):
|
|
x = self.x
|
|
d = self.d
|
|
dd, ii = self.kdtree.query(x, k=self.kdtree.n, p=np.inf, distance_upper_bound=d)
|
|
eps = 1e-8
|
|
hits = 0
|
|
for near_d, near_i in zip(dd,ii):
|
|
if near_d == np.inf:
|
|
continue
|
|
hits += 1
|
|
assert_almost_equal(near_d,self.distance(x,self.data[near_i],np.inf))
|
|
assert_(near_d < d+eps, "near_d=%g should be less than %g" % (near_d,d))
|
|
assert_equal(np.sum(self.distance(self.data,x,np.inf) < d+eps),hits)
|
|
|
|
def test_approx(self):
|
|
x = self.x
|
|
k = self.k
|
|
eps = 0.1
|
|
d_real, i_real = self.kdtree.query(x, k)
|
|
d, i = self.kdtree.query(x, k, eps=eps)
|
|
assert_(np.all(d <= d_real*(1+eps)))
|
|
|
|
|
|
class Test_random(ConsistencyTests):
|
|
def setup_method(self):
|
|
self.n = 100
|
|
self.m = 4
|
|
np.random.seed(1234)
|
|
self.data = np.random.randn(self.n, self.m)
|
|
self.kdtree = KDTree(self.data,leafsize=2)
|
|
self.x = np.random.randn(self.m)
|
|
self.d = 0.2
|
|
self.k = 10
|
|
|
|
class Test_random_far(Test_random):
|
|
def setup_method(self):
|
|
Test_random.setup_method(self)
|
|
self.x = np.random.randn(self.m)+10
|
|
|
|
|
|
class Test_small(ConsistencyTests):
|
|
def setup_method(self):
|
|
self.data = np.array([[0,0,0],
|
|
[0,0,1],
|
|
[0,1,0],
|
|
[0,1,1],
|
|
[1,0,0],
|
|
[1,0,1],
|
|
[1,1,0],
|
|
[1,1,1]])
|
|
self.kdtree = KDTree(self.data)
|
|
self.n = self.kdtree.n
|
|
self.m = self.kdtree.m
|
|
np.random.seed(1234)
|
|
self.x = np.random.randn(3)
|
|
self.d = 0.5
|
|
self.k = 4
|
|
|
|
def test_nearest(self):
|
|
assert_array_equal(
|
|
self.kdtree.query((0,0,0.1), 1),
|
|
(0.1,0))
|
|
|
|
def test_nearest_two(self):
|
|
assert_array_equal(
|
|
self.kdtree.query((0,0,0.1), 2),
|
|
([0.1,0.9],[0,1]))
|
|
|
|
|
|
class Test_small_nonleaf(Test_small):
|
|
def setup_method(self):
|
|
Test_small.setup_method(self)
|
|
self.kdtree = KDTree(self.data,leafsize=1)
|
|
|
|
|
|
class Test_small_compiled(Test_small):
|
|
def setup_method(self):
|
|
Test_small.setup_method(self)
|
|
self.kdtree = cKDTree(self.data)
|
|
|
|
|
|
class Test_small_nonleaf_compiled(Test_small):
|
|
def setup_method(self):
|
|
Test_small.setup_method(self)
|
|
self.kdtree = cKDTree(self.data,leafsize=1)
|
|
|
|
|
|
class Test_random_compiled(Test_random):
|
|
def setup_method(self):
|
|
Test_random.setup_method(self)
|
|
self.kdtree = cKDTree(self.data)
|
|
|
|
|
|
class Test_random_far_compiled(Test_random_far):
|
|
def setup_method(self):
|
|
Test_random_far.setup_method(self)
|
|
self.kdtree = cKDTree(self.data)
|
|
|
|
|
|
class Test_vectorization:
|
|
def setup_method(self):
|
|
self.data = np.array([[0,0,0],
|
|
[0,0,1],
|
|
[0,1,0],
|
|
[0,1,1],
|
|
[1,0,0],
|
|
[1,0,1],
|
|
[1,1,0],
|
|
[1,1,1]])
|
|
self.kdtree = KDTree(self.data)
|
|
|
|
def test_single_query(self):
|
|
d, i = self.kdtree.query(np.array([0,0,0]))
|
|
assert_(isinstance(d,float))
|
|
assert_(np.issubdtype(i, np.signedinteger))
|
|
|
|
def test_vectorized_query(self):
|
|
d, i = self.kdtree.query(np.zeros((2,4,3)))
|
|
assert_equal(np.shape(d),(2,4))
|
|
assert_equal(np.shape(i),(2,4))
|
|
|
|
def test_single_query_multiple_neighbors(self):
|
|
s = 23
|
|
kk = self.kdtree.n+s
|
|
d, i = self.kdtree.query(np.array([0,0,0]),k=kk)
|
|
assert_equal(np.shape(d),(kk,))
|
|
assert_equal(np.shape(i),(kk,))
|
|
assert_(np.all(~np.isfinite(d[-s:])))
|
|
assert_(np.all(i[-s:] == self.kdtree.n))
|
|
|
|
def test_vectorized_query_multiple_neighbors(self):
|
|
s = 23
|
|
kk = self.kdtree.n+s
|
|
d, i = self.kdtree.query(np.zeros((2,4,3)),k=kk)
|
|
assert_equal(np.shape(d),(2,4,kk))
|
|
assert_equal(np.shape(i),(2,4,kk))
|
|
assert_(np.all(~np.isfinite(d[:,:,-s:])))
|
|
assert_(np.all(i[:,:,-s:] == self.kdtree.n))
|
|
|
|
def test_single_query_all_neighbors(self):
|
|
d, i = self.kdtree.query([0,0,0],k=None,distance_upper_bound=1.1)
|
|
assert_(isinstance(d,list))
|
|
assert_(isinstance(i,list))
|
|
|
|
def test_vectorized_query_all_neighbors(self):
|
|
d, i = self.kdtree.query(np.zeros((2,4,3)),k=None,distance_upper_bound=1.1)
|
|
assert_equal(np.shape(d),(2,4))
|
|
assert_equal(np.shape(i),(2,4))
|
|
|
|
assert_(isinstance(d[0,0],list))
|
|
assert_(isinstance(i[0,0],list))
|
|
|
|
|
|
class Test_vectorization_compiled:
|
|
def setup_method(self):
|
|
self.data = np.array([[0,0,0],
|
|
[0,0,1],
|
|
[0,1,0],
|
|
[0,1,1],
|
|
[1,0,0],
|
|
[1,0,1],
|
|
[1,1,0],
|
|
[1,1,1]])
|
|
self.kdtree = cKDTree(self.data)
|
|
|
|
def test_single_query(self):
|
|
d, i = self.kdtree.query([0,0,0])
|
|
assert_(isinstance(d,float))
|
|
assert_(isinstance(i,int))
|
|
|
|
def test_vectorized_query(self):
|
|
d, i = self.kdtree.query(np.zeros((2,4,3)))
|
|
assert_equal(np.shape(d),(2,4))
|
|
assert_equal(np.shape(i),(2,4))
|
|
|
|
def test_vectorized_query_noncontiguous_values(self):
|
|
np.random.seed(1234)
|
|
qs = np.random.randn(3,1000).T
|
|
ds, i_s = self.kdtree.query(qs)
|
|
for q, d, i in zip(qs,ds,i_s):
|
|
assert_equal(self.kdtree.query(q),(d,i))
|
|
|
|
def test_single_query_multiple_neighbors(self):
|
|
s = 23
|
|
kk = self.kdtree.n+s
|
|
d, i = self.kdtree.query([0,0,0],k=kk)
|
|
assert_equal(np.shape(d),(kk,))
|
|
assert_equal(np.shape(i),(kk,))
|
|
assert_(np.all(~np.isfinite(d[-s:])))
|
|
assert_(np.all(i[-s:] == self.kdtree.n))
|
|
|
|
def test_vectorized_query_multiple_neighbors(self):
|
|
s = 23
|
|
kk = self.kdtree.n+s
|
|
d, i = self.kdtree.query(np.zeros((2,4,3)),k=kk)
|
|
assert_equal(np.shape(d),(2,4,kk))
|
|
assert_equal(np.shape(i),(2,4,kk))
|
|
assert_(np.all(~np.isfinite(d[:,:,-s:])))
|
|
assert_(np.all(i[:,:,-s:] == self.kdtree.n))
|
|
|
|
|
|
class ball_consistency:
|
|
def distance(self, a, b, p):
|
|
return minkowski_distance(a, b, p)
|
|
|
|
def test_in_ball(self):
|
|
l = self.T.query_ball_point(self.x, self.d, p=self.p, eps=self.eps)
|
|
for i in l:
|
|
assert_(self.distance(self.data[i],self.x,self.p) <= self.d*(1.+self.eps))
|
|
|
|
def test_found_all(self):
|
|
c = np.ones(self.T.n,dtype=bool)
|
|
l = self.T.query_ball_point(self.x, self.d, p=self.p, eps=self.eps)
|
|
c[l] = False
|
|
assert_(np.all(self.distance(self.data[c],self.x,self.p) >= self.d/(1.+self.eps)))
|
|
|
|
|
|
class Test_random_ball(ball_consistency):
|
|
|
|
def setup_method(self):
|
|
n = 100
|
|
m = 4
|
|
np.random.seed(1234)
|
|
self.data = np.random.randn(n,m)
|
|
self.T = KDTree(self.data,leafsize=2)
|
|
self.x = np.random.randn(m)
|
|
self.p = 2.
|
|
self.eps = 0
|
|
self.d = 0.2
|
|
|
|
|
|
class Test_random_ball_compiled(ball_consistency):
|
|
|
|
def setup_method(self):
|
|
n = 100
|
|
m = 4
|
|
np.random.seed(1234)
|
|
self.data = np.random.randn(n,m)
|
|
self.T = cKDTree(self.data,leafsize=2)
|
|
self.x = np.random.randn(m)
|
|
self.p = 2.
|
|
self.eps = 0
|
|
self.d = 0.2
|
|
|
|
class Test_random_ball_compiled_periodic(ball_consistency):
|
|
def distance(self, a, b, p):
|
|
return distance_box(a, b, p, 1.0)
|
|
|
|
def setup_method(self):
|
|
n = 10000
|
|
m = 4
|
|
np.random.seed(1234)
|
|
self.data = np.random.uniform(size=(n,m))
|
|
self.T = cKDTree(self.data,leafsize=2, boxsize=1)
|
|
self.x = np.ones(m) * 0.1
|
|
self.p = 2.
|
|
self.eps = 0
|
|
self.d = 0.2
|
|
|
|
def test_in_ball_outside(self):
|
|
l = self.T.query_ball_point(self.x + 1.0, self.d, p=self.p, eps=self.eps)
|
|
for i in l:
|
|
assert_(self.distance(self.data[i],self.x,self.p) <= self.d*(1.+self.eps))
|
|
l = self.T.query_ball_point(self.x - 1.0, self.d, p=self.p, eps=self.eps)
|
|
for i in l:
|
|
assert_(self.distance(self.data[i],self.x,self.p) <= self.d*(1.+self.eps))
|
|
|
|
def test_found_all_outside(self):
|
|
c = np.ones(self.T.n,dtype=bool)
|
|
l = self.T.query_ball_point(self.x + 1.0, self.d, p=self.p, eps=self.eps)
|
|
c[l] = False
|
|
assert_(np.all(self.distance(self.data[c],self.x,self.p) >= self.d/(1.+self.eps)))
|
|
|
|
l = self.T.query_ball_point(self.x - 1.0, self.d, p=self.p, eps=self.eps)
|
|
c[l] = False
|
|
assert_(np.all(self.distance(self.data[c],self.x,self.p) >= self.d/(1.+self.eps)))
|
|
|
|
class Test_random_ball_approx(Test_random_ball):
|
|
|
|
def setup_method(self):
|
|
Test_random_ball.setup_method(self)
|
|
self.eps = 0.1
|
|
|
|
|
|
class Test_random_ball_approx_compiled(Test_random_ball_compiled):
|
|
|
|
def setup_method(self):
|
|
Test_random_ball_compiled.setup_method(self)
|
|
self.eps = 0.1
|
|
|
|
class Test_random_ball_approx_compiled_periodic(Test_random_ball_compiled_periodic):
|
|
|
|
def setup_method(self):
|
|
Test_random_ball_compiled_periodic.setup_method(self)
|
|
self.eps = 0.1
|
|
|
|
|
|
class Test_random_ball_far(Test_random_ball):
|
|
|
|
def setup_method(self):
|
|
Test_random_ball.setup_method(self)
|
|
self.d = 2.
|
|
|
|
|
|
class Test_random_ball_far_compiled(Test_random_ball_compiled):
|
|
|
|
def setup_method(self):
|
|
Test_random_ball_compiled.setup_method(self)
|
|
self.d = 2.
|
|
|
|
class Test_random_ball_far_compiled_periodic(Test_random_ball_compiled_periodic):
|
|
|
|
def setup_method(self):
|
|
Test_random_ball_compiled_periodic.setup_method(self)
|
|
self.d = 2.
|
|
|
|
|
|
class Test_random_ball_l1(Test_random_ball):
|
|
|
|
def setup_method(self):
|
|
Test_random_ball.setup_method(self)
|
|
self.p = 1
|
|
|
|
|
|
class Test_random_ball_l1_compiled(Test_random_ball_compiled):
|
|
|
|
def setup_method(self):
|
|
Test_random_ball_compiled.setup_method(self)
|
|
self.p = 1
|
|
|
|
class Test_random_ball_l1_compiled_periodic(Test_random_ball_compiled_periodic):
|
|
|
|
def setup_method(self):
|
|
Test_random_ball_compiled_periodic.setup_method(self)
|
|
self.p = 1
|
|
|
|
|
|
class Test_random_ball_linf(Test_random_ball):
|
|
|
|
def setup_method(self):
|
|
Test_random_ball.setup_method(self)
|
|
self.p = np.inf
|
|
|
|
class Test_random_ball_linf_compiled_periodic(Test_random_ball_compiled_periodic):
|
|
|
|
def setup_method(self):
|
|
Test_random_ball_compiled_periodic.setup_method(self)
|
|
self.p = np.inf
|
|
|
|
|
|
def test_random_ball_vectorized():
|
|
|
|
n = 20
|
|
m = 5
|
|
T = KDTree(np.random.randn(n,m))
|
|
|
|
r = T.query_ball_point(np.random.randn(2,3,m),1)
|
|
assert_equal(r.shape,(2,3))
|
|
assert_(isinstance(r[0,0],list))
|
|
|
|
|
|
def test_random_ball_vectorized_compiled():
|
|
|
|
n = 20
|
|
m = 5
|
|
np.random.seed(1234)
|
|
T = cKDTree(np.random.randn(n,m))
|
|
|
|
r = T.query_ball_point(np.random.randn(2,3,m),1)
|
|
assert_equal(r.shape,(2,3))
|
|
assert_(isinstance(r[0,0],list))
|
|
|
|
|
|
def test_query_ball_point_multithreading():
|
|
np.random.seed(0)
|
|
n = 5000
|
|
k = 2
|
|
points = np.random.randn(n,k)
|
|
T = cKDTree(points)
|
|
l1 = T.query_ball_point(points,0.003,n_jobs=1)
|
|
l2 = T.query_ball_point(points,0.003,n_jobs=64)
|
|
l3 = T.query_ball_point(points,0.003,n_jobs=-1)
|
|
|
|
for i in range(n):
|
|
if l1[i] or l2[i]:
|
|
assert_array_equal(l1[i],l2[i])
|
|
|
|
for i in range(n):
|
|
if l1[i] or l3[i]:
|
|
assert_array_equal(l1[i],l3[i])
|
|
|
|
|
|
class two_trees_consistency:
|
|
|
|
def distance(self, a, b, p):
|
|
return minkowski_distance(a, b, p)
|
|
|
|
def test_all_in_ball(self):
|
|
r = self.T1.query_ball_tree(self.T2, self.d, p=self.p, eps=self.eps)
|
|
for i, l in enumerate(r):
|
|
for j in l:
|
|
assert_(self.distance(self.data1[i],self.data2[j],self.p) <= self.d*(1.+self.eps))
|
|
|
|
def test_found_all(self):
|
|
r = self.T1.query_ball_tree(self.T2, self.d, p=self.p, eps=self.eps)
|
|
for i, l in enumerate(r):
|
|
c = np.ones(self.T2.n,dtype=bool)
|
|
c[l] = False
|
|
assert_(np.all(self.distance(self.data2[c],self.data1[i],self.p) >= self.d/(1.+self.eps)))
|
|
|
|
|
|
class Test_two_random_trees(two_trees_consistency):
|
|
|
|
def setup_method(self):
|
|
n = 50
|
|
m = 4
|
|
np.random.seed(1234)
|
|
self.data1 = np.random.randn(n,m)
|
|
self.T1 = KDTree(self.data1,leafsize=2)
|
|
self.data2 = np.random.randn(n,m)
|
|
self.T2 = KDTree(self.data2,leafsize=2)
|
|
self.p = 2.
|
|
self.eps = 0
|
|
self.d = 0.2
|
|
|
|
|
|
class Test_two_random_trees_compiled(two_trees_consistency):
|
|
|
|
def setup_method(self):
|
|
n = 50
|
|
m = 4
|
|
np.random.seed(1234)
|
|
self.data1 = np.random.randn(n,m)
|
|
self.T1 = cKDTree(self.data1,leafsize=2)
|
|
self.data2 = np.random.randn(n,m)
|
|
self.T2 = cKDTree(self.data2,leafsize=2)
|
|
self.p = 2.
|
|
self.eps = 0
|
|
self.d = 0.2
|
|
|
|
class Test_two_random_trees_compiled_periodic(two_trees_consistency):
|
|
def distance(self, a, b, p):
|
|
return distance_box(a, b, p, 1.0)
|
|
|
|
def setup_method(self):
|
|
n = 50
|
|
m = 4
|
|
np.random.seed(1234)
|
|
self.data1 = np.random.uniform(size=(n,m))
|
|
self.T1 = cKDTree(self.data1,leafsize=2, boxsize=1.0)
|
|
self.data2 = np.random.uniform(size=(n,m))
|
|
self.T2 = cKDTree(self.data2,leafsize=2, boxsize=1.0)
|
|
self.p = 2.
|
|
self.eps = 0
|
|
self.d = 0.2
|
|
|
|
class Test_two_random_trees_far(Test_two_random_trees):
|
|
|
|
def setup_method(self):
|
|
Test_two_random_trees.setup_method(self)
|
|
self.d = 2
|
|
|
|
|
|
class Test_two_random_trees_far_compiled(Test_two_random_trees_compiled):
|
|
|
|
def setup_method(self):
|
|
Test_two_random_trees_compiled.setup_method(self)
|
|
self.d = 2
|
|
|
|
class Test_two_random_trees_far_compiled_periodic(Test_two_random_trees_compiled_periodic):
|
|
|
|
def setup_method(self):
|
|
Test_two_random_trees_compiled_periodic.setup_method(self)
|
|
self.d = 2
|
|
|
|
|
|
class Test_two_random_trees_linf(Test_two_random_trees):
|
|
|
|
def setup_method(self):
|
|
Test_two_random_trees.setup_method(self)
|
|
self.p = np.inf
|
|
|
|
|
|
class Test_two_random_trees_linf_compiled(Test_two_random_trees_compiled):
|
|
|
|
def setup_method(self):
|
|
Test_two_random_trees_compiled.setup_method(self)
|
|
self.p = np.inf
|
|
|
|
class Test_two_random_trees_linf_compiled_periodic(Test_two_random_trees_compiled_periodic):
|
|
|
|
def setup_method(self):
|
|
Test_two_random_trees_compiled_periodic.setup_method(self)
|
|
self.p = np.inf
|
|
|
|
|
|
class Test_rectangle:
|
|
|
|
def setup_method(self):
|
|
self.rect = Rectangle([0,0],[1,1])
|
|
|
|
def test_min_inside(self):
|
|
assert_almost_equal(self.rect.min_distance_point([0.5,0.5]),0)
|
|
|
|
def test_min_one_side(self):
|
|
assert_almost_equal(self.rect.min_distance_point([0.5,1.5]),0.5)
|
|
|
|
def test_min_two_sides(self):
|
|
assert_almost_equal(self.rect.min_distance_point([2,2]),np.sqrt(2))
|
|
|
|
def test_max_inside(self):
|
|
assert_almost_equal(self.rect.max_distance_point([0.5,0.5]),1/np.sqrt(2))
|
|
|
|
def test_max_one_side(self):
|
|
assert_almost_equal(self.rect.max_distance_point([0.5,1.5]),np.hypot(0.5,1.5))
|
|
|
|
def test_max_two_sides(self):
|
|
assert_almost_equal(self.rect.max_distance_point([2,2]),2*np.sqrt(2))
|
|
|
|
def test_split(self):
|
|
less, greater = self.rect.split(0,0.1)
|
|
assert_array_equal(less.maxes,[0.1,1])
|
|
assert_array_equal(less.mins,[0,0])
|
|
assert_array_equal(greater.maxes,[1,1])
|
|
assert_array_equal(greater.mins,[0.1,0])
|
|
|
|
|
|
def test_distance_l2():
|
|
assert_almost_equal(minkowski_distance([0,0],[1,1],2),np.sqrt(2))
|
|
|
|
|
|
def test_distance_l1():
|
|
assert_almost_equal(minkowski_distance([0,0],[1,1],1),2)
|
|
|
|
|
|
def test_distance_linf():
|
|
assert_almost_equal(minkowski_distance([0,0],[1,1],np.inf),1)
|
|
|
|
|
|
def test_distance_vectorization():
|
|
np.random.seed(1234)
|
|
x = np.random.randn(10,1,3)
|
|
y = np.random.randn(1,7,3)
|
|
assert_equal(minkowski_distance(x,y).shape,(10,7))
|
|
|
|
|
|
class count_neighbors_consistency:
|
|
def test_one_radius(self):
|
|
r = 0.2
|
|
assert_equal(self.T1.count_neighbors(self.T2, r),
|
|
np.sum([len(l) for l in self.T1.query_ball_tree(self.T2,r)]))
|
|
|
|
def test_large_radius(self):
|
|
r = 1000
|
|
assert_equal(self.T1.count_neighbors(self.T2, r),
|
|
np.sum([len(l) for l in self.T1.query_ball_tree(self.T2,r)]))
|
|
|
|
def test_multiple_radius(self):
|
|
rs = np.exp(np.linspace(np.log(0.01),np.log(10),3))
|
|
results = self.T1.count_neighbors(self.T2, rs)
|
|
assert_(np.all(np.diff(results) >= 0))
|
|
for r,result in zip(rs, results):
|
|
assert_equal(self.T1.count_neighbors(self.T2, r), result)
|
|
|
|
class Test_count_neighbors(count_neighbors_consistency):
|
|
|
|
def setup_method(self):
|
|
n = 50
|
|
m = 2
|
|
np.random.seed(1234)
|
|
self.T1 = KDTree(np.random.randn(n,m),leafsize=2)
|
|
self.T2 = KDTree(np.random.randn(n,m),leafsize=2)
|
|
|
|
|
|
class Test_count_neighbors_compiled(count_neighbors_consistency):
|
|
|
|
def setup_method(self):
|
|
n = 50
|
|
m = 2
|
|
np.random.seed(1234)
|
|
self.T1 = cKDTree(np.random.randn(n,m),leafsize=2)
|
|
self.T2 = cKDTree(np.random.randn(n,m),leafsize=2)
|
|
|
|
|
|
class sparse_distance_matrix_consistency:
|
|
|
|
def distance(self, a, b, p):
|
|
return minkowski_distance(a, b, p)
|
|
|
|
def test_consistency_with_neighbors(self):
|
|
M = self.T1.sparse_distance_matrix(self.T2, self.r)
|
|
r = self.T1.query_ball_tree(self.T2, self.r)
|
|
for i,l in enumerate(r):
|
|
for j in l:
|
|
assert_almost_equal(M[i,j],
|
|
self.distance(self.T1.data[i], self.T2.data[j], self.p),
|
|
decimal=14)
|
|
for ((i,j),d) in M.items():
|
|
assert_(j in r[i])
|
|
|
|
def test_zero_distance(self):
|
|
# raises an exception for bug 870 (FIXME: Does it?)
|
|
self.T1.sparse_distance_matrix(self.T1, self.r)
|
|
|
|
class Test_sparse_distance_matrix(sparse_distance_matrix_consistency):
|
|
|
|
def setup_method(self):
|
|
n = 50
|
|
m = 4
|
|
np.random.seed(1234)
|
|
data1 = np.random.randn(n,m)
|
|
data2 = np.random.randn(n,m)
|
|
self.T1 = cKDTree(data1,leafsize=2)
|
|
self.T2 = cKDTree(data2,leafsize=2)
|
|
self.r = 0.5
|
|
self.p = 2
|
|
self.data1 = data1
|
|
self.data2 = data2
|
|
self.n = n
|
|
self.m = m
|
|
|
|
class Test_sparse_distance_matrix_compiled(sparse_distance_matrix_consistency):
|
|
|
|
def setup_method(self):
|
|
n = 50
|
|
m = 4
|
|
np.random.seed(0)
|
|
data1 = np.random.randn(n,m)
|
|
data2 = np.random.randn(n,m)
|
|
self.T1 = cKDTree(data1,leafsize=2)
|
|
self.T2 = cKDTree(data2,leafsize=2)
|
|
self.ref_T1 = KDTree(data1, leafsize=2)
|
|
self.ref_T2 = KDTree(data2, leafsize=2)
|
|
self.r = 0.5
|
|
self.n = n
|
|
self.m = m
|
|
self.data1 = data1
|
|
self.data2 = data2
|
|
self.p = 2
|
|
|
|
def test_consistency_with_python(self):
|
|
M1 = self.T1.sparse_distance_matrix(self.T2, self.r)
|
|
M2 = self.ref_T1.sparse_distance_matrix(self.ref_T2, self.r)
|
|
assert_array_almost_equal(M1.todense(), M2.todense(), decimal=14)
|
|
|
|
def test_against_logic_error_regression(self):
|
|
# regression test for gh-5077 logic error
|
|
np.random.seed(0)
|
|
too_many = np.array(np.random.randn(18, 2), dtype=int)
|
|
tree = cKDTree(too_many, balanced_tree=False, compact_nodes=False)
|
|
d = tree.sparse_distance_matrix(tree, 3).todense()
|
|
assert_array_almost_equal(d, d.T, decimal=14)
|
|
|
|
def test_ckdtree_return_types(self):
|
|
# brute-force reference
|
|
ref = np.zeros((self.n,self.n))
|
|
for i in range(self.n):
|
|
for j in range(self.n):
|
|
v = self.data1[i,:] - self.data2[j,:]
|
|
ref[i,j] = np.dot(v,v)
|
|
ref = np.sqrt(ref)
|
|
ref[ref > self.r] = 0.
|
|
# test return type 'dict'
|
|
dist = np.zeros((self.n,self.n))
|
|
r = self.T1.sparse_distance_matrix(self.T2, self.r, output_type='dict')
|
|
for i,j in r.keys():
|
|
dist[i,j] = r[(i,j)]
|
|
assert_array_almost_equal(ref, dist, decimal=14)
|
|
# test return type 'ndarray'
|
|
dist = np.zeros((self.n,self.n))
|
|
r = self.T1.sparse_distance_matrix(self.T2, self.r,
|
|
output_type='ndarray')
|
|
for k in range(r.shape[0]):
|
|
i = r['i'][k]
|
|
j = r['j'][k]
|
|
v = r['v'][k]
|
|
dist[i,j] = v
|
|
assert_array_almost_equal(ref, dist, decimal=14)
|
|
# test return type 'dok_matrix'
|
|
r = self.T1.sparse_distance_matrix(self.T2, self.r,
|
|
output_type='dok_matrix')
|
|
assert_array_almost_equal(ref, r.todense(), decimal=14)
|
|
# test return type 'coo_matrix'
|
|
r = self.T1.sparse_distance_matrix(self.T2, self.r,
|
|
output_type='coo_matrix')
|
|
assert_array_almost_equal(ref, r.todense(), decimal=14)
|
|
|
|
|
|
def test_distance_matrix():
|
|
m = 10
|
|
n = 11
|
|
k = 4
|
|
np.random.seed(1234)
|
|
xs = np.random.randn(m,k)
|
|
ys = np.random.randn(n,k)
|
|
ds = distance_matrix(xs,ys)
|
|
assert_equal(ds.shape, (m,n))
|
|
for i in range(m):
|
|
for j in range(n):
|
|
assert_almost_equal(minkowski_distance(xs[i],ys[j]),ds[i,j])
|
|
|
|
|
|
def test_distance_matrix_looping():
|
|
m = 10
|
|
n = 11
|
|
k = 4
|
|
np.random.seed(1234)
|
|
xs = np.random.randn(m,k)
|
|
ys = np.random.randn(n,k)
|
|
ds = distance_matrix(xs,ys)
|
|
dsl = distance_matrix(xs,ys,threshold=1)
|
|
assert_equal(ds,dsl)
|
|
|
|
|
|
def check_onetree_query(T,d):
|
|
r = T.query_ball_tree(T, d)
|
|
s = set()
|
|
for i, l in enumerate(r):
|
|
for j in l:
|
|
if i < j:
|
|
s.add((i,j))
|
|
|
|
assert_(s == T.query_pairs(d))
|
|
|
|
def test_onetree_query():
|
|
np.random.seed(0)
|
|
n = 50
|
|
k = 4
|
|
points = np.random.randn(n,k)
|
|
T = KDTree(points)
|
|
check_onetree_query(T, 0.1)
|
|
|
|
points = np.random.randn(3*n,k)
|
|
points[:n] *= 0.001
|
|
points[n:2*n] += 2
|
|
T = KDTree(points)
|
|
check_onetree_query(T, 0.1)
|
|
check_onetree_query(T, 0.001)
|
|
check_onetree_query(T, 0.00001)
|
|
check_onetree_query(T, 1e-6)
|
|
|
|
|
|
def test_onetree_query_compiled():
|
|
np.random.seed(0)
|
|
n = 100
|
|
k = 4
|
|
points = np.random.randn(n,k)
|
|
T = cKDTree(points)
|
|
check_onetree_query(T, 0.1)
|
|
|
|
points = np.random.randn(3*n,k)
|
|
points[:n] *= 0.001
|
|
points[n:2*n] += 2
|
|
T = cKDTree(points)
|
|
check_onetree_query(T, 0.1)
|
|
check_onetree_query(T, 0.001)
|
|
check_onetree_query(T, 0.00001)
|
|
check_onetree_query(T, 1e-6)
|
|
|
|
|
|
def test_query_pairs_single_node():
|
|
tree = KDTree([[0, 1]])
|
|
assert_equal(tree.query_pairs(0.5), set())
|
|
|
|
|
|
def test_query_pairs_single_node_compiled():
|
|
tree = cKDTree([[0, 1]])
|
|
assert_equal(tree.query_pairs(0.5), set())
|
|
|
|
|
|
def test_ckdtree_query_pairs():
|
|
np.random.seed(0)
|
|
n = 50
|
|
k = 2
|
|
r = 0.1
|
|
r2 = r**2
|
|
points = np.random.randn(n,k)
|
|
T = cKDTree(points)
|
|
# brute force reference
|
|
brute = set()
|
|
for i in range(n):
|
|
for j in range(i+1,n):
|
|
v = points[i,:] - points[j,:]
|
|
if np.dot(v,v) <= r2:
|
|
brute.add((i,j))
|
|
l0 = sorted(brute)
|
|
# test default return type
|
|
s = T.query_pairs(r)
|
|
l1 = sorted(s)
|
|
assert_array_equal(l0,l1)
|
|
# test return type 'set'
|
|
s = T.query_pairs(r, output_type='set')
|
|
l1 = sorted(s)
|
|
assert_array_equal(l0,l1)
|
|
# test return type 'ndarray'
|
|
s = set()
|
|
arr = T.query_pairs(r, output_type='ndarray')
|
|
for i in range(arr.shape[0]):
|
|
s.add((int(arr[i,0]),int(arr[i,1])))
|
|
l2 = sorted(s)
|
|
assert_array_equal(l0,l2)
|
|
|
|
|
|
def test_ball_point_ints():
|
|
# Regression test for #1373.
|
|
x, y = np.mgrid[0:4, 0:4]
|
|
points = list(zip(x.ravel(), y.ravel()))
|
|
tree = KDTree(points)
|
|
assert_equal(sorted([4, 8, 9, 12]),
|
|
sorted(tree.query_ball_point((2, 0), 1)))
|
|
points = np.asarray(points, dtype=float)
|
|
tree = KDTree(points)
|
|
assert_equal(sorted([4, 8, 9, 12]),
|
|
sorted(tree.query_ball_point((2, 0), 1)))
|
|
|
|
|
|
def test_kdtree_comparisons():
|
|
# Regression test: node comparisons were done wrong in 0.12 w/Py3.
|
|
nodes = [KDTree.node() for _ in range(3)]
|
|
assert_equal(sorted(nodes), sorted(nodes[::-1]))
|
|
|
|
|
|
def test_ckdtree_build_modes():
|
|
# check if different build modes for cKDTree give
|
|
# similar query results
|
|
np.random.seed(0)
|
|
n = 5000
|
|
k = 4
|
|
points = np.random.randn(n, k)
|
|
T1 = cKDTree(points).query(points, k=5)[-1]
|
|
T2 = cKDTree(points, compact_nodes=False).query(points, k=5)[-1]
|
|
T3 = cKDTree(points, balanced_tree=False).query(points, k=5)[-1]
|
|
T4 = cKDTree(points, compact_nodes=False, balanced_tree=False).query(points, k=5)[-1]
|
|
assert_array_equal(T1, T2)
|
|
assert_array_equal(T1, T3)
|
|
assert_array_equal(T1, T4)
|
|
|
|
def test_ckdtree_pickle():
|
|
# test if it is possible to pickle
|
|
# a cKDTree
|
|
try:
|
|
import cPickle as pickle
|
|
except ImportError:
|
|
import pickle
|
|
np.random.seed(0)
|
|
n = 50
|
|
k = 4
|
|
points = np.random.randn(n, k)
|
|
T1 = cKDTree(points)
|
|
tmp = pickle.dumps(T1)
|
|
T2 = pickle.loads(tmp)
|
|
T1 = T1.query(points, k=5)[-1]
|
|
T2 = T2.query(points, k=5)[-1]
|
|
assert_array_equal(T1, T2)
|
|
|
|
def test_ckdtree_pickle_boxsize():
|
|
# test if it is possible to pickle a periodic
|
|
# cKDTree
|
|
try:
|
|
import cPickle as pickle
|
|
except ImportError:
|
|
import pickle
|
|
np.random.seed(0)
|
|
n = 50
|
|
k = 4
|
|
points = np.random.uniform(size=(n, k))
|
|
T1 = cKDTree(points, boxsize=1.0)
|
|
tmp = pickle.dumps(T1)
|
|
T2 = pickle.loads(tmp)
|
|
T1 = T1.query(points, k=5)[-1]
|
|
T2 = T2.query(points, k=5)[-1]
|
|
assert_array_equal(T1, T2)
|
|
|
|
def test_ckdtree_copy_data():
|
|
# check if copy_data=True makes the kd-tree
|
|
# impervious to data corruption by modification of
|
|
# the data arrray
|
|
np.random.seed(0)
|
|
n = 5000
|
|
k = 4
|
|
points = np.random.randn(n, k)
|
|
T = cKDTree(points, copy_data=True)
|
|
q = points.copy()
|
|
T1 = T.query(q, k=5)[-1]
|
|
points[...] = np.random.randn(n, k)
|
|
T2 = T.query(q, k=5)[-1]
|
|
assert_array_equal(T1, T2)
|
|
|
|
def test_ckdtree_parallel():
|
|
# check if parallel=True also generates correct
|
|
# query results
|
|
np.random.seed(0)
|
|
n = 5000
|
|
k = 4
|
|
points = np.random.randn(n, k)
|
|
T = cKDTree(points)
|
|
T1 = T.query(points, k=5, n_jobs=64)[-1]
|
|
T2 = T.query(points, k=5, n_jobs=-1)[-1]
|
|
T3 = T.query(points, k=5)[-1]
|
|
assert_array_equal(T1, T2)
|
|
assert_array_equal(T1, T3)
|
|
|
|
def test_ckdtree_view():
|
|
# Check that the nodes can be correctly viewed from Python.
|
|
# This test also sanity checks each node in the cKDTree, and
|
|
# thus verifies the internal structure of the kd-tree.
|
|
np.random.seed(0)
|
|
n = 100
|
|
k = 4
|
|
points = np.random.randn(n, k)
|
|
kdtree = cKDTree(points)
|
|
|
|
# walk the whole kd-tree and sanity check each node
|
|
def recurse_tree(n):
|
|
assert_(isinstance(n, cKDTreeNode))
|
|
if n.split_dim == -1:
|
|
assert_(n.lesser is None)
|
|
assert_(n.greater is None)
|
|
assert_(n.indices.shape[0] <= kdtree.leafsize)
|
|
else:
|
|
recurse_tree(n.lesser)
|
|
recurse_tree(n.greater)
|
|
x = n.lesser.data_points[:, n.split_dim]
|
|
y = n.greater.data_points[:, n.split_dim]
|
|
assert_(x.max() < y.min())
|
|
|
|
recurse_tree(kdtree.tree)
|
|
# check that indices are correctly retrieved
|
|
n = kdtree.tree
|
|
assert_array_equal(np.sort(n.indices), range(100))
|
|
# check that data_points are correctly retrieved
|
|
assert_array_equal(kdtree.data[n.indices, :], n.data_points)
|
|
|
|
# cKDTree is specialized to type double points, so no need to make
|
|
# a unit test corresponding to test_ball_point_ints()
|
|
|
|
def test_ckdtree_list_k():
|
|
# check ckdtree periodic boundary
|
|
n = 200
|
|
m = 2
|
|
klist = [1, 2, 3]
|
|
kint = 3
|
|
|
|
np.random.seed(1234)
|
|
data = np.random.uniform(size=(n, m))
|
|
kdtree = cKDTree(data, leafsize=1)
|
|
|
|
# check agreement between arange(1,k+1) and k
|
|
dd, ii = kdtree.query(data, klist)
|
|
dd1, ii1 = kdtree.query(data, kint)
|
|
assert_equal(dd, dd1)
|
|
assert_equal(ii, ii1)
|
|
|
|
# now check skipping one element
|
|
klist = np.array([1, 3])
|
|
kint = 3
|
|
dd, ii = kdtree.query(data, kint)
|
|
dd1, ii1 = kdtree.query(data, klist)
|
|
assert_equal(dd1, dd[..., klist - 1])
|
|
assert_equal(ii1, ii[..., klist - 1])
|
|
|
|
# check k == 1 special case
|
|
# and k == [1] non-special case
|
|
dd, ii = kdtree.query(data, 1)
|
|
dd1, ii1 = kdtree.query(data, [1])
|
|
assert_equal(len(dd.shape), 1)
|
|
assert_equal(len(dd1.shape), 2)
|
|
assert_equal(dd, np.ravel(dd1))
|
|
assert_equal(ii, np.ravel(ii1))
|
|
|
|
def test_ckdtree_box():
|
|
# check ckdtree periodic boundary
|
|
n = 2000
|
|
m = 3
|
|
k = 3
|
|
np.random.seed(1234)
|
|
data = np.random.uniform(size=(n, m))
|
|
kdtree = cKDTree(data, leafsize=1, boxsize=1.0)
|
|
|
|
# use the standard python KDTree for the simulated periodic box
|
|
kdtree2 = cKDTree(data, leafsize=1)
|
|
|
|
for p in [1, 2, 3.0, np.inf]:
|
|
dd, ii = kdtree.query(data, k, p=p)
|
|
|
|
dd1, ii1 = kdtree.query(data + 1.0, k, p=p)
|
|
assert_almost_equal(dd, dd1)
|
|
assert_equal(ii, ii1)
|
|
|
|
dd1, ii1 = kdtree.query(data - 1.0, k, p=p)
|
|
assert_almost_equal(dd, dd1)
|
|
assert_equal(ii, ii1)
|
|
|
|
dd2, ii2 = simulate_periodic_box(kdtree2, data, k, boxsize=1.0, p=p)
|
|
assert_almost_equal(dd, dd2)
|
|
assert_equal(ii, ii2)
|
|
|
|
def test_ckdtree_box_0boxsize():
|
|
# check ckdtree periodic boundary that mimics non-periodic
|
|
n = 2000
|
|
m = 2
|
|
k = 3
|
|
np.random.seed(1234)
|
|
data = np.random.uniform(size=(n, m))
|
|
kdtree = cKDTree(data, leafsize=1, boxsize=0.0)
|
|
|
|
# use the standard python KDTree for the simulated periodic box
|
|
kdtree2 = cKDTree(data, leafsize=1)
|
|
|
|
for p in [1, 2, np.inf]:
|
|
dd, ii = kdtree.query(data, k, p=p)
|
|
|
|
dd1, ii1 = kdtree2.query(data, k, p=p)
|
|
assert_almost_equal(dd, dd1)
|
|
assert_equal(ii, ii1)
|
|
|
|
def test_ckdtree_box_upper_bounds():
|
|
data = np.linspace(0, 2, 10).reshape(-1, 2)
|
|
data[:, 1] += 10
|
|
assert_raises(ValueError, cKDTree, data, leafsize=1, boxsize=1.0)
|
|
assert_raises(ValueError, cKDTree, data, leafsize=1, boxsize=(0.0, 2.0))
|
|
# skip a dimension.
|
|
cKDTree(data, leafsize=1, boxsize=(2.0, 0.0))
|
|
|
|
def test_ckdtree_box_lower_bounds():
|
|
data = np.linspace(-1, 1, 10)
|
|
assert_raises(ValueError, cKDTree, data, leafsize=1, boxsize=1.0)
|
|
|
|
def simulate_periodic_box(kdtree, data, k, boxsize, p):
|
|
dd = []
|
|
ii = []
|
|
x = np.arange(3 ** data.shape[1])
|
|
nn = np.array(np.unravel_index(x, [3] * data.shape[1])).T
|
|
nn = nn - 1.0
|
|
for n in nn:
|
|
image = data + n * 1.0 * boxsize
|
|
dd2, ii2 = kdtree.query(image, k, p=p)
|
|
dd2 = dd2.reshape(-1, k)
|
|
ii2 = ii2.reshape(-1, k)
|
|
dd.append(dd2)
|
|
ii.append(ii2)
|
|
dd = np.concatenate(dd, axis=-1)
|
|
ii = np.concatenate(ii, axis=-1)
|
|
|
|
result = np.empty([len(data), len(nn) * k], dtype=[
|
|
('ii', 'i8'),
|
|
('dd', 'f8')])
|
|
result['ii'][:] = ii
|
|
result['dd'][:] = dd
|
|
result.sort(order='dd')
|
|
return result['dd'][:, :k], result['ii'][:,:k]
|
|
|
|
|
|
@pytest.mark.skipif(python_implementation() == 'PyPy',
|
|
reason="Fails on PyPy CI runs. See #9507")
|
|
def test_ckdtree_memuse():
|
|
# unit test adaptation of gh-5630
|
|
|
|
# NOTE: this will fail when run via valgrind,
|
|
# because rss is no longer a reliable memory usage indicator.
|
|
|
|
try:
|
|
import resource
|
|
except ImportError:
|
|
# resource is not available on Windows with Python 2.6
|
|
return
|
|
# Make some data
|
|
dx, dy = 0.05, 0.05
|
|
y, x = np.mgrid[slice(1, 5 + dy, dy),
|
|
slice(1, 5 + dx, dx)]
|
|
z = np.sin(x)**10 + np.cos(10 + y*x) * np.cos(x)
|
|
z_copy = np.empty_like(z)
|
|
z_copy[:] = z
|
|
# Place FILLVAL in z_copy at random number of random locations
|
|
FILLVAL = 99.
|
|
mask = np.random.randint(0, z.size, np.random.randint(50) + 5)
|
|
z_copy.flat[mask] = FILLVAL
|
|
igood = np.vstack(np.nonzero(x != FILLVAL)).T
|
|
ibad = np.vstack(np.nonzero(x == FILLVAL)).T
|
|
mem_use = resource.getrusage(resource.RUSAGE_SELF).ru_maxrss
|
|
# burn-in
|
|
for i in range(10):
|
|
tree = cKDTree(igood)
|
|
# count memleaks while constructing and querying cKDTree
|
|
num_leaks = 0
|
|
for i in range(100):
|
|
mem_use = resource.getrusage(resource.RUSAGE_SELF).ru_maxrss
|
|
tree = cKDTree(igood)
|
|
dist, iquery = tree.query(ibad, k=4, p=2)
|
|
new_mem_use = resource.getrusage(resource.RUSAGE_SELF).ru_maxrss
|
|
if new_mem_use > mem_use:
|
|
num_leaks += 1
|
|
# ideally zero leaks, but errors might accidentally happen
|
|
# outside cKDTree
|
|
assert_(num_leaks < 10)
|
|
|
|
def test_ckdtree_weights():
|
|
|
|
data = np.linspace(0, 1, 4).reshape(-1, 1)
|
|
tree1 = cKDTree(data, leafsize=1)
|
|
weights = np.ones(len(data), dtype='f4')
|
|
|
|
nw = tree1._build_weights(weights)
|
|
assert_array_equal(nw, [4, 2, 1, 1, 2, 1, 1])
|
|
|
|
assert_raises(ValueError, tree1._build_weights, weights[:-1])
|
|
|
|
for i in range(10):
|
|
# since weights are uniform, these shall agree:
|
|
c1 = tree1.count_neighbors(tree1, np.linspace(0, 10, i))
|
|
c2 = tree1.count_neighbors(tree1, np.linspace(0, 10, i),
|
|
weights=(weights, weights))
|
|
c3 = tree1.count_neighbors(tree1, np.linspace(0, 10, i),
|
|
weights=(weights, None))
|
|
c4 = tree1.count_neighbors(tree1, np.linspace(0, 10, i),
|
|
weights=(None, weights))
|
|
c5 = tree1.count_neighbors(tree1, np.linspace(0, 10, i),
|
|
weights=weights)
|
|
|
|
assert_array_equal(c1, c2)
|
|
assert_array_equal(c1, c3)
|
|
assert_array_equal(c1, c4)
|
|
|
|
for i in range(len(data)):
|
|
# this tests removal of one data point by setting weight to 0
|
|
w1 = weights.copy()
|
|
w1[i] = 0
|
|
data2 = data[w1 != 0]
|
|
w2 = weights[w1 != 0]
|
|
tree2 = cKDTree(data2)
|
|
|
|
c1 = tree1.count_neighbors(tree1, np.linspace(0, 10, 100),
|
|
weights=(w1, w1))
|
|
# "c2 is correct"
|
|
c2 = tree2.count_neighbors(tree2, np.linspace(0, 10, 100))
|
|
|
|
assert_array_equal(c1, c2)
|
|
|
|
#this asserts for two different trees, singular weights
|
|
# crashes
|
|
assert_raises(ValueError, tree1.count_neighbors,
|
|
tree2, np.linspace(0, 10, 100), weights=w1)
|
|
|
|
def test_ckdtree_count_neighbous_multiple_r():
|
|
n = 2000
|
|
m = 2
|
|
np.random.seed(1234)
|
|
data = np.random.normal(size=(n, m))
|
|
kdtree = cKDTree(data, leafsize=1)
|
|
r0 = [0, 0.01, 0.01, 0.02, 0.05]
|
|
i0 = np.arange(len(r0))
|
|
n0 = kdtree.count_neighbors(kdtree, r0)
|
|
nnc = kdtree.count_neighbors(kdtree, r0, cumulative=False)
|
|
assert_equal(n0, nnc.cumsum())
|
|
|
|
for i, r in zip(itertools.permutations(i0),
|
|
itertools.permutations(r0)):
|
|
# permute n0 by i and it shall agree
|
|
n = kdtree.count_neighbors(kdtree, r)
|
|
assert_array_equal(n, n0[list(i)])
|
|
|
|
def test_len0_arrays():
|
|
# make sure len-0 arrays are handled correctly
|
|
# in range queries (gh-5639)
|
|
np.random.seed(1234)
|
|
X = np.random.rand(10,2)
|
|
Y = np.random.rand(10,2)
|
|
tree = cKDTree(X)
|
|
# query_ball_point (single)
|
|
d,i = tree.query([.5, .5], k=1)
|
|
z = tree.query_ball_point([.5, .5], 0.1*d)
|
|
assert_array_equal(z, [])
|
|
# query_ball_point (multiple)
|
|
d,i = tree.query(Y, k=1)
|
|
mind = d.min()
|
|
z = tree.query_ball_point(Y, 0.1*mind)
|
|
y = np.empty(shape=(10,), dtype=object)
|
|
y.fill([])
|
|
assert_array_equal(y, z)
|
|
# query_ball_tree
|
|
other = cKDTree(Y)
|
|
y = tree.query_ball_tree(other, 0.1*mind)
|
|
assert_array_equal(10*[[]], y)
|
|
# count_neighbors
|
|
y = tree.count_neighbors(other, 0.1*mind)
|
|
assert_(y == 0)
|
|
# sparse_distance_matrix
|
|
y = tree.sparse_distance_matrix(other, 0.1*mind, output_type='dok_matrix')
|
|
assert_array_equal(y == np.zeros((10,10)), True)
|
|
y = tree.sparse_distance_matrix(other, 0.1*mind, output_type='coo_matrix')
|
|
assert_array_equal(y == np.zeros((10,10)), True)
|
|
y = tree.sparse_distance_matrix(other, 0.1*mind, output_type='dict')
|
|
assert_equal(y, {})
|
|
y = tree.sparse_distance_matrix(other,0.1*mind, output_type='ndarray')
|
|
_dtype = [('i',np.intp), ('j',np.intp), ('v',np.float64)]
|
|
res_dtype = np.dtype(_dtype, align=True)
|
|
z = np.empty(shape=(0,), dtype=res_dtype)
|
|
assert_array_equal(y, z)
|
|
# query_pairs
|
|
d,i = tree.query(X, k=2)
|
|
mind = d[:,-1].min()
|
|
y = tree.query_pairs(0.1*mind, output_type='set')
|
|
assert_equal(y, set())
|
|
y = tree.query_pairs(0.1*mind, output_type='ndarray')
|
|
z = np.empty(shape=(0,2), dtype=np.intp)
|
|
assert_array_equal(y, z)
|
|
|
|
def test_ckdtree_duplicated_inputs():
|
|
# check ckdtree with duplicated inputs
|
|
n = 1024
|
|
for m in range(1, 8):
|
|
data = np.concatenate([
|
|
np.ones((n // 2, m)) * 1,
|
|
np.ones((n // 2, m)) * 2], axis=0)
|
|
|
|
# it shall not divide more than 3 nodes.
|
|
# root left (1), and right (2)
|
|
kdtree = cKDTree(data, leafsize=1)
|
|
assert_equal(kdtree.size, 3)
|
|
|
|
kdtree = cKDTree(data)
|
|
assert_equal(kdtree.size, 3)
|
|
|
|
# if compact_nodes are disabled, the number
|
|
# of nodes is n (per leaf) + (m - 1)* 2 (splits per dimension) + 1
|
|
# and the root
|
|
kdtree = cKDTree(data, compact_nodes=False, leafsize=1)
|
|
assert_equal(kdtree.size, n + m * 2 - 1)
|
|
|
|
def test_ckdtree_noncumulative_nondecreasing():
|
|
# check ckdtree with duplicated inputs
|
|
|
|
# it shall not divide more than 3 nodes.
|
|
# root left (1), and right (2)
|
|
kdtree = cKDTree([[0]], leafsize=1)
|
|
|
|
assert_raises(ValueError, kdtree.count_neighbors,
|
|
kdtree, [0.1, 0], cumulative=False)
|
|
|
|
def test_short_knn():
|
|
|
|
# The test case is based on github: #6425 by @SteveDoyle2
|
|
|
|
xyz = np.array([
|
|
[0., 0., 0.],
|
|
[1.01, 0., 0.],
|
|
[0., 1., 0.],
|
|
[0., 1.01, 0.],
|
|
[1., 0., 0.],
|
|
[1., 1., 0.],],
|
|
dtype='float64')
|
|
|
|
ckdt = cKDTree(xyz)
|
|
|
|
deq, ieq = ckdt.query(xyz, k=4, distance_upper_bound=0.2)
|
|
|
|
assert_array_almost_equal(deq,
|
|
[[0., np.inf, np.inf, np.inf],
|
|
[0., 0.01, np.inf, np.inf],
|
|
[0., 0.01, np.inf, np.inf],
|
|
[0., 0.01, np.inf, np.inf],
|
|
[0., 0.01, np.inf, np.inf],
|
|
[0., np.inf, np.inf, np.inf]])
|
|
|
|
class Test_sorted_query_ball_point(object):
|
|
|
|
def setup_method(self):
|
|
np.random.seed(1234)
|
|
self.x = np.random.randn(100, 1)
|
|
self.ckdt = cKDTree(self.x)
|
|
|
|
def test_return_sorted_True(self):
|
|
idxs_list = self.ckdt.query_ball_point(self.x, 1., return_sorted=True)
|
|
for idxs in idxs_list:
|
|
assert_array_equal(idxs, sorted(idxs))
|
|
|
|
def test_return_sorted_None(self):
|
|
"""Previous behavior was to sort the returned indices if there were
|
|
multiple points per query but not sort them if there was a single point
|
|
per query."""
|
|
idxs_list = self.ckdt.query_ball_point(self.x, 1.)
|
|
for idxs in idxs_list:
|
|
assert_array_equal(idxs, sorted(idxs))
|
|
|
|
idxs_list_single = [self.ckdt.query_ball_point(xi, 1.) for xi in self.x]
|
|
idxs_list_False = self.ckdt.query_ball_point(self.x, 1., return_sorted=False)
|
|
for idxs0, idxs1 in zip(idxs_list_False, idxs_list_single):
|
|
assert_array_equal(idxs0, idxs1)
|