You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
464 lines
15 KiB
Python
464 lines
15 KiB
Python
from __future__ import division, print_function, absolute_import
|
|
|
|
import os
|
|
|
|
import numpy as np
|
|
from numpy.testing import (assert_equal, assert_allclose, assert_,
|
|
assert_almost_equal, assert_array_almost_equal)
|
|
from pytest import raises as assert_raises
|
|
|
|
from numpy import array, asarray, pi, sin, cos, arange, dot, ravel, sqrt, round
|
|
from scipy import interpolate
|
|
from scipy.interpolate.fitpack import (splrep, splev, bisplrep, bisplev,
|
|
sproot, splprep, splint, spalde, splder, splantider, insert, dblint)
|
|
from scipy.interpolate.dfitpack import regrid_smth
|
|
|
|
|
|
def data_file(basename):
|
|
return os.path.join(os.path.abspath(os.path.dirname(__file__)),
|
|
'data', basename)
|
|
|
|
|
|
def norm2(x):
|
|
return sqrt(dot(x.T,x))
|
|
|
|
|
|
def f1(x,d=0):
|
|
if d is None:
|
|
return "sin"
|
|
if x is None:
|
|
return "sin(x)"
|
|
if d % 4 == 0:
|
|
return sin(x)
|
|
if d % 4 == 1:
|
|
return cos(x)
|
|
if d % 4 == 2:
|
|
return -sin(x)
|
|
if d % 4 == 3:
|
|
return -cos(x)
|
|
|
|
|
|
def f2(x,y=0,dx=0,dy=0):
|
|
if x is None:
|
|
return "sin(x+y)"
|
|
d = dx+dy
|
|
if d % 4 == 0:
|
|
return sin(x+y)
|
|
if d % 4 == 1:
|
|
return cos(x+y)
|
|
if d % 4 == 2:
|
|
return -sin(x+y)
|
|
if d % 4 == 3:
|
|
return -cos(x+y)
|
|
|
|
|
|
def makepairs(x, y):
|
|
"""Helper function to create an array of pairs of x and y."""
|
|
# Or itertools.product (>= python 2.6)
|
|
xy = array([[a, b] for a in asarray(x) for b in asarray(y)])
|
|
return xy.T
|
|
|
|
|
|
def put(*a):
|
|
"""Produce some output if file run directly"""
|
|
import sys
|
|
if hasattr(sys.modules['__main__'], '__put_prints'):
|
|
sys.stderr.write("".join(map(str, a)) + "\n")
|
|
|
|
|
|
class TestSmokeTests(object):
|
|
"""
|
|
Smoke tests (with a few asserts) for fitpack routines -- mostly
|
|
check that they are runnable
|
|
"""
|
|
|
|
def check_1(self,f=f1,per=0,s=0,a=0,b=2*pi,N=20,at=0,xb=None,xe=None):
|
|
if xb is None:
|
|
xb = a
|
|
if xe is None:
|
|
xe = b
|
|
x = a+(b-a)*arange(N+1,dtype=float)/float(N) # nodes
|
|
x1 = a+(b-a)*arange(1,N,dtype=float)/float(N-1) # middle points of the nodes
|
|
v,v1 = f(x),f(x1)
|
|
nk = []
|
|
|
|
def err_est(k, d):
|
|
# Assume f has all derivatives < 1
|
|
h = 1.0/float(N)
|
|
tol = 5 * h**(.75*(k-d))
|
|
if s > 0:
|
|
tol += 1e5*s
|
|
return tol
|
|
|
|
for k in range(1,6):
|
|
tck = splrep(x,v,s=s,per=per,k=k,xe=xe)
|
|
if at:
|
|
t = tck[0][k:-k]
|
|
else:
|
|
t = x1
|
|
nd = []
|
|
for d in range(k+1):
|
|
tol = err_est(k, d)
|
|
err = norm2(f(t,d)-splev(t,tck,d)) / norm2(f(t,d))
|
|
assert_(err < tol, (k, d, err, tol))
|
|
nd.append((err, tol))
|
|
nk.append(nd)
|
|
put("\nf = %s s=S_k(x;t,c) x in [%s, %s] > [%s, %s]" % (f(None),
|
|
repr(round(xb,3)),repr(round(xe,3)),
|
|
repr(round(a,3)),repr(round(b,3))))
|
|
if at:
|
|
str = "at knots"
|
|
else:
|
|
str = "at the middle of nodes"
|
|
put(" per=%d s=%s Evaluation %s" % (per,repr(s),str))
|
|
put(" k : |f-s|^2 |f'-s'| |f''-.. |f'''-. |f''''- |f'''''")
|
|
k = 1
|
|
for l in nk:
|
|
put(' %d : ' % k)
|
|
for r in l:
|
|
put(' %.1e %.1e' % r)
|
|
put('\n')
|
|
k = k+1
|
|
|
|
def check_2(self,f=f1,per=0,s=0,a=0,b=2*pi,N=20,xb=None,xe=None,
|
|
ia=0,ib=2*pi,dx=0.2*pi):
|
|
if xb is None:
|
|
xb = a
|
|
if xe is None:
|
|
xe = b
|
|
x = a+(b-a)*arange(N+1,dtype=float)/float(N) # nodes
|
|
v = f(x)
|
|
|
|
def err_est(k, d):
|
|
# Assume f has all derivatives < 1
|
|
h = 1.0/float(N)
|
|
tol = 5 * h**(.75*(k-d))
|
|
if s > 0:
|
|
tol += 1e5*s
|
|
return tol
|
|
|
|
nk = []
|
|
for k in range(1,6):
|
|
tck = splrep(x,v,s=s,per=per,k=k,xe=xe)
|
|
nk.append([splint(ia,ib,tck),spalde(dx,tck)])
|
|
put("\nf = %s s=S_k(x;t,c) x in [%s, %s] > [%s, %s]" % (f(None),
|
|
repr(round(xb,3)),repr(round(xe,3)),
|
|
repr(round(a,3)),repr(round(b,3))))
|
|
put(" per=%d s=%s N=%d [a, b] = [%s, %s] dx=%s" % (per,repr(s),N,repr(round(ia,3)),repr(round(ib,3)),repr(round(dx,3))))
|
|
put(" k : int(s,[a,b]) Int.Error Rel. error of s^(d)(dx) d = 0, .., k")
|
|
k = 1
|
|
for r in nk:
|
|
if r[0] < 0:
|
|
sr = '-'
|
|
else:
|
|
sr = ' '
|
|
put(" %d %s%.8f %.1e " % (k,sr,abs(r[0]),
|
|
abs(r[0]-(f(ib,-1)-f(ia,-1)))))
|
|
d = 0
|
|
for dr in r[1]:
|
|
err = abs(1-dr/f(dx,d))
|
|
tol = err_est(k, d)
|
|
assert_(err < tol, (k, d))
|
|
put(" %.1e %.1e" % (err, tol))
|
|
d = d+1
|
|
put("\n")
|
|
k = k+1
|
|
|
|
def check_3(self,f=f1,per=0,s=0,a=0,b=2*pi,N=20,xb=None,xe=None,
|
|
ia=0,ib=2*pi,dx=0.2*pi):
|
|
if xb is None:
|
|
xb = a
|
|
if xe is None:
|
|
xe = b
|
|
x = a+(b-a)*arange(N+1,dtype=float)/float(N) # nodes
|
|
v = f(x)
|
|
put(" k : Roots of s(x) approx %s x in [%s,%s]:" %
|
|
(f(None),repr(round(a,3)),repr(round(b,3))))
|
|
for k in range(1,6):
|
|
tck = splrep(x, v, s=s, per=per, k=k, xe=xe)
|
|
if k == 3:
|
|
roots = sproot(tck)
|
|
assert_allclose(splev(roots, tck), 0, atol=1e-10, rtol=1e-10)
|
|
assert_allclose(roots, pi*array([1, 2, 3, 4]), rtol=1e-3)
|
|
put(' %d : %s' % (k, repr(roots.tolist())))
|
|
else:
|
|
assert_raises(ValueError, sproot, tck)
|
|
|
|
def check_4(self,f=f1,per=0,s=0,a=0,b=2*pi,N=20,xb=None,xe=None,
|
|
ia=0,ib=2*pi,dx=0.2*pi):
|
|
if xb is None:
|
|
xb = a
|
|
if xe is None:
|
|
xe = b
|
|
x = a+(b-a)*arange(N+1,dtype=float)/float(N) # nodes
|
|
x1 = a + (b-a)*arange(1,N,dtype=float)/float(N-1) # middle points of the nodes
|
|
v,v1 = f(x),f(x1)
|
|
put(" u = %s N = %d" % (repr(round(dx,3)),N))
|
|
put(" k : [x(u), %s(x(u))] Error of splprep Error of splrep " % (f(0,None)))
|
|
for k in range(1,6):
|
|
tckp,u = splprep([x,v],s=s,per=per,k=k,nest=-1)
|
|
tck = splrep(x,v,s=s,per=per,k=k)
|
|
uv = splev(dx,tckp)
|
|
err1 = abs(uv[1]-f(uv[0]))
|
|
err2 = abs(splev(uv[0],tck)-f(uv[0]))
|
|
assert_(err1 < 1e-2)
|
|
assert_(err2 < 1e-2)
|
|
put(" %d : %s %.1e %.1e" %
|
|
(k,repr([round(z,3) for z in uv]),
|
|
err1,
|
|
err2))
|
|
put("Derivatives of parametric cubic spline at u (first function):")
|
|
k = 3
|
|
tckp,u = splprep([x,v],s=s,per=per,k=k,nest=-1)
|
|
for d in range(1,k+1):
|
|
uv = splev(dx,tckp,d)
|
|
put(" %s " % (repr(uv[0])))
|
|
|
|
def check_5(self,f=f2,kx=3,ky=3,xb=0,xe=2*pi,yb=0,ye=2*pi,Nx=20,Ny=20,s=0):
|
|
x = xb+(xe-xb)*arange(Nx+1,dtype=float)/float(Nx)
|
|
y = yb+(ye-yb)*arange(Ny+1,dtype=float)/float(Ny)
|
|
xy = makepairs(x,y)
|
|
tck = bisplrep(xy[0],xy[1],f(xy[0],xy[1]),s=s,kx=kx,ky=ky)
|
|
tt = [tck[0][kx:-kx],tck[1][ky:-ky]]
|
|
t2 = makepairs(tt[0],tt[1])
|
|
v1 = bisplev(tt[0],tt[1],tck)
|
|
v2 = f2(t2[0],t2[1])
|
|
v2.shape = len(tt[0]),len(tt[1])
|
|
err = norm2(ravel(v1-v2))
|
|
assert_(err < 1e-2, err)
|
|
put(err)
|
|
|
|
def test_smoke_splrep_splev(self):
|
|
put("***************** splrep/splev")
|
|
self.check_1(s=1e-6)
|
|
self.check_1()
|
|
self.check_1(at=1)
|
|
self.check_1(per=1)
|
|
self.check_1(per=1,at=1)
|
|
self.check_1(b=1.5*pi)
|
|
self.check_1(b=1.5*pi,xe=2*pi,per=1,s=1e-1)
|
|
|
|
def test_smoke_splint_spalde(self):
|
|
put("***************** splint/spalde")
|
|
self.check_2()
|
|
self.check_2(per=1)
|
|
self.check_2(ia=0.2*pi,ib=pi)
|
|
self.check_2(ia=0.2*pi,ib=pi,N=50)
|
|
|
|
def test_smoke_sproot(self):
|
|
put("***************** sproot")
|
|
self.check_3(a=0.1,b=15)
|
|
|
|
def test_smoke_splprep_splrep_splev(self):
|
|
put("***************** splprep/splrep/splev")
|
|
self.check_4()
|
|
self.check_4(N=50)
|
|
|
|
def test_smoke_bisplrep_bisplev(self):
|
|
put("***************** bisplev")
|
|
self.check_5()
|
|
|
|
|
|
class TestSplev(object):
|
|
def test_1d_shape(self):
|
|
x = [1,2,3,4,5]
|
|
y = [4,5,6,7,8]
|
|
tck = splrep(x, y)
|
|
z = splev([1], tck)
|
|
assert_equal(z.shape, (1,))
|
|
z = splev(1, tck)
|
|
assert_equal(z.shape, ())
|
|
|
|
def test_2d_shape(self):
|
|
x = [1, 2, 3, 4, 5]
|
|
y = [4, 5, 6, 7, 8]
|
|
tck = splrep(x, y)
|
|
t = np.array([[1.0, 1.5, 2.0, 2.5],
|
|
[3.0, 3.5, 4.0, 4.5]])
|
|
z = splev(t, tck)
|
|
z0 = splev(t[0], tck)
|
|
z1 = splev(t[1], tck)
|
|
assert_equal(z, np.row_stack((z0, z1)))
|
|
|
|
def test_extrapolation_modes(self):
|
|
# test extrapolation modes
|
|
# * if ext=0, return the extrapolated value.
|
|
# * if ext=1, return 0
|
|
# * if ext=2, raise a ValueError
|
|
# * if ext=3, return the boundary value.
|
|
x = [1,2,3]
|
|
y = [0,2,4]
|
|
tck = splrep(x, y, k=1)
|
|
|
|
rstl = [[-2, 6], [0, 0], None, [0, 4]]
|
|
for ext in (0, 1, 3):
|
|
assert_array_almost_equal(splev([0, 4], tck, ext=ext), rstl[ext])
|
|
|
|
assert_raises(ValueError, splev, [0, 4], tck, ext=2)
|
|
|
|
|
|
class TestSplder(object):
|
|
def setup_method(self):
|
|
# non-uniform grid, just to make it sure
|
|
x = np.linspace(0, 1, 100)**3
|
|
y = np.sin(20 * x)
|
|
self.spl = splrep(x, y)
|
|
|
|
# double check that knots are non-uniform
|
|
assert_(np.diff(self.spl[0]).ptp() > 0)
|
|
|
|
def test_inverse(self):
|
|
# Check that antiderivative + derivative is identity.
|
|
for n in range(5):
|
|
spl2 = splantider(self.spl, n)
|
|
spl3 = splder(spl2, n)
|
|
assert_allclose(self.spl[0], spl3[0])
|
|
assert_allclose(self.spl[1], spl3[1])
|
|
assert_equal(self.spl[2], spl3[2])
|
|
|
|
def test_splder_vs_splev(self):
|
|
# Check derivative vs. FITPACK
|
|
|
|
for n in range(3+1):
|
|
# Also extrapolation!
|
|
xx = np.linspace(-1, 2, 2000)
|
|
if n == 3:
|
|
# ... except that FITPACK extrapolates strangely for
|
|
# order 0, so let's not check that.
|
|
xx = xx[(xx >= 0) & (xx <= 1)]
|
|
|
|
dy = splev(xx, self.spl, n)
|
|
spl2 = splder(self.spl, n)
|
|
dy2 = splev(xx, spl2)
|
|
if n == 1:
|
|
assert_allclose(dy, dy2, rtol=2e-6)
|
|
else:
|
|
assert_allclose(dy, dy2)
|
|
|
|
def test_splantider_vs_splint(self):
|
|
# Check antiderivative vs. FITPACK
|
|
spl2 = splantider(self.spl)
|
|
|
|
# no extrapolation, splint assumes function is zero outside
|
|
# range
|
|
xx = np.linspace(0, 1, 20)
|
|
|
|
for x1 in xx:
|
|
for x2 in xx:
|
|
y1 = splint(x1, x2, self.spl)
|
|
y2 = splev(x2, spl2) - splev(x1, spl2)
|
|
assert_allclose(y1, y2)
|
|
|
|
def test_order0_diff(self):
|
|
assert_raises(ValueError, splder, self.spl, 4)
|
|
|
|
def test_kink(self):
|
|
# Should refuse to differentiate splines with kinks
|
|
|
|
spl2 = insert(0.5, self.spl, m=2)
|
|
splder(spl2, 2) # Should work
|
|
assert_raises(ValueError, splder, spl2, 3)
|
|
|
|
spl2 = insert(0.5, self.spl, m=3)
|
|
splder(spl2, 1) # Should work
|
|
assert_raises(ValueError, splder, spl2, 2)
|
|
|
|
spl2 = insert(0.5, self.spl, m=4)
|
|
assert_raises(ValueError, splder, spl2, 1)
|
|
|
|
def test_multidim(self):
|
|
# c can have trailing dims
|
|
for n in range(3):
|
|
t, c, k = self.spl
|
|
c2 = np.c_[c, c, c]
|
|
c2 = np.dstack((c2, c2))
|
|
|
|
spl2 = splantider((t, c2, k), n)
|
|
spl3 = splder(spl2, n)
|
|
|
|
assert_allclose(t, spl3[0])
|
|
assert_allclose(c2, spl3[1])
|
|
assert_equal(k, spl3[2])
|
|
|
|
|
|
class TestBisplrep(object):
|
|
def test_overflow(self):
|
|
a = np.linspace(0, 1, 620)
|
|
b = np.linspace(0, 1, 620)
|
|
x, y = np.meshgrid(a, b)
|
|
z = np.random.rand(*x.shape)
|
|
assert_raises(OverflowError, bisplrep, x.ravel(), y.ravel(), z.ravel(), s=0)
|
|
|
|
def test_regression_1310(self):
|
|
# Regression test for gh-1310
|
|
data = np.load(data_file('bug-1310.npz'))['data']
|
|
|
|
# Shouldn't crash -- the input data triggers work array sizes
|
|
# that caused previously some data to not be aligned on
|
|
# sizeof(double) boundaries in memory, which made the Fortran
|
|
# code to crash when compiled with -O3
|
|
bisplrep(data[:,0], data[:,1], data[:,2], kx=3, ky=3, s=0,
|
|
full_output=True)
|
|
|
|
|
|
def test_dblint():
|
|
# Basic test to see it runs and gives the correct result on a trivial
|
|
# problem. Note that `dblint` is not exposed in the interpolate namespace.
|
|
x = np.linspace(0, 1)
|
|
y = np.linspace(0, 1)
|
|
xx, yy = np.meshgrid(x, y)
|
|
rect = interpolate.RectBivariateSpline(x, y, 4 * xx * yy)
|
|
tck = list(rect.tck)
|
|
tck.extend(rect.degrees)
|
|
|
|
assert_almost_equal(dblint(0, 1, 0, 1, tck), 1)
|
|
assert_almost_equal(dblint(0, 0.5, 0, 1, tck), 0.25)
|
|
assert_almost_equal(dblint(0.5, 1, 0, 1, tck), 0.75)
|
|
assert_almost_equal(dblint(-100, 100, -100, 100, tck), 1)
|
|
|
|
|
|
def test_splev_der_k():
|
|
# regression test for gh-2188: splev(x, tck, der=k) gives garbage or crashes
|
|
# for x outside of knot range
|
|
|
|
# test case from gh-2188
|
|
tck = (np.array([0., 0., 2.5, 2.5]),
|
|
np.array([-1.56679978, 2.43995873, 0., 0.]),
|
|
1)
|
|
t, c, k = tck
|
|
x = np.array([-3, 0, 2.5, 3])
|
|
|
|
# an explicit form of the linear spline
|
|
assert_allclose(splev(x, tck), c[0] + (c[1] - c[0]) * x/t[2])
|
|
assert_allclose(splev(x, tck, 1), (c[1]-c[0]) / t[2])
|
|
|
|
# now check a random spline vs splder
|
|
np.random.seed(1234)
|
|
x = np.sort(np.random.random(30))
|
|
y = np.random.random(30)
|
|
t, c, k = splrep(x, y)
|
|
|
|
x = [t[0] - 1., t[-1] + 1.]
|
|
tck2 = splder((t, c, k), k)
|
|
assert_allclose(splev(x, (t, c, k), k), splev(x, tck2))
|
|
|
|
|
|
def test_bisplev_integer_overflow():
|
|
np.random.seed(1)
|
|
|
|
x = np.linspace(0, 1, 11)
|
|
y = x
|
|
z = np.random.randn(11, 11).ravel()
|
|
kx = 1
|
|
ky = 1
|
|
|
|
nx, tx, ny, ty, c, fp, ier = regrid_smth(
|
|
x, y, z, None, None, None, None, kx=kx, ky=ky, s=0.0)
|
|
tck = (tx[:nx], ty[:ny], c[:(nx - kx - 1) * (ny - ky - 1)], kx, ky)
|
|
|
|
xp = np.zeros([2621440])
|
|
yp = np.zeros([2621440])
|
|
|
|
assert_raises((RuntimeError, MemoryError), bisplev, xp, yp, tck)
|
|
|