You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
417 lines
14 KiB
Python
417 lines
14 KiB
Python
# Created by Pearu Peterson, September 2002
|
|
|
|
from __future__ import division, print_function, absolute_import
|
|
|
|
__usage__ = """
|
|
Build fftpack:
|
|
python setup_fftpack.py build
|
|
Run tests if scipy is installed:
|
|
python -c 'import scipy;scipy.fftpack.test(<level>)'
|
|
Run tests if fftpack is not installed:
|
|
python tests/test_helper.py [<level>]
|
|
"""
|
|
|
|
from pytest import raises as assert_raises
|
|
from numpy.testing import assert_array_almost_equal, assert_equal, assert_
|
|
from scipy.fftpack import fftshift,ifftshift,fftfreq,rfftfreq
|
|
from scipy.fftpack.helper import (next_fast_len,
|
|
_init_nd_shape_and_axes,
|
|
_init_nd_shape_and_axes_sorted)
|
|
|
|
from numpy import pi, random
|
|
import numpy as np
|
|
|
|
class TestFFTShift(object):
|
|
|
|
def test_definition(self):
|
|
x = [0,1,2,3,4,-4,-3,-2,-1]
|
|
y = [-4,-3,-2,-1,0,1,2,3,4]
|
|
assert_array_almost_equal(fftshift(x),y)
|
|
assert_array_almost_equal(ifftshift(y),x)
|
|
x = [0,1,2,3,4,-5,-4,-3,-2,-1]
|
|
y = [-5,-4,-3,-2,-1,0,1,2,3,4]
|
|
assert_array_almost_equal(fftshift(x),y)
|
|
assert_array_almost_equal(ifftshift(y),x)
|
|
|
|
def test_inverse(self):
|
|
for n in [1,4,9,100,211]:
|
|
x = random.random((n,))
|
|
assert_array_almost_equal(ifftshift(fftshift(x)),x)
|
|
|
|
|
|
class TestFFTFreq(object):
|
|
|
|
def test_definition(self):
|
|
x = [0,1,2,3,4,-4,-3,-2,-1]
|
|
assert_array_almost_equal(9*fftfreq(9),x)
|
|
assert_array_almost_equal(9*pi*fftfreq(9,pi),x)
|
|
x = [0,1,2,3,4,-5,-4,-3,-2,-1]
|
|
assert_array_almost_equal(10*fftfreq(10),x)
|
|
assert_array_almost_equal(10*pi*fftfreq(10,pi),x)
|
|
|
|
|
|
class TestRFFTFreq(object):
|
|
|
|
def test_definition(self):
|
|
x = [0,1,1,2,2,3,3,4,4]
|
|
assert_array_almost_equal(9*rfftfreq(9),x)
|
|
assert_array_almost_equal(9*pi*rfftfreq(9,pi),x)
|
|
x = [0,1,1,2,2,3,3,4,4,5]
|
|
assert_array_almost_equal(10*rfftfreq(10),x)
|
|
assert_array_almost_equal(10*pi*rfftfreq(10,pi),x)
|
|
|
|
|
|
class TestNextOptLen(object):
|
|
|
|
def test_next_opt_len(self):
|
|
random.seed(1234)
|
|
|
|
def nums():
|
|
for j in range(1, 1000):
|
|
yield j
|
|
yield 2**5 * 3**5 * 4**5 + 1
|
|
|
|
for n in nums():
|
|
m = next_fast_len(n)
|
|
msg = "n=%d, m=%d" % (n, m)
|
|
|
|
assert_(m >= n, msg)
|
|
|
|
# check regularity
|
|
k = m
|
|
for d in [2, 3, 5]:
|
|
while True:
|
|
a, b = divmod(k, d)
|
|
if b == 0:
|
|
k = a
|
|
else:
|
|
break
|
|
assert_equal(k, 1, err_msg=msg)
|
|
|
|
def test_np_integers(self):
|
|
ITYPES = [np.int16, np.int32, np.int64, np.uint16, np.uint32, np.uint64]
|
|
for ityp in ITYPES:
|
|
x = ityp(12345)
|
|
testN = next_fast_len(x)
|
|
assert_equal(testN, next_fast_len(int(x)))
|
|
|
|
def test_next_opt_len_strict(self):
|
|
hams = {
|
|
1: 1, 2: 2, 3: 3, 4: 4, 5: 5, 6: 6, 7: 8, 8: 8, 14: 15, 15: 15,
|
|
16: 16, 17: 18, 1021: 1024, 1536: 1536, 51200000: 51200000,
|
|
510183360: 510183360, 510183360 + 1: 512000000,
|
|
511000000: 512000000,
|
|
854296875: 854296875, 854296875 + 1: 859963392,
|
|
196608000000: 196608000000, 196608000000 + 1: 196830000000,
|
|
8789062500000: 8789062500000, 8789062500000 + 1: 8796093022208,
|
|
206391214080000: 206391214080000,
|
|
206391214080000 + 1: 206624260800000,
|
|
470184984576000: 470184984576000,
|
|
470184984576000 + 1: 470715894135000,
|
|
7222041363087360: 7222041363087360,
|
|
7222041363087360 + 1: 7230196133913600,
|
|
# power of 5 5**23
|
|
11920928955078125: 11920928955078125,
|
|
11920928955078125 - 1: 11920928955078125,
|
|
# power of 3 3**34
|
|
16677181699666569: 16677181699666569,
|
|
16677181699666569 - 1: 16677181699666569,
|
|
# power of 2 2**54
|
|
18014398509481984: 18014398509481984,
|
|
18014398509481984 - 1: 18014398509481984,
|
|
# above this, int(ceil(n)) == int(ceil(n+1))
|
|
19200000000000000: 19200000000000000,
|
|
19200000000000000 + 1: 19221679687500000,
|
|
288230376151711744: 288230376151711744,
|
|
288230376151711744 + 1: 288325195312500000,
|
|
288325195312500000 - 1: 288325195312500000,
|
|
288325195312500000: 288325195312500000,
|
|
288325195312500000 + 1: 288555831593533440,
|
|
# power of 3 3**83
|
|
3990838394187339929534246675572349035227 - 1:
|
|
3990838394187339929534246675572349035227,
|
|
3990838394187339929534246675572349035227:
|
|
3990838394187339929534246675572349035227,
|
|
# power of 2 2**135
|
|
43556142965880123323311949751266331066368 - 1:
|
|
43556142965880123323311949751266331066368,
|
|
43556142965880123323311949751266331066368:
|
|
43556142965880123323311949751266331066368,
|
|
# power of 5 5**57
|
|
6938893903907228377647697925567626953125 - 1:
|
|
6938893903907228377647697925567626953125,
|
|
6938893903907228377647697925567626953125:
|
|
6938893903907228377647697925567626953125,
|
|
# http://www.drdobbs.com/228700538
|
|
# 2**96 * 3**1 * 5**13
|
|
290142196707511001929482240000000000000 - 1:
|
|
290142196707511001929482240000000000000,
|
|
290142196707511001929482240000000000000:
|
|
290142196707511001929482240000000000000,
|
|
290142196707511001929482240000000000000 + 1:
|
|
290237644800000000000000000000000000000,
|
|
# 2**36 * 3**69 * 5**7
|
|
4479571262811807241115438439905203543080960000000 - 1:
|
|
4479571262811807241115438439905203543080960000000,
|
|
4479571262811807241115438439905203543080960000000:
|
|
4479571262811807241115438439905203543080960000000,
|
|
4479571262811807241115438439905203543080960000000 + 1:
|
|
4480327901140333639941336854183943340032000000000,
|
|
# 2**37 * 3**44 * 5**42
|
|
30774090693237851027531250000000000000000000000000000000000000 - 1:
|
|
30774090693237851027531250000000000000000000000000000000000000,
|
|
30774090693237851027531250000000000000000000000000000000000000:
|
|
30774090693237851027531250000000000000000000000000000000000000,
|
|
30774090693237851027531250000000000000000000000000000000000000 + 1:
|
|
30778180617309082445871527002041377406962596539492679680000000,
|
|
}
|
|
for x, y in hams.items():
|
|
assert_equal(next_fast_len(x), y)
|
|
|
|
|
|
class Test_init_nd_shape_and_axes(object):
|
|
|
|
def test_py_0d_defaults(self):
|
|
x = 4
|
|
shape = None
|
|
axes = None
|
|
|
|
shape_expected = np.array([])
|
|
axes_expected = np.array([])
|
|
|
|
shape_res, axes_res = _init_nd_shape_and_axes(x, shape, axes)
|
|
|
|
assert_equal(shape_res, shape_expected)
|
|
assert_equal(axes_res, axes_expected)
|
|
|
|
shape_res, axes_res = _init_nd_shape_and_axes_sorted(x, shape, axes)
|
|
|
|
assert_equal(shape_res, shape_expected)
|
|
assert_equal(axes_res, axes_expected)
|
|
|
|
def test_np_0d_defaults(self):
|
|
x = np.array(7.)
|
|
shape = None
|
|
axes = None
|
|
|
|
shape_expected = np.array([])
|
|
axes_expected = np.array([])
|
|
|
|
shape_res, axes_res = _init_nd_shape_and_axes(x, shape, axes)
|
|
|
|
assert_equal(shape_res, shape_expected)
|
|
assert_equal(axes_res, axes_expected)
|
|
|
|
shape_res, axes_res = _init_nd_shape_and_axes_sorted(x, shape, axes)
|
|
|
|
assert_equal(shape_res, shape_expected)
|
|
assert_equal(axes_res, axes_expected)
|
|
|
|
def test_py_1d_defaults(self):
|
|
x = [1, 2, 3]
|
|
shape = None
|
|
axes = None
|
|
|
|
shape_expected = np.array([3])
|
|
axes_expected = np.array([0])
|
|
|
|
shape_res, axes_res = _init_nd_shape_and_axes(x, shape, axes)
|
|
|
|
assert_equal(shape_res, shape_expected)
|
|
assert_equal(axes_res, axes_expected)
|
|
|
|
shape_res, axes_res = _init_nd_shape_and_axes_sorted(x, shape, axes)
|
|
|
|
assert_equal(shape_res, shape_expected)
|
|
assert_equal(axes_res, axes_expected)
|
|
|
|
def test_np_1d_defaults(self):
|
|
x = np.arange(0, 1, .1)
|
|
shape = None
|
|
axes = None
|
|
|
|
shape_expected = np.array([10])
|
|
axes_expected = np.array([0])
|
|
|
|
shape_res, axes_res = _init_nd_shape_and_axes(x, shape, axes)
|
|
|
|
assert_equal(shape_res, shape_expected)
|
|
assert_equal(axes_res, axes_expected)
|
|
|
|
shape_res, axes_res = _init_nd_shape_and_axes_sorted(x, shape, axes)
|
|
|
|
assert_equal(shape_res, shape_expected)
|
|
assert_equal(axes_res, axes_expected)
|
|
|
|
def test_py_2d_defaults(self):
|
|
x = [[1, 2, 3, 4],
|
|
[5, 6, 7, 8]]
|
|
shape = None
|
|
axes = None
|
|
|
|
shape_expected = np.array([2, 4])
|
|
axes_expected = np.array([0, 1])
|
|
|
|
shape_res, axes_res = _init_nd_shape_and_axes(x, shape, axes)
|
|
|
|
assert_equal(shape_res, shape_expected)
|
|
assert_equal(axes_res, axes_expected)
|
|
|
|
shape_res, axes_res = _init_nd_shape_and_axes_sorted(x, shape, axes)
|
|
|
|
assert_equal(shape_res, shape_expected)
|
|
assert_equal(axes_res, axes_expected)
|
|
|
|
def test_np_2d_defaults(self):
|
|
x = np.arange(0, 1, .1).reshape(5, 2)
|
|
shape = None
|
|
axes = None
|
|
|
|
shape_expected = np.array([5, 2])
|
|
axes_expected = np.array([0, 1])
|
|
|
|
shape_res, axes_res = _init_nd_shape_and_axes(x, shape, axes)
|
|
|
|
assert_equal(shape_res, shape_expected)
|
|
assert_equal(axes_res, axes_expected)
|
|
|
|
shape_res, axes_res = _init_nd_shape_and_axes_sorted(x, shape, axes)
|
|
|
|
assert_equal(shape_res, shape_expected)
|
|
assert_equal(axes_res, axes_expected)
|
|
|
|
def test_np_5d_defaults(self):
|
|
x = np.zeros([6, 2, 5, 3, 4])
|
|
shape = None
|
|
axes = None
|
|
|
|
shape_expected = np.array([6, 2, 5, 3, 4])
|
|
axes_expected = np.array([0, 1, 2, 3, 4])
|
|
|
|
shape_res, axes_res = _init_nd_shape_and_axes(x, shape, axes)
|
|
|
|
assert_equal(shape_res, shape_expected)
|
|
assert_equal(axes_res, axes_expected)
|
|
|
|
shape_res, axes_res = _init_nd_shape_and_axes_sorted(x, shape, axes)
|
|
|
|
assert_equal(shape_res, shape_expected)
|
|
assert_equal(axes_res, axes_expected)
|
|
|
|
def test_np_5d_set_shape(self):
|
|
x = np.zeros([6, 2, 5, 3, 4])
|
|
shape = [10, -1, -1, 1, 4]
|
|
axes = None
|
|
|
|
shape_expected = np.array([10, 2, 5, 1, 4])
|
|
axes_expected = np.array([0, 1, 2, 3, 4])
|
|
|
|
shape_res, axes_res = _init_nd_shape_and_axes(x, shape, axes)
|
|
|
|
assert_equal(shape_res, shape_expected)
|
|
assert_equal(axes_res, axes_expected)
|
|
|
|
shape_res, axes_res = _init_nd_shape_and_axes_sorted(x, shape, axes)
|
|
|
|
assert_equal(shape_res, shape_expected)
|
|
assert_equal(axes_res, axes_expected)
|
|
|
|
def test_np_5d_set_axes(self):
|
|
x = np.zeros([6, 2, 5, 3, 4])
|
|
shape = None
|
|
axes = [4, 1, 2]
|
|
|
|
shape_expected = np.array([4, 2, 5])
|
|
axes_expected = np.array([4, 1, 2])
|
|
|
|
shape_res, axes_res = _init_nd_shape_and_axes(x, shape, axes)
|
|
|
|
assert_equal(shape_res, shape_expected)
|
|
assert_equal(axes_res, axes_expected)
|
|
|
|
def test_np_5d_set_axes_sorted(self):
|
|
x = np.zeros([6, 2, 5, 3, 4])
|
|
shape = None
|
|
axes = [4, 1, 2]
|
|
|
|
shape_expected = np.array([2, 5, 4])
|
|
axes_expected = np.array([1, 2, 4])
|
|
|
|
shape_res, axes_res = _init_nd_shape_and_axes_sorted(x, shape, axes)
|
|
|
|
assert_equal(shape_res, shape_expected)
|
|
assert_equal(axes_res, axes_expected)
|
|
|
|
def test_np_5d_set_shape_axes(self):
|
|
x = np.zeros([6, 2, 5, 3, 4])
|
|
shape = [10, -1, 2]
|
|
axes = [1, 0, 3]
|
|
|
|
shape_expected = np.array([10, 6, 2])
|
|
axes_expected = np.array([1, 0, 3])
|
|
|
|
shape_res, axes_res = _init_nd_shape_and_axes(x, shape, axes)
|
|
|
|
assert_equal(shape_res, shape_expected)
|
|
assert_equal(axes_res, axes_expected)
|
|
|
|
def test_np_5d_set_shape_axes_sorted(self):
|
|
x = np.zeros([6, 2, 5, 3, 4])
|
|
shape = [10, -1, 2]
|
|
axes = [1, 0, 3]
|
|
|
|
shape_expected = np.array([6, 10, 2])
|
|
axes_expected = np.array([0, 1, 3])
|
|
|
|
shape_res, axes_res = _init_nd_shape_and_axes_sorted(x, shape, axes)
|
|
|
|
assert_equal(shape_res, shape_expected)
|
|
assert_equal(axes_res, axes_expected)
|
|
|
|
def test_errors(self):
|
|
with assert_raises(ValueError,
|
|
match="when given, axes values must be a scalar"
|
|
" or vector"):
|
|
_init_nd_shape_and_axes([0], shape=None, axes=[[1, 2], [3, 4]])
|
|
|
|
with assert_raises(ValueError,
|
|
match="when given, axes values must be integers"):
|
|
_init_nd_shape_and_axes([0], shape=None, axes=[1., 2., 3., 4.])
|
|
|
|
with assert_raises(ValueError,
|
|
match="axes exceeds dimensionality of input"):
|
|
_init_nd_shape_and_axes([0], shape=None, axes=[1])
|
|
|
|
with assert_raises(ValueError,
|
|
match="axes exceeds dimensionality of input"):
|
|
_init_nd_shape_and_axes([0], shape=None, axes=[-2])
|
|
|
|
with assert_raises(ValueError,
|
|
match="all axes must be unique"):
|
|
_init_nd_shape_and_axes([0], shape=None, axes=[0, 0])
|
|
|
|
with assert_raises(ValueError,
|
|
match="when given, shape values must be a scalar "
|
|
"or vector"):
|
|
_init_nd_shape_and_axes([0], shape=[[1, 2], [3, 4]], axes=None)
|
|
|
|
with assert_raises(ValueError,
|
|
match="when given, shape values must be integers"):
|
|
_init_nd_shape_and_axes([0], shape=[1., 2., 3., 4.], axes=None)
|
|
|
|
with assert_raises(ValueError,
|
|
match="when given, axes and shape arguments"
|
|
" have to be of the same length"):
|
|
_init_nd_shape_and_axes(np.zeros([1, 1, 1, 1]),
|
|
shape=[1, 2, 3], axes=[1])
|
|
|
|
with assert_raises(ValueError,
|
|
match="invalid number of data points"
|
|
r" \(\[0\]\) specified"):
|
|
_init_nd_shape_and_axes([0], shape=[0], axes=None)
|
|
|
|
with assert_raises(ValueError,
|
|
match="invalid number of data points"
|
|
r" \(\[-2\]\) specified"):
|
|
_init_nd_shape_and_axes([0], shape=-2, axes=None)
|