from __future__ import division, print_function, absolute_import import numpy as np from numpy.testing import assert_, assert_equal import scipy.special as sc def test_wrightomega_nan(): pts = [complex(np.nan, 0), complex(0, np.nan), complex(np.nan, np.nan), complex(np.nan, 1), complex(1, np.nan)] for p in pts: res = sc.wrightomega(p) assert_(np.isnan(res.real)) assert_(np.isnan(res.imag)) def test_wrightomega_inf_branch(): pts = [complex(-np.inf, np.pi/4), complex(-np.inf, -np.pi/4), complex(-np.inf, 3*np.pi/4), complex(-np.inf, -3*np.pi/4)] expected_results = [complex(0.0, 0.0), complex(0.0, -0.0), complex(-0.0, 0.0), complex(-0.0, -0.0)] for p, expected in zip(pts, expected_results): res = sc.wrightomega(p) # We can't use assert_equal(res, expected) because in older versions of # numpy, assert_equal doesn't check the sign of the real and imaginary # parts when comparing complex zeros. It does check the sign when the # arguments are *real* scalars. assert_equal(res.real, expected.real) assert_equal(res.imag, expected.imag) def test_wrightomega_inf(): pts = [complex(np.inf, 10), complex(-np.inf, 10), complex(10, np.inf), complex(10, -np.inf)] for p in pts: assert_equal(sc.wrightomega(p), p) def test_wrightomega_singular(): pts = [complex(-1.0, np.pi), complex(-1.0, -np.pi)] for p in pts: res = sc.wrightomega(p) assert_equal(res, -1.0) assert_(np.signbit(res.imag) == False)