You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
413 lines
11 KiB
Python
413 lines
11 KiB
Python
6 years ago
|
"""
|
||
|
Utility classes and functions for the polynomial modules.
|
||
|
|
||
|
This module provides: error and warning objects; a polynomial base class;
|
||
|
and some routines used in both the `polynomial` and `chebyshev` modules.
|
||
|
|
||
|
Error objects
|
||
|
-------------
|
||
|
|
||
|
.. autosummary::
|
||
|
:toctree: generated/
|
||
|
|
||
|
PolyError base class for this sub-package's errors.
|
||
|
PolyDomainError raised when domains are mismatched.
|
||
|
|
||
|
Warning objects
|
||
|
---------------
|
||
|
|
||
|
.. autosummary::
|
||
|
:toctree: generated/
|
||
|
|
||
|
RankWarning raised in least-squares fit for rank-deficient matrix.
|
||
|
|
||
|
Base class
|
||
|
----------
|
||
|
|
||
|
.. autosummary::
|
||
|
:toctree: generated/
|
||
|
|
||
|
PolyBase Obsolete base class for the polynomial classes. Do not use.
|
||
|
|
||
|
Functions
|
||
|
---------
|
||
|
|
||
|
.. autosummary::
|
||
|
:toctree: generated/
|
||
|
|
||
|
as_series convert list of array_likes into 1-D arrays of common type.
|
||
|
trimseq remove trailing zeros.
|
||
|
trimcoef remove small trailing coefficients.
|
||
|
getdomain return the domain appropriate for a given set of abscissae.
|
||
|
mapdomain maps points between domains.
|
||
|
mapparms parameters of the linear map between domains.
|
||
|
|
||
|
"""
|
||
|
from __future__ import division, absolute_import, print_function
|
||
|
|
||
|
import numpy as np
|
||
|
|
||
|
__all__ = [
|
||
|
'RankWarning', 'PolyError', 'PolyDomainError', 'as_series', 'trimseq',
|
||
|
'trimcoef', 'getdomain', 'mapdomain', 'mapparms', 'PolyBase']
|
||
|
|
||
|
#
|
||
|
# Warnings and Exceptions
|
||
|
#
|
||
|
|
||
|
class RankWarning(UserWarning):
|
||
|
"""Issued by chebfit when the design matrix is rank deficient."""
|
||
|
pass
|
||
|
|
||
|
class PolyError(Exception):
|
||
|
"""Base class for errors in this module."""
|
||
|
pass
|
||
|
|
||
|
class PolyDomainError(PolyError):
|
||
|
"""Issued by the generic Poly class when two domains don't match.
|
||
|
|
||
|
This is raised when an binary operation is passed Poly objects with
|
||
|
different domains.
|
||
|
|
||
|
"""
|
||
|
pass
|
||
|
|
||
|
#
|
||
|
# Base class for all polynomial types
|
||
|
#
|
||
|
|
||
|
class PolyBase(object):
|
||
|
"""
|
||
|
Base class for all polynomial types.
|
||
|
|
||
|
Deprecated in numpy 1.9.0, use the abstract
|
||
|
ABCPolyBase class instead. Note that the latter
|
||
|
requires a number of virtual functions to be
|
||
|
implemented.
|
||
|
|
||
|
"""
|
||
|
pass
|
||
|
|
||
|
#
|
||
|
# Helper functions to convert inputs to 1-D arrays
|
||
|
#
|
||
|
def trimseq(seq):
|
||
|
"""Remove small Poly series coefficients.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
seq : sequence
|
||
|
Sequence of Poly series coefficients. This routine fails for
|
||
|
empty sequences.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
series : sequence
|
||
|
Subsequence with trailing zeros removed. If the resulting sequence
|
||
|
would be empty, return the first element. The returned sequence may
|
||
|
or may not be a view.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
Do not lose the type info if the sequence contains unknown objects.
|
||
|
|
||
|
"""
|
||
|
if len(seq) == 0:
|
||
|
return seq
|
||
|
else:
|
||
|
for i in range(len(seq) - 1, -1, -1):
|
||
|
if seq[i] != 0:
|
||
|
break
|
||
|
return seq[:i+1]
|
||
|
|
||
|
|
||
|
def as_series(alist, trim=True):
|
||
|
"""
|
||
|
Return argument as a list of 1-d arrays.
|
||
|
|
||
|
The returned list contains array(s) of dtype double, complex double, or
|
||
|
object. A 1-d argument of shape ``(N,)`` is parsed into ``N`` arrays of
|
||
|
size one; a 2-d argument of shape ``(M,N)`` is parsed into ``M`` arrays
|
||
|
of size ``N`` (i.e., is "parsed by row"); and a higher dimensional array
|
||
|
raises a Value Error if it is not first reshaped into either a 1-d or 2-d
|
||
|
array.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
alist : array_like
|
||
|
A 1- or 2-d array_like
|
||
|
trim : boolean, optional
|
||
|
When True, trailing zeros are removed from the inputs.
|
||
|
When False, the inputs are passed through intact.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
[a1, a2,...] : list of 1-D arrays
|
||
|
A copy of the input data as a list of 1-d arrays.
|
||
|
|
||
|
Raises
|
||
|
------
|
||
|
ValueError
|
||
|
Raised when `as_series` cannot convert its input to 1-d arrays, or at
|
||
|
least one of the resulting arrays is empty.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> from numpy.polynomial import polyutils as pu
|
||
|
>>> a = np.arange(4)
|
||
|
>>> pu.as_series(a)
|
||
|
[array([ 0.]), array([ 1.]), array([ 2.]), array([ 3.])]
|
||
|
>>> b = np.arange(6).reshape((2,3))
|
||
|
>>> pu.as_series(b)
|
||
|
[array([ 0., 1., 2.]), array([ 3., 4., 5.])]
|
||
|
|
||
|
>>> pu.as_series((1, np.arange(3), np.arange(2, dtype=np.float16)))
|
||
|
[array([ 1.]), array([ 0., 1., 2.]), array([ 0., 1.])]
|
||
|
|
||
|
>>> pu.as_series([2, [1.1, 0.]])
|
||
|
[array([ 2.]), array([ 1.1])]
|
||
|
|
||
|
>>> pu.as_series([2, [1.1, 0.]], trim=False)
|
||
|
[array([ 2.]), array([ 1.1, 0. ])]
|
||
|
|
||
|
"""
|
||
|
arrays = [np.array(a, ndmin=1, copy=0) for a in alist]
|
||
|
if min([a.size for a in arrays]) == 0:
|
||
|
raise ValueError("Coefficient array is empty")
|
||
|
if any([a.ndim != 1 for a in arrays]):
|
||
|
raise ValueError("Coefficient array is not 1-d")
|
||
|
if trim:
|
||
|
arrays = [trimseq(a) for a in arrays]
|
||
|
|
||
|
if any([a.dtype == np.dtype(object) for a in arrays]):
|
||
|
ret = []
|
||
|
for a in arrays:
|
||
|
if a.dtype != np.dtype(object):
|
||
|
tmp = np.empty(len(a), dtype=np.dtype(object))
|
||
|
tmp[:] = a[:]
|
||
|
ret.append(tmp)
|
||
|
else:
|
||
|
ret.append(a.copy())
|
||
|
else:
|
||
|
try:
|
||
|
dtype = np.common_type(*arrays)
|
||
|
except Exception:
|
||
|
raise ValueError("Coefficient arrays have no common type")
|
||
|
ret = [np.array(a, copy=1, dtype=dtype) for a in arrays]
|
||
|
return ret
|
||
|
|
||
|
|
||
|
def trimcoef(c, tol=0):
|
||
|
"""
|
||
|
Remove "small" "trailing" coefficients from a polynomial.
|
||
|
|
||
|
"Small" means "small in absolute value" and is controlled by the
|
||
|
parameter `tol`; "trailing" means highest order coefficient(s), e.g., in
|
||
|
``[0, 1, 1, 0, 0]`` (which represents ``0 + x + x**2 + 0*x**3 + 0*x**4``)
|
||
|
both the 3-rd and 4-th order coefficients would be "trimmed."
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
c : array_like
|
||
|
1-d array of coefficients, ordered from lowest order to highest.
|
||
|
tol : number, optional
|
||
|
Trailing (i.e., highest order) elements with absolute value less
|
||
|
than or equal to `tol` (default value is zero) are removed.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
trimmed : ndarray
|
||
|
1-d array with trailing zeros removed. If the resulting series
|
||
|
would be empty, a series containing a single zero is returned.
|
||
|
|
||
|
Raises
|
||
|
------
|
||
|
ValueError
|
||
|
If `tol` < 0
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
trimseq
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> from numpy.polynomial import polyutils as pu
|
||
|
>>> pu.trimcoef((0,0,3,0,5,0,0))
|
||
|
array([ 0., 0., 3., 0., 5.])
|
||
|
>>> pu.trimcoef((0,0,1e-3,0,1e-5,0,0),1e-3) # item == tol is trimmed
|
||
|
array([ 0.])
|
||
|
>>> i = complex(0,1) # works for complex
|
||
|
>>> pu.trimcoef((3e-4,1e-3*(1-i),5e-4,2e-5*(1+i)), 1e-3)
|
||
|
array([ 0.0003+0.j , 0.0010-0.001j])
|
||
|
|
||
|
"""
|
||
|
if tol < 0:
|
||
|
raise ValueError("tol must be non-negative")
|
||
|
|
||
|
[c] = as_series([c])
|
||
|
[ind] = np.nonzero(np.abs(c) > tol)
|
||
|
if len(ind) == 0:
|
||
|
return c[:1]*0
|
||
|
else:
|
||
|
return c[:ind[-1] + 1].copy()
|
||
|
|
||
|
def getdomain(x):
|
||
|
"""
|
||
|
Return a domain suitable for given abscissae.
|
||
|
|
||
|
Find a domain suitable for a polynomial or Chebyshev series
|
||
|
defined at the values supplied.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
x : array_like
|
||
|
1-d array of abscissae whose domain will be determined.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
domain : ndarray
|
||
|
1-d array containing two values. If the inputs are complex, then
|
||
|
the two returned points are the lower left and upper right corners
|
||
|
of the smallest rectangle (aligned with the axes) in the complex
|
||
|
plane containing the points `x`. If the inputs are real, then the
|
||
|
two points are the ends of the smallest interval containing the
|
||
|
points `x`.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
mapparms, mapdomain
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> from numpy.polynomial import polyutils as pu
|
||
|
>>> points = np.arange(4)**2 - 5; points
|
||
|
array([-5, -4, -1, 4])
|
||
|
>>> pu.getdomain(points)
|
||
|
array([-5., 4.])
|
||
|
>>> c = np.exp(complex(0,1)*np.pi*np.arange(12)/6) # unit circle
|
||
|
>>> pu.getdomain(c)
|
||
|
array([-1.-1.j, 1.+1.j])
|
||
|
|
||
|
"""
|
||
|
[x] = as_series([x], trim=False)
|
||
|
if x.dtype.char in np.typecodes['Complex']:
|
||
|
rmin, rmax = x.real.min(), x.real.max()
|
||
|
imin, imax = x.imag.min(), x.imag.max()
|
||
|
return np.array((complex(rmin, imin), complex(rmax, imax)))
|
||
|
else:
|
||
|
return np.array((x.min(), x.max()))
|
||
|
|
||
|
def mapparms(old, new):
|
||
|
"""
|
||
|
Linear map parameters between domains.
|
||
|
|
||
|
Return the parameters of the linear map ``offset + scale*x`` that maps
|
||
|
`old` to `new` such that ``old[i] -> new[i]``, ``i = 0, 1``.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
old, new : array_like
|
||
|
Domains. Each domain must (successfully) convert to a 1-d array
|
||
|
containing precisely two values.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
offset, scale : scalars
|
||
|
The map ``L(x) = offset + scale*x`` maps the first domain to the
|
||
|
second.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
getdomain, mapdomain
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
Also works for complex numbers, and thus can be used to calculate the
|
||
|
parameters required to map any line in the complex plane to any other
|
||
|
line therein.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> from numpy.polynomial import polyutils as pu
|
||
|
>>> pu.mapparms((-1,1),(-1,1))
|
||
|
(0.0, 1.0)
|
||
|
>>> pu.mapparms((1,-1),(-1,1))
|
||
|
(0.0, -1.0)
|
||
|
>>> i = complex(0,1)
|
||
|
>>> pu.mapparms((-i,-1),(1,i))
|
||
|
((1+1j), (1+0j))
|
||
|
|
||
|
"""
|
||
|
oldlen = old[1] - old[0]
|
||
|
newlen = new[1] - new[0]
|
||
|
off = (old[1]*new[0] - old[0]*new[1])/oldlen
|
||
|
scl = newlen/oldlen
|
||
|
return off, scl
|
||
|
|
||
|
def mapdomain(x, old, new):
|
||
|
"""
|
||
|
Apply linear map to input points.
|
||
|
|
||
|
The linear map ``offset + scale*x`` that maps the domain `old` to
|
||
|
the domain `new` is applied to the points `x`.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
x : array_like
|
||
|
Points to be mapped. If `x` is a subtype of ndarray the subtype
|
||
|
will be preserved.
|
||
|
old, new : array_like
|
||
|
The two domains that determine the map. Each must (successfully)
|
||
|
convert to 1-d arrays containing precisely two values.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
x_out : ndarray
|
||
|
Array of points of the same shape as `x`, after application of the
|
||
|
linear map between the two domains.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
getdomain, mapparms
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
Effectively, this implements:
|
||
|
|
||
|
.. math ::
|
||
|
x\\_out = new[0] + m(x - old[0])
|
||
|
|
||
|
where
|
||
|
|
||
|
.. math ::
|
||
|
m = \\frac{new[1]-new[0]}{old[1]-old[0]}
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> from numpy.polynomial import polyutils as pu
|
||
|
>>> old_domain = (-1,1)
|
||
|
>>> new_domain = (0,2*np.pi)
|
||
|
>>> x = np.linspace(-1,1,6); x
|
||
|
array([-1. , -0.6, -0.2, 0.2, 0.6, 1. ])
|
||
|
>>> x_out = pu.mapdomain(x, old_domain, new_domain); x_out
|
||
|
array([ 0. , 1.25663706, 2.51327412, 3.76991118, 5.02654825,
|
||
|
6.28318531])
|
||
|
>>> x - pu.mapdomain(x_out, new_domain, old_domain)
|
||
|
array([ 0., 0., 0., 0., 0., 0.])
|
||
|
|
||
|
Also works for complex numbers (and thus can be used to map any line in
|
||
|
the complex plane to any other line therein).
|
||
|
|
||
|
>>> i = complex(0,1)
|
||
|
>>> old = (-1 - i, 1 + i)
|
||
|
>>> new = (-1 + i, 1 - i)
|
||
|
>>> z = np.linspace(old[0], old[1], 6); z
|
||
|
array([-1.0-1.j , -0.6-0.6j, -0.2-0.2j, 0.2+0.2j, 0.6+0.6j, 1.0+1.j ])
|
||
|
>>> new_z = P.mapdomain(z, old, new); new_z
|
||
|
array([-1.0+1.j , -0.6+0.6j, -0.2+0.2j, 0.2-0.2j, 0.6-0.6j, 1.0-1.j ])
|
||
|
|
||
|
"""
|
||
|
x = np.asanyarray(x)
|
||
|
off, scl = mapparms(old, new)
|
||
|
return off + scl*x
|