You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

2937 lines
91 KiB
Python

6 years ago
"""
An extension of scipy.stats.stats to support masked arrays
"""
# Original author (2007): Pierre GF Gerard-Marchant
# TODO : f_value_wilks_lambda looks botched... what are dfnum & dfden for ?
# TODO : ttest_rel looks botched: what are x1,x2,v1,v2 for ?
# TODO : reimplement ksonesamp
from __future__ import division, print_function, absolute_import
__all__ = ['argstoarray',
'count_tied_groups',
'describe',
'f_oneway', 'find_repeats','friedmanchisquare',
'kendalltau','kendalltau_seasonal','kruskal','kruskalwallis',
'ks_twosamp','ks_2samp','kurtosis','kurtosistest',
'linregress',
'mannwhitneyu', 'meppf','mode','moment','mquantiles','msign',
'normaltest',
'obrientransform',
'pearsonr','plotting_positions','pointbiserialr',
'rankdata',
'scoreatpercentile','sem',
'sen_seasonal_slopes','skew','skewtest','spearmanr',
'siegelslopes', 'theilslopes',
'tmax','tmean','tmin','trim','trimboth',
'trimtail','trima','trimr','trimmed_mean','trimmed_std',
'trimmed_stde','trimmed_var','tsem','ttest_1samp','ttest_onesamp',
'ttest_ind','ttest_rel','tvar',
'variation',
'winsorize',
'brunnermunzel',
]
import numpy as np
from numpy import ndarray
import numpy.ma as ma
from numpy.ma import masked, nomask
from scipy._lib.six import iteritems
import itertools
import warnings
from collections import namedtuple
from . import distributions
import scipy.special as special
from ._stats_mstats_common import (
_find_repeats,
linregress as stats_linregress,
theilslopes as stats_theilslopes,
siegelslopes as stats_siegelslopes
)
genmissingvaldoc = """
Notes
-----
Missing values are considered pair-wise: if a value is missing in x,
the corresponding value in y is masked.
"""
def _chk_asarray(a, axis):
# Always returns a masked array, raveled for axis=None
a = ma.asanyarray(a)
if axis is None:
a = ma.ravel(a)
outaxis = 0
else:
outaxis = axis
return a, outaxis
def _chk2_asarray(a, b, axis):
a = ma.asanyarray(a)
b = ma.asanyarray(b)
if axis is None:
a = ma.ravel(a)
b = ma.ravel(b)
outaxis = 0
else:
outaxis = axis
return a, b, outaxis
def _chk_size(a, b):
a = ma.asanyarray(a)
b = ma.asanyarray(b)
(na, nb) = (a.size, b.size)
if na != nb:
raise ValueError("The size of the input array should match!"
" (%s <> %s)" % (na, nb))
return (a, b, na)
def argstoarray(*args):
"""
Constructs a 2D array from a group of sequences.
Sequences are filled with missing values to match the length of the longest
sequence.
Parameters
----------
args : sequences
Group of sequences.
Returns
-------
argstoarray : MaskedArray
A ( `m` x `n` ) masked array, where `m` is the number of arguments and
`n` the length of the longest argument.
Notes
-----
`numpy.ma.row_stack` has identical behavior, but is called with a sequence
of sequences.
"""
if len(args) == 1 and not isinstance(args[0], ndarray):
output = ma.asarray(args[0])
if output.ndim != 2:
raise ValueError("The input should be 2D")
else:
n = len(args)
m = max([len(k) for k in args])
output = ma.array(np.empty((n,m), dtype=float), mask=True)
for (k,v) in enumerate(args):
output[k,:len(v)] = v
output[np.logical_not(np.isfinite(output._data))] = masked
return output
def find_repeats(arr):
"""Find repeats in arr and return a tuple (repeats, repeat_count).
The input is cast to float64. Masked values are discarded.
Parameters
----------
arr : sequence
Input array. The array is flattened if it is not 1D.
Returns
-------
repeats : ndarray
Array of repeated values.
counts : ndarray
Array of counts.
"""
# Make sure we get a copy. ma.compressed promises a "new array", but can
# actually return a reference.
compr = np.asarray(ma.compressed(arr), dtype=np.float64)
try:
need_copy = np.may_share_memory(compr, arr)
except AttributeError:
# numpy < 1.8.2 bug: np.may_share_memory([], []) raises,
# while in numpy 1.8.2 and above it just (correctly) returns False.
need_copy = False
if need_copy:
compr = compr.copy()
return _find_repeats(compr)
def count_tied_groups(x, use_missing=False):
"""
Counts the number of tied values.
Parameters
----------
x : sequence
Sequence of data on which to counts the ties
use_missing : bool, optional
Whether to consider missing values as tied.
Returns
-------
count_tied_groups : dict
Returns a dictionary (nb of ties: nb of groups).
Examples
--------
>>> from scipy.stats import mstats
>>> z = [0, 0, 0, 2, 2, 2, 3, 3, 4, 5, 6]
>>> mstats.count_tied_groups(z)
{2: 1, 3: 2}
In the above example, the ties were 0 (3x), 2 (3x) and 3 (2x).
>>> z = np.ma.array([0, 0, 1, 2, 2, 2, 3, 3, 4, 5, 6])
>>> mstats.count_tied_groups(z)
{2: 2, 3: 1}
>>> z[[1,-1]] = np.ma.masked
>>> mstats.count_tied_groups(z, use_missing=True)
{2: 2, 3: 1}
"""
nmasked = ma.getmask(x).sum()
# We need the copy as find_repeats will overwrite the initial data
data = ma.compressed(x).copy()
(ties, counts) = find_repeats(data)
nties = {}
if len(ties):
nties = dict(zip(np.unique(counts), itertools.repeat(1)))
nties.update(dict(zip(*find_repeats(counts))))
if nmasked and use_missing:
try:
nties[nmasked] += 1
except KeyError:
nties[nmasked] = 1
return nties
def rankdata(data, axis=None, use_missing=False):
"""Returns the rank (also known as order statistics) of each data point
along the given axis.
If some values are tied, their rank is averaged.
If some values are masked, their rank is set to 0 if use_missing is False,
or set to the average rank of the unmasked values if use_missing is True.
Parameters
----------
data : sequence
Input data. The data is transformed to a masked array
axis : {None,int}, optional
Axis along which to perform the ranking.
If None, the array is first flattened. An exception is raised if
the axis is specified for arrays with a dimension larger than 2
use_missing : bool, optional
Whether the masked values have a rank of 0 (False) or equal to the
average rank of the unmasked values (True).
"""
def _rank1d(data, use_missing=False):
n = data.count()
rk = np.empty(data.size, dtype=float)
idx = data.argsort()
rk[idx[:n]] = np.arange(1,n+1)
if use_missing:
rk[idx[n:]] = (n+1)/2.
else:
rk[idx[n:]] = 0
repeats = find_repeats(data.copy())
for r in repeats[0]:
condition = (data == r).filled(False)
rk[condition] = rk[condition].mean()
return rk
data = ma.array(data, copy=False)
if axis is None:
if data.ndim > 1:
return _rank1d(data.ravel(), use_missing).reshape(data.shape)
else:
return _rank1d(data, use_missing)
else:
return ma.apply_along_axis(_rank1d,axis,data,use_missing).view(ndarray)
ModeResult = namedtuple('ModeResult', ('mode', 'count'))
def mode(a, axis=0):
"""
Returns an array of the modal (most common) value in the passed array.
Parameters
----------
a : array_like
n-dimensional array of which to find mode(s).
axis : int or None, optional
Axis along which to operate. Default is 0. If None, compute over
the whole array `a`.
Returns
-------
mode : ndarray
Array of modal values.
count : ndarray
Array of counts for each mode.
Notes
-----
For more details, see `stats.mode`.
Examples
--------
>>> from scipy import stats
>>> from scipy.stats import mstats
>>> m_arr = np.ma.array([1, 1, 0, 0, 0, 0], mask=[0, 0, 1, 1, 1, 0])
>>> stats.mode(m_arr)
ModeResult(mode=array([0]), count=array([4]))
>>> mstats.mode(m_arr)
ModeResult(mode=array([1.]), count=array([2.]))
"""
a, axis = _chk_asarray(a, axis)
def _mode1D(a):
(rep,cnt) = find_repeats(a)
if not cnt.ndim:
return (0, 0)
elif cnt.size:
return (rep[cnt.argmax()], cnt.max())
else:
return (a.min(), 1)
if axis is None:
output = _mode1D(ma.ravel(a))
output = (ma.array(output[0]), ma.array(output[1]))
else:
output = ma.apply_along_axis(_mode1D, axis, a)
newshape = list(a.shape)
newshape[axis] = 1
slices = [slice(None)] * output.ndim
slices[axis] = 0
modes = output[tuple(slices)].reshape(newshape)
slices[axis] = 1
counts = output[tuple(slices)].reshape(newshape)
output = (modes, counts)
return ModeResult(*output)
def _betai(a, b, x):
x = np.asanyarray(x)
x = ma.where(x < 1.0, x, 1.0) # if x > 1 then return 1.0
return special.betainc(a, b, x)
def msign(x):
"""Returns the sign of x, or 0 if x is masked."""
return ma.filled(np.sign(x), 0)
def pearsonr(x,y):
"""
Calculates a Pearson correlation coefficient and the p-value for testing
non-correlation.
The Pearson correlation coefficient measures the linear relationship
between two datasets. Strictly speaking, Pearson's correlation requires
that each dataset be normally distributed. Like other correlation
coefficients, this one varies between -1 and +1 with 0 implying no
correlation. Correlations of -1 or +1 imply an exact linear
relationship. Positive correlations imply that as `x` increases, so does
`y`. Negative correlations imply that as `x` increases, `y` decreases.
The p-value roughly indicates the probability of an uncorrelated system
producing datasets that have a Pearson correlation at least as extreme
as the one computed from these datasets. The p-values are not entirely
reliable but are probably reasonable for datasets larger than 500 or so.
Parameters
----------
x : 1-D array_like
Input
y : 1-D array_like
Input
Returns
-------
pearsonr : float
Pearson's correlation coefficient, 2-tailed p-value.
References
----------
http://www.statsoft.com/textbook/glosp.html#Pearson%20Correlation
"""
(x, y, n) = _chk_size(x, y)
(x, y) = (x.ravel(), y.ravel())
# Get the common mask and the total nb of unmasked elements
m = ma.mask_or(ma.getmask(x), ma.getmask(y))
n -= m.sum()
df = n-2
if df < 0:
return (masked, masked)
(mx, my) = (x.mean(), y.mean())
(xm, ym) = (x-mx, y-my)
r_num = ma.add.reduce(xm*ym)
r_den = ma.sqrt(ma.dot(xm,xm) * ma.dot(ym,ym))
r = r_num / r_den
# Presumably, if r > 1, then it is only some small artifact of floating
# point arithmetic.
r = min(r, 1.0)
r = max(r, -1.0)
if r is masked or abs(r) == 1.0:
prob = 0.
else:
t_squared = (df / ((1.0 - r) * (1.0 + r))) * r * r
prob = _betai(0.5*df, 0.5, df/(df + t_squared))
return r, prob
SpearmanrResult = namedtuple('SpearmanrResult', ('correlation', 'pvalue'))
def spearmanr(x, y=None, use_ties=True, axis=None, nan_policy='propagate'):
"""
Calculates a Spearman rank-order correlation coefficient and the p-value
to test for non-correlation.
The Spearman correlation is a nonparametric measure of the linear
relationship between two datasets. Unlike the Pearson correlation, the
Spearman correlation does not assume that both datasets are normally
distributed. Like other correlation coefficients, this one varies
between -1 and +1 with 0 implying no correlation. Correlations of -1 or
+1 imply a monotonic relationship. Positive correlations imply that
as `x` increases, so does `y`. Negative correlations imply that as `x`
increases, `y` decreases.
Missing values are discarded pair-wise: if a value is missing in `x`, the
corresponding value in `y` is masked.
The p-value roughly indicates the probability of an uncorrelated system
producing datasets that have a Spearman correlation at least as extreme
as the one computed from these datasets. The p-values are not entirely
reliable but are probably reasonable for datasets larger than 500 or so.
Parameters
----------
x, y : 1D or 2D array_like, y is optional
One or two 1-D or 2-D arrays containing multiple variables and
observations. When these are 1-D, each represents a vector of
observations of a single variable. For the behavior in the 2-D case,
see under ``axis``, below.
use_ties : bool, optional
DO NOT USE. Does not do anything, keyword is only left in place for
backwards compatibility reasons.
axis : int or None, optional
If axis=0 (default), then each column represents a variable, with
observations in the rows. If axis=1, the relationship is transposed:
each row represents a variable, while the columns contain observations.
If axis=None, then both arrays will be raveled.
nan_policy : {'propagate', 'raise', 'omit'}, optional
Defines how to handle when input contains nan. 'propagate' returns nan,
'raise' throws an error, 'omit' performs the calculations ignoring nan
values. Default is 'propagate'.
Returns
-------
correlation : float
Spearman correlation coefficient
pvalue : float
2-tailed p-value.
References
----------
[CRCProbStat2000] section 14.7
"""
if not use_ties:
raise ValueError("`use_ties=False` is not supported in SciPy >= 1.2.0")
# Always returns a masked array, raveled if axis=None
x, axisout = _chk_asarray(x, axis)
if y is not None:
# Deal only with 2-D `x` case.
y, _ = _chk_asarray(y, axis)
if axisout == 0:
x = ma.column_stack((x, y))
else:
x = ma.row_stack((x, y))
if axisout == 1:
# To simplify the code that follow (always use `n_obs, n_vars` shape)
x = x.T
if nan_policy == 'omit':
x = ma.masked_invalid(x)
def _spearmanr_2cols(x):
# Mask the same observations for all variables, and then drop those
# observations (can't leave them masked, rankdata is weird).
x = ma.mask_rowcols(x, axis=0)
x = x[~x.mask.any(axis=1), :]
m = ma.getmask(x)
n_obs = x.shape[0]
dof = n_obs - 2 - int(m.sum(axis=0)[0])
if dof < 0:
raise ValueError("The input must have at least 3 entries!")
# Gets the ranks and rank differences
x_ranked = rankdata(x, axis=0)
rs = ma.corrcoef(x_ranked, rowvar=False).data
# rs can have elements equal to 1, so avoid zero division warnings
olderr = np.seterr(divide='ignore')
try:
# clip the small negative values possibly caused by rounding
# errors before taking the square root
t = rs * np.sqrt((dof / ((rs+1.0) * (1.0-rs))).clip(0))
finally:
np.seterr(**olderr)
prob = 2 * distributions.t.sf(np.abs(t), dof)
# For backwards compatibility, return scalars when comparing 2 columns
if rs.shape == (2, 2):
return SpearmanrResult(rs[1, 0], prob[1, 0])
else:
return SpearmanrResult(rs, prob)
# Need to do this per pair of variables, otherwise the dropped observations
# in a third column mess up the result for a pair.
n_vars = x.shape[1]
if n_vars == 2:
return _spearmanr_2cols(x)
else:
rs = np.ones((n_vars, n_vars), dtype=float)
prob = np.zeros((n_vars, n_vars), dtype=float)
for var1 in range(n_vars - 1):
for var2 in range(var1+1, n_vars):
result = _spearmanr_2cols(x[:, [var1, var2]])
rs[var1, var2] = result.correlation
rs[var2, var1] = result.correlation
prob[var1, var2] = result.pvalue
prob[var2, var1] = result.pvalue
return SpearmanrResult(rs, prob)
KendalltauResult = namedtuple('KendalltauResult', ('correlation', 'pvalue'))
def kendalltau(x, y, use_ties=True, use_missing=False, method='auto'):
"""
Computes Kendall's rank correlation tau on two variables *x* and *y*.
Parameters
----------
x : sequence
First data list (for example, time).
y : sequence
Second data list.
use_ties : {True, False}, optional
Whether ties correction should be performed.
use_missing : {False, True}, optional
Whether missing data should be allocated a rank of 0 (False) or the
average rank (True)
method: {'auto', 'asymptotic', 'exact'}, optional
Defines which method is used to calculate the p-value [1]_.
'asymptotic' uses a normal approximation valid for large samples.
'exact' computes the exact p-value, but can only be used if no ties
are present. 'auto' is the default and selects the appropriate
method based on a trade-off between speed and accuracy.
Returns
-------
correlation : float
Kendall tau
pvalue : float
Approximate 2-side p-value.
References
----------
.. [1] Maurice G. Kendall, "Rank Correlation Methods" (4th Edition),
Charles Griffin & Co., 1970.
"""
(x, y, n) = _chk_size(x, y)
(x, y) = (x.flatten(), y.flatten())
m = ma.mask_or(ma.getmask(x), ma.getmask(y))
if m is not nomask:
x = ma.array(x, mask=m, copy=True)
y = ma.array(y, mask=m, copy=True)
# need int() here, otherwise numpy defaults to 32 bit
# integer on all Windows architectures, causing overflow.
# int() will keep it infinite precision.
n -= int(m.sum())
if n < 2:
return KendalltauResult(np.nan, np.nan)
rx = ma.masked_equal(rankdata(x, use_missing=use_missing), 0)
ry = ma.masked_equal(rankdata(y, use_missing=use_missing), 0)
idx = rx.argsort()
(rx, ry) = (rx[idx], ry[idx])
C = np.sum([((ry[i+1:] > ry[i]) * (rx[i+1:] > rx[i])).filled(0).sum()
for i in range(len(ry)-1)], dtype=float)
D = np.sum([((ry[i+1:] < ry[i])*(rx[i+1:] > rx[i])).filled(0).sum()
for i in range(len(ry)-1)], dtype=float)
xties = count_tied_groups(x)
yties = count_tied_groups(y)
if use_ties:
corr_x = np.sum([v*k*(k-1) for (k,v) in iteritems(xties)], dtype=float)
corr_y = np.sum([v*k*(k-1) for (k,v) in iteritems(yties)], dtype=float)
denom = ma.sqrt((n*(n-1)-corr_x)/2. * (n*(n-1)-corr_y)/2.)
else:
denom = n*(n-1)/2.
tau = (C-D) / denom
if method == 'exact' and (xties or yties):
raise ValueError("Ties found, exact method cannot be used.")
if method == 'auto':
if (not xties and not yties) and (n <= 33 or min(C, n*(n-1)/2.0-C) <= 1):
method = 'exact'
else:
method = 'asymptotic'
if not xties and not yties and method == 'exact':
# Exact p-value, see Maurice G. Kendall, "Rank Correlation Methods" (4th Edition), Charles Griffin & Co., 1970.
c = int(min(C, (n*(n-1))/2-C))
if n <= 0:
raise ValueError
elif c < 0 or 2*c > n*(n-1):
raise ValueError
elif n == 1:
prob = 1.0
elif n == 2:
prob = 1.0
elif c == 0:
prob = 2.0/np.math.factorial(n)
elif c == 1:
prob = 2.0/np.math.factorial(n-1)
else:
old = [0.0]*(c+1)
new = [0.0]*(c+1)
new[0] = 1.0
new[1] = 1.0
for j in range(3,n+1):
old = new[:]
for k in range(1,min(j,c+1)):
new[k] += new[k-1]
for k in range(j,c+1):
new[k] += new[k-1] - old[k-j]
prob = 2.0*sum(new)/np.math.factorial(n)
elif method == 'asymptotic':
var_s = n*(n-1)*(2*n+5)
if use_ties:
var_s -= np.sum([v*k*(k-1)*(2*k+5)*1. for (k,v) in iteritems(xties)])
var_s -= np.sum([v*k*(k-1)*(2*k+5)*1. for (k,v) in iteritems(yties)])
v1 = np.sum([v*k*(k-1) for (k, v) in iteritems(xties)], dtype=float) *\
np.sum([v*k*(k-1) for (k, v) in iteritems(yties)], dtype=float)
v1 /= 2.*n*(n-1)
if n > 2:
v2 = np.sum([v*k*(k-1)*(k-2) for (k,v) in iteritems(xties)],
dtype=float) * \
np.sum([v*k*(k-1)*(k-2) for (k,v) in iteritems(yties)],
dtype=float)
v2 /= 9.*n*(n-1)*(n-2)
else:
v2 = 0
else:
v1 = v2 = 0
var_s /= 18.
var_s += (v1 + v2)
z = (C-D)/np.sqrt(var_s)
prob = special.erfc(abs(z)/np.sqrt(2))
else:
raise ValueError("Unknown method "+str(method)+" specified, please use auto, exact or asymptotic.")
return KendalltauResult(tau, prob)
def kendalltau_seasonal(x):
"""
Computes a multivariate Kendall's rank correlation tau, for seasonal data.
Parameters
----------
x : 2-D ndarray
Array of seasonal data, with seasons in columns.
"""
x = ma.array(x, subok=True, copy=False, ndmin=2)
(n,m) = x.shape
n_p = x.count(0)
S_szn = sum(msign(x[i:]-x[i]).sum(0) for i in range(n))
S_tot = S_szn.sum()
n_tot = x.count()
ties = count_tied_groups(x.compressed())
corr_ties = sum(v*k*(k-1) for (k,v) in iteritems(ties))
denom_tot = ma.sqrt(1.*n_tot*(n_tot-1)*(n_tot*(n_tot-1)-corr_ties))/2.
R = rankdata(x, axis=0, use_missing=True)
K = ma.empty((m,m), dtype=int)
covmat = ma.empty((m,m), dtype=float)
denom_szn = ma.empty(m, dtype=float)
for j in range(m):
ties_j = count_tied_groups(x[:,j].compressed())
corr_j = sum(v*k*(k-1) for (k,v) in iteritems(ties_j))
cmb = n_p[j]*(n_p[j]-1)
for k in range(j,m,1):
K[j,k] = sum(msign((x[i:,j]-x[i,j])*(x[i:,k]-x[i,k])).sum()
for i in range(n))
covmat[j,k] = (K[j,k] + 4*(R[:,j]*R[:,k]).sum() -
n*(n_p[j]+1)*(n_p[k]+1))/3.
K[k,j] = K[j,k]
covmat[k,j] = covmat[j,k]
denom_szn[j] = ma.sqrt(cmb*(cmb-corr_j)) / 2.
var_szn = covmat.diagonal()
z_szn = msign(S_szn) * (abs(S_szn)-1) / ma.sqrt(var_szn)
z_tot_ind = msign(S_tot) * (abs(S_tot)-1) / ma.sqrt(var_szn.sum())
z_tot_dep = msign(S_tot) * (abs(S_tot)-1) / ma.sqrt(covmat.sum())
prob_szn = special.erfc(abs(z_szn)/np.sqrt(2))
prob_tot_ind = special.erfc(abs(z_tot_ind)/np.sqrt(2))
prob_tot_dep = special.erfc(abs(z_tot_dep)/np.sqrt(2))
chi2_tot = (z_szn*z_szn).sum()
chi2_trd = m * z_szn.mean()**2
output = {'seasonal tau': S_szn/denom_szn,
'global tau': S_tot/denom_tot,
'global tau (alt)': S_tot/denom_szn.sum(),
'seasonal p-value': prob_szn,
'global p-value (indep)': prob_tot_ind,
'global p-value (dep)': prob_tot_dep,
'chi2 total': chi2_tot,
'chi2 trend': chi2_trd,
}
return output
PointbiserialrResult = namedtuple('PointbiserialrResult', ('correlation',
'pvalue'))
def pointbiserialr(x, y):
"""Calculates a point biserial correlation coefficient and its p-value.
Parameters
----------
x : array_like of bools
Input array.
y : array_like
Input array.
Returns
-------
correlation : float
R value
pvalue : float
2-tailed p-value
Notes
-----
Missing values are considered pair-wise: if a value is missing in x,
the corresponding value in y is masked.
For more details on `pointbiserialr`, see `stats.pointbiserialr`.
"""
x = ma.fix_invalid(x, copy=True).astype(bool)
y = ma.fix_invalid(y, copy=True).astype(float)
# Get rid of the missing data
m = ma.mask_or(ma.getmask(x), ma.getmask(y))
if m is not nomask:
unmask = np.logical_not(m)
x = x[unmask]
y = y[unmask]
n = len(x)
# phat is the fraction of x values that are True
phat = x.sum() / float(n)
y0 = y[~x] # y-values where x is False
y1 = y[x] # y-values where x is True
y0m = y0.mean()
y1m = y1.mean()
rpb = (y1m - y0m)*np.sqrt(phat * (1-phat)) / y.std()
df = n-2
t = rpb*ma.sqrt(df/(1.0-rpb**2))
prob = _betai(0.5*df, 0.5, df/(df+t*t))
return PointbiserialrResult(rpb, prob)
LinregressResult = namedtuple('LinregressResult', ('slope', 'intercept',
'rvalue', 'pvalue',
'stderr'))
def linregress(x, y=None):
"""
Linear regression calculation
Note that the non-masked version is used, and that this docstring is
replaced by the non-masked docstring + some info on missing data.
"""
if y is None:
x = ma.array(x)
if x.shape[0] == 2:
x, y = x
elif x.shape[1] == 2:
x, y = x.T
else:
msg = ("If only `x` is given as input, it has to be of shape "
"(2, N) or (N, 2), provided shape was %s" % str(x.shape))
raise ValueError(msg)
else:
x = ma.array(x)
y = ma.array(y)
x = x.flatten()
y = y.flatten()
m = ma.mask_or(ma.getmask(x), ma.getmask(y), shrink=False)
if m is not nomask:
x = ma.array(x, mask=m)
y = ma.array(y, mask=m)
if np.any(~m):
slope, intercept, r, prob, sterrest = stats_linregress(x.data[~m],
y.data[~m])
else:
# All data is masked
return None, None, None, None, None
else:
slope, intercept, r, prob, sterrest = stats_linregress(x.data, y.data)
return LinregressResult(slope, intercept, r, prob, sterrest)
if stats_linregress.__doc__:
linregress.__doc__ = stats_linregress.__doc__ + genmissingvaldoc
def theilslopes(y, x=None, alpha=0.95):
r"""
Computes the Theil-Sen estimator for a set of points (x, y).
`theilslopes` implements a method for robust linear regression. It
computes the slope as the median of all slopes between paired values.
Parameters
----------
y : array_like
Dependent variable.
x : array_like or None, optional
Independent variable. If None, use ``arange(len(y))`` instead.
alpha : float, optional
Confidence degree between 0 and 1. Default is 95% confidence.
Note that `alpha` is symmetric around 0.5, i.e. both 0.1 and 0.9 are
interpreted as "find the 90% confidence interval".
Returns
-------
medslope : float
Theil slope.
medintercept : float
Intercept of the Theil line, as ``median(y) - medslope*median(x)``.
lo_slope : float
Lower bound of the confidence interval on `medslope`.
up_slope : float
Upper bound of the confidence interval on `medslope`.
See also
--------
siegelslopes : a similar technique with repeated medians
Notes
-----
For more details on `theilslopes`, see `stats.theilslopes`.
"""
y = ma.asarray(y).flatten()
if x is None:
x = ma.arange(len(y), dtype=float)
else:
x = ma.asarray(x).flatten()
if len(x) != len(y):
raise ValueError("Incompatible lengths ! (%s<>%s)" % (len(y),len(x)))
m = ma.mask_or(ma.getmask(x), ma.getmask(y))
y._mask = x._mask = m
# Disregard any masked elements of x or y
y = y.compressed()
x = x.compressed().astype(float)
# We now have unmasked arrays so can use `stats.theilslopes`
return stats_theilslopes(y, x, alpha=alpha)
def siegelslopes(y, x=None, method="hierarchical"):
r"""
Computes the Siegel estimator for a set of points (x, y).
`siegelslopes` implements a method for robust linear regression
using repeated medians to fit a line to the points (x, y).
The method is robust to outliers with an asymptotic breakdown point
of 50%.
Parameters
----------
y : array_like
Dependent variable.
x : array_like or None, optional
Independent variable. If None, use ``arange(len(y))`` instead.
method : {'hierarchical', 'separate'}
If 'hierarchical', estimate the intercept using the estimated
slope ``medslope`` (default option).
If 'separate', estimate the intercept independent of the estimated
slope. See Notes for details.
Returns
-------
medslope : float
Estimate of the slope of the regression line.
medintercept : float
Estimate of the intercept of the regression line.
See also
--------
theilslopes : a similar technique without repeated medians
Notes
-----
For more details on `siegelslopes`, see `scipy.stats.siegelslopes`.
"""
y = ma.asarray(y).ravel()
if x is None:
x = ma.arange(len(y), dtype=float)
else:
x = ma.asarray(x).ravel()
if len(x) != len(y):
raise ValueError("Incompatible lengths ! (%s<>%s)" % (len(y), len(x)))
m = ma.mask_or(ma.getmask(x), ma.getmask(y))
y._mask = x._mask = m
# Disregard any masked elements of x or y
y = y.compressed()
x = x.compressed().astype(float)
# We now have unmasked arrays so can use `stats.siegelslopes`
return stats_siegelslopes(y, x)
def sen_seasonal_slopes(x):
x = ma.array(x, subok=True, copy=False, ndmin=2)
(n,_) = x.shape
# Get list of slopes per season
szn_slopes = ma.vstack([(x[i+1:]-x[i])/np.arange(1,n-i)[:,None]
for i in range(n)])
szn_medslopes = ma.median(szn_slopes, axis=0)
medslope = ma.median(szn_slopes, axis=None)
return szn_medslopes, medslope
Ttest_1sampResult = namedtuple('Ttest_1sampResult', ('statistic', 'pvalue'))
def ttest_1samp(a, popmean, axis=0):
"""
Calculates the T-test for the mean of ONE group of scores.
Parameters
----------
a : array_like
sample observation
popmean : float or array_like
expected value in null hypothesis, if array_like than it must have the
same shape as `a` excluding the axis dimension
axis : int or None, optional
Axis along which to compute test. If None, compute over the whole
array `a`.
Returns
-------
statistic : float or array
t-statistic
pvalue : float or array
two-tailed p-value
Notes
-----
For more details on `ttest_1samp`, see `stats.ttest_1samp`.
"""
a, axis = _chk_asarray(a, axis)
if a.size == 0:
return (np.nan, np.nan)
x = a.mean(axis=axis)
v = a.var(axis=axis, ddof=1)
n = a.count(axis=axis)
# force df to be an array for masked division not to throw a warning
df = ma.asanyarray(n - 1.0)
svar = ((n - 1.0) * v) / df
with np.errstate(divide='ignore', invalid='ignore'):
t = (x - popmean) / ma.sqrt(svar / n)
prob = special.betainc(0.5*df, 0.5, df/(df + t*t))
return Ttest_1sampResult(t, prob)
ttest_onesamp = ttest_1samp
Ttest_indResult = namedtuple('Ttest_indResult', ('statistic', 'pvalue'))
def ttest_ind(a, b, axis=0, equal_var=True):
"""
Calculates the T-test for the means of TWO INDEPENDENT samples of scores.
Parameters
----------
a, b : array_like
The arrays must have the same shape, except in the dimension
corresponding to `axis` (the first, by default).
axis : int or None, optional
Axis along which to compute test. If None, compute over the whole
arrays, `a`, and `b`.
equal_var : bool, optional
If True, perform a standard independent 2 sample test that assumes equal
population variances.
If False, perform Welch's t-test, which does not assume equal population
variance.
.. versionadded:: 0.17.0
Returns
-------
statistic : float or array
The calculated t-statistic.
pvalue : float or array
The two-tailed p-value.
Notes
-----
For more details on `ttest_ind`, see `stats.ttest_ind`.
"""
a, b, axis = _chk2_asarray(a, b, axis)
if a.size == 0 or b.size == 0:
return Ttest_indResult(np.nan, np.nan)
(x1, x2) = (a.mean(axis), b.mean(axis))
(v1, v2) = (a.var(axis=axis, ddof=1), b.var(axis=axis, ddof=1))
(n1, n2) = (a.count(axis), b.count(axis))
if equal_var:
# force df to be an array for masked division not to throw a warning
df = ma.asanyarray(n1 + n2 - 2.0)
svar = ((n1-1)*v1+(n2-1)*v2) / df
denom = ma.sqrt(svar*(1.0/n1 + 1.0/n2)) # n-D computation here!
else:
vn1 = v1/n1
vn2 = v2/n2
with np.errstate(divide='ignore', invalid='ignore'):
df = (vn1 + vn2)**2 / (vn1**2 / (n1 - 1) + vn2**2 / (n2 - 1))
# If df is undefined, variances are zero.
# It doesn't matter what df is as long as it is not NaN.
df = np.where(np.isnan(df), 1, df)
denom = ma.sqrt(vn1 + vn2)
with np.errstate(divide='ignore', invalid='ignore'):
t = (x1-x2) / denom
probs = special.betainc(0.5*df, 0.5, df/(df + t*t)).reshape(t.shape)
return Ttest_indResult(t, probs.squeeze())
Ttest_relResult = namedtuple('Ttest_relResult', ('statistic', 'pvalue'))
def ttest_rel(a, b, axis=0):
"""
Calculates the T-test on TWO RELATED samples of scores, a and b.
Parameters
----------
a, b : array_like
The arrays must have the same shape.
axis : int or None, optional
Axis along which to compute test. If None, compute over the whole
arrays, `a`, and `b`.
Returns
-------
statistic : float or array
t-statistic
pvalue : float or array
two-tailed p-value
Notes
-----
For more details on `ttest_rel`, see `stats.ttest_rel`.
"""
a, b, axis = _chk2_asarray(a, b, axis)
if len(a) != len(b):
raise ValueError('unequal length arrays')
if a.size == 0 or b.size == 0:
return Ttest_relResult(np.nan, np.nan)
n = a.count(axis)
df = ma.asanyarray(n-1.0)
d = (a-b).astype('d')
dm = d.mean(axis)
v = d.var(axis=axis, ddof=1)
denom = ma.sqrt(v / n)
with np.errstate(divide='ignore', invalid='ignore'):
t = dm / denom
probs = special.betainc(0.5*df, 0.5, df/(df + t*t)).reshape(t.shape).squeeze()
return Ttest_relResult(t, probs)
MannwhitneyuResult = namedtuple('MannwhitneyuResult', ('statistic',
'pvalue'))
def mannwhitneyu(x,y, use_continuity=True):
"""
Computes the Mann-Whitney statistic
Missing values in `x` and/or `y` are discarded.
Parameters
----------
x : sequence
Input
y : sequence
Input
use_continuity : {True, False}, optional
Whether a continuity correction (1/2.) should be taken into account.
Returns
-------
statistic : float
The Mann-Whitney statistics
pvalue : float
Approximate p-value assuming a normal distribution.
"""
x = ma.asarray(x).compressed().view(ndarray)
y = ma.asarray(y).compressed().view(ndarray)
ranks = rankdata(np.concatenate([x,y]))
(nx, ny) = (len(x), len(y))
nt = nx + ny
U = ranks[:nx].sum() - nx*(nx+1)/2.
U = max(U, nx*ny - U)
u = nx*ny - U
mu = (nx*ny)/2.
sigsq = (nt**3 - nt)/12.
ties = count_tied_groups(ranks)
sigsq -= sum(v*(k**3-k) for (k,v) in iteritems(ties))/12.
sigsq *= nx*ny/float(nt*(nt-1))
if use_continuity:
z = (U - 1/2. - mu) / ma.sqrt(sigsq)
else:
z = (U - mu) / ma.sqrt(sigsq)
prob = special.erfc(abs(z)/np.sqrt(2))
return MannwhitneyuResult(u, prob)
KruskalResult = namedtuple('KruskalResult', ('statistic', 'pvalue'))
def kruskal(*args):
"""
Compute the Kruskal-Wallis H-test for independent samples
Parameters
----------
sample1, sample2, ... : array_like
Two or more arrays with the sample measurements can be given as
arguments.
Returns
-------
statistic : float
The Kruskal-Wallis H statistic, corrected for ties
pvalue : float
The p-value for the test using the assumption that H has a chi
square distribution
Notes
-----
For more details on `kruskal`, see `stats.kruskal`.
Examples
--------
>>> from scipy.stats.mstats import kruskal
Random samples from three different brands of batteries were tested
to see how long the charge lasted. Results were as follows:
>>> a = [6.3, 5.4, 5.7, 5.2, 5.0]
>>> b = [6.9, 7.0, 6.1, 7.9]
>>> c = [7.2, 6.9, 6.1, 6.5]
Test the hypotesis that the distribution functions for all of the brands'
durations are identical. Use 5% level of significance.
>>> kruskal(a, b, c)
KruskalResult(statistic=7.113812154696133, pvalue=0.028526948491942164)
The null hypothesis is rejected at the 5% level of significance
because the returned p-value is less than the critical value of 5%.
"""
output = argstoarray(*args)
ranks = ma.masked_equal(rankdata(output, use_missing=False), 0)
sumrk = ranks.sum(-1)
ngrp = ranks.count(-1)
ntot = ranks.count()
H = 12./(ntot*(ntot+1)) * (sumrk**2/ngrp).sum() - 3*(ntot+1)
# Tie correction
ties = count_tied_groups(ranks)
T = 1. - sum(v*(k**3-k) for (k,v) in iteritems(ties))/float(ntot**3-ntot)
if T == 0:
raise ValueError('All numbers are identical in kruskal')
H /= T
df = len(output) - 1
prob = distributions.chi2.sf(H, df)
return KruskalResult(H, prob)
kruskalwallis = kruskal
def ks_twosamp(data1, data2, alternative="two-sided"):
"""
Computes the Kolmogorov-Smirnov test on two samples.
Missing values are discarded.
Parameters
----------
data1 : array_like
First data set
data2 : array_like
Second data set
alternative : {'two-sided', 'less', 'greater'}, optional
Indicates the alternative hypothesis. Default is 'two-sided'.
Returns
-------
d : float
Value of the Kolmogorov Smirnov test
p : float
Corresponding p-value.
"""
(data1, data2) = (ma.asarray(data1), ma.asarray(data2))
(n1, n2) = (data1.count(), data2.count())
n = (n1*n2/float(n1+n2))
mix = ma.concatenate((data1.compressed(), data2.compressed()))
mixsort = mix.argsort(kind='mergesort')
csum = np.where(mixsort < n1, 1./n1, -1./n2).cumsum()
# Check for ties
if len(np.unique(mix)) < (n1+n2):
csum = csum[np.r_[np.diff(mix[mixsort]).nonzero()[0],-1]]
alternative = str(alternative).lower()[0]
if alternative == 't':
d = ma.abs(csum).max()
prob = special.kolmogorov(np.sqrt(n)*d)
elif alternative == 'l':
d = -csum.min()
prob = np.exp(-2*n*d**2)
elif alternative == 'g':
d = csum.max()
prob = np.exp(-2*n*d**2)
else:
raise ValueError("Invalid value for the alternative hypothesis: "
"should be in 'two-sided', 'less' or 'greater'")
return (d, prob)
ks_2samp = ks_twosamp
def trima(a, limits=None, inclusive=(True,True)):
"""
Trims an array by masking the data outside some given limits.
Returns a masked version of the input array.
Parameters
----------
a : array_like
Input array.
limits : {None, tuple}, optional
Tuple of (lower limit, upper limit) in absolute values.
Values of the input array lower (greater) than the lower (upper) limit
will be masked. A limit is None indicates an open interval.
inclusive : (bool, bool) tuple, optional
Tuple of (lower flag, upper flag), indicating whether values exactly
equal to the lower (upper) limit are allowed.
"""
a = ma.asarray(a)
a.unshare_mask()
if (limits is None) or (limits == (None, None)):
return a
(lower_lim, upper_lim) = limits
(lower_in, upper_in) = inclusive
condition = False
if lower_lim is not None:
if lower_in:
condition |= (a < lower_lim)
else:
condition |= (a <= lower_lim)
if upper_lim is not None:
if upper_in:
condition |= (a > upper_lim)
else:
condition |= (a >= upper_lim)
a[condition.filled(True)] = masked
return a
def trimr(a, limits=None, inclusive=(True, True), axis=None):
"""
Trims an array by masking some proportion of the data on each end.
Returns a masked version of the input array.
Parameters
----------
a : sequence
Input array.
limits : {None, tuple}, optional
Tuple of the percentages to cut on each side of the array, with respect
to the number of unmasked data, as floats between 0. and 1.
Noting n the number of unmasked data before trimming, the
(n*limits[0])th smallest data and the (n*limits[1])th largest data are
masked, and the total number of unmasked data after trimming is
n*(1.-sum(limits)). The value of one limit can be set to None to
indicate an open interval.
inclusive : {(True,True) tuple}, optional
Tuple of flags indicating whether the number of data being masked on
the left (right) end should be truncated (True) or rounded (False) to
integers.
axis : {None,int}, optional
Axis along which to trim. If None, the whole array is trimmed, but its
shape is maintained.
"""
def _trimr1D(a, low_limit, up_limit, low_inclusive, up_inclusive):
n = a.count()
idx = a.argsort()
if low_limit:
if low_inclusive:
lowidx = int(low_limit*n)
else:
lowidx = np.round(low_limit*n)
a[idx[:lowidx]] = masked
if up_limit is not None:
if up_inclusive:
upidx = n - int(n*up_limit)
else:
upidx = n - np.round(n*up_limit)
a[idx[upidx:]] = masked
return a
a = ma.asarray(a)
a.unshare_mask()
if limits is None:
return a
# Check the limits
(lolim, uplim) = limits
errmsg = "The proportion to cut from the %s should be between 0. and 1."
if lolim is not None:
if lolim > 1. or lolim < 0:
raise ValueError(errmsg % 'beginning' + "(got %s)" % lolim)
if uplim is not None:
if uplim > 1. or uplim < 0:
raise ValueError(errmsg % 'end' + "(got %s)" % uplim)
(loinc, upinc) = inclusive
if axis is None:
shp = a.shape
return _trimr1D(a.ravel(),lolim,uplim,loinc,upinc).reshape(shp)
else:
return ma.apply_along_axis(_trimr1D, axis, a, lolim,uplim,loinc,upinc)
trimdoc = """
Parameters
----------
a : sequence
Input array
limits : {None, tuple}, optional
If `relative` is False, tuple (lower limit, upper limit) in absolute values.
Values of the input array lower (greater) than the lower (upper) limit are
masked.
If `relative` is True, tuple (lower percentage, upper percentage) to cut
on each side of the array, with respect to the number of unmasked data.
Noting n the number of unmasked data before trimming, the (n*limits[0])th
smallest data and the (n*limits[1])th largest data are masked, and the
total number of unmasked data after trimming is n*(1.-sum(limits))
In each case, the value of one limit can be set to None to indicate an
open interval.
If limits is None, no trimming is performed
inclusive : {(bool, bool) tuple}, optional
If `relative` is False, tuple indicating whether values exactly equal
to the absolute limits are allowed.
If `relative` is True, tuple indicating whether the number of data
being masked on each side should be rounded (True) or truncated
(False).
relative : bool, optional
Whether to consider the limits as absolute values (False) or proportions
to cut (True).
axis : int, optional
Axis along which to trim.
"""
def trim(a, limits=None, inclusive=(True,True), relative=False, axis=None):
"""
Trims an array by masking the data outside some given limits.
Returns a masked version of the input array.
%s
Examples
--------
>>> from scipy.stats.mstats import trim
>>> z = [ 1, 2, 3, 4, 5, 6, 7, 8, 9,10]
>>> print(trim(z,(3,8)))
[-- -- 3 4 5 6 7 8 -- --]
>>> print(trim(z,(0.1,0.2),relative=True))
[-- 2 3 4 5 6 7 8 -- --]
"""
if relative:
return trimr(a, limits=limits, inclusive=inclusive, axis=axis)
else:
return trima(a, limits=limits, inclusive=inclusive)
if trim.__doc__ is not None:
trim.__doc__ = trim.__doc__ % trimdoc
def trimboth(data, proportiontocut=0.2, inclusive=(True,True), axis=None):
"""
Trims the smallest and largest data values.
Trims the `data` by masking the ``int(proportiontocut * n)`` smallest and
``int(proportiontocut * n)`` largest values of data along the given axis,
where n is the number of unmasked values before trimming.
Parameters
----------
data : ndarray
Data to trim.
proportiontocut : float, optional
Percentage of trimming (as a float between 0 and 1).
If n is the number of unmasked values before trimming, the number of
values after trimming is ``(1 - 2*proportiontocut) * n``.
Default is 0.2.
inclusive : {(bool, bool) tuple}, optional
Tuple indicating whether the number of data being masked on each side
should be rounded (True) or truncated (False).
axis : int, optional
Axis along which to perform the trimming.
If None, the input array is first flattened.
"""
return trimr(data, limits=(proportiontocut,proportiontocut),
inclusive=inclusive, axis=axis)
def trimtail(data, proportiontocut=0.2, tail='left', inclusive=(True,True),
axis=None):
"""
Trims the data by masking values from one tail.
Parameters
----------
data : array_like
Data to trim.
proportiontocut : float, optional
Percentage of trimming. If n is the number of unmasked values
before trimming, the number of values after trimming is
``(1 - proportiontocut) * n``. Default is 0.2.
tail : {'left','right'}, optional
If 'left' the `proportiontocut` lowest values will be masked.
If 'right' the `proportiontocut` highest values will be masked.
Default is 'left'.
inclusive : {(bool, bool) tuple}, optional
Tuple indicating whether the number of data being masked on each side
should be rounded (True) or truncated (False). Default is
(True, True).
axis : int, optional
Axis along which to perform the trimming.
If None, the input array is first flattened. Default is None.
Returns
-------
trimtail : ndarray
Returned array of same shape as `data` with masked tail values.
"""
tail = str(tail).lower()[0]
if tail == 'l':
limits = (proportiontocut,None)
elif tail == 'r':
limits = (None, proportiontocut)
else:
raise TypeError("The tail argument should be in ('left','right')")
return trimr(data, limits=limits, axis=axis, inclusive=inclusive)
trim1 = trimtail
def trimmed_mean(a, limits=(0.1,0.1), inclusive=(1,1), relative=True,
axis=None):
"""Returns the trimmed mean of the data along the given axis.
%s
""" % trimdoc
if (not isinstance(limits,tuple)) and isinstance(limits,float):
limits = (limits, limits)
if relative:
return trimr(a,limits=limits,inclusive=inclusive,axis=axis).mean(axis=axis)
else:
return trima(a,limits=limits,inclusive=inclusive).mean(axis=axis)
def trimmed_var(a, limits=(0.1,0.1), inclusive=(1,1), relative=True,
axis=None, ddof=0):
"""Returns the trimmed variance of the data along the given axis.
%s
ddof : {0,integer}, optional
Means Delta Degrees of Freedom. The denominator used during computations
is (n-ddof). DDOF=0 corresponds to a biased estimate, DDOF=1 to an un-
biased estimate of the variance.
""" % trimdoc
if (not isinstance(limits,tuple)) and isinstance(limits,float):
limits = (limits, limits)
if relative:
out = trimr(a,limits=limits, inclusive=inclusive,axis=axis)
else:
out = trima(a,limits=limits,inclusive=inclusive)
return out.var(axis=axis, ddof=ddof)
def trimmed_std(a, limits=(0.1,0.1), inclusive=(1,1), relative=True,
axis=None, ddof=0):
"""Returns the trimmed standard deviation of the data along the given axis.
%s
ddof : {0,integer}, optional
Means Delta Degrees of Freedom. The denominator used during computations
is (n-ddof). DDOF=0 corresponds to a biased estimate, DDOF=1 to an un-
biased estimate of the variance.
""" % trimdoc
if (not isinstance(limits,tuple)) and isinstance(limits,float):
limits = (limits, limits)
if relative:
out = trimr(a,limits=limits,inclusive=inclusive,axis=axis)
else:
out = trima(a,limits=limits,inclusive=inclusive)
return out.std(axis=axis,ddof=ddof)
def trimmed_stde(a, limits=(0.1,0.1), inclusive=(1,1), axis=None):
"""
Returns the standard error of the trimmed mean along the given axis.
Parameters
----------
a : sequence
Input array
limits : {(0.1,0.1), tuple of float}, optional
tuple (lower percentage, upper percentage) to cut on each side of the
array, with respect to the number of unmasked data.
If n is the number of unmasked data before trimming, the values
smaller than ``n * limits[0]`` and the values larger than
``n * `limits[1]`` are masked, and the total number of unmasked
data after trimming is ``n * (1.-sum(limits))``. In each case,
the value of one limit can be set to None to indicate an open interval.
If `limits` is None, no trimming is performed.
inclusive : {(bool, bool) tuple} optional
Tuple indicating whether the number of data being masked on each side
should be rounded (True) or truncated (False).
axis : int, optional
Axis along which to trim.
Returns
-------
trimmed_stde : scalar or ndarray
"""
def _trimmed_stde_1D(a, low_limit, up_limit, low_inclusive, up_inclusive):
"Returns the standard error of the trimmed mean for a 1D input data."
n = a.count()
idx = a.argsort()
if low_limit:
if low_inclusive:
lowidx = int(low_limit*n)
else:
lowidx = np.round(low_limit*n)
a[idx[:lowidx]] = masked
if up_limit is not None:
if up_inclusive:
upidx = n - int(n*up_limit)
else:
upidx = n - np.round(n*up_limit)
a[idx[upidx:]] = masked
a[idx[:lowidx]] = a[idx[lowidx]]
a[idx[upidx:]] = a[idx[upidx-1]]
winstd = a.std(ddof=1)
return winstd / ((1-low_limit-up_limit)*np.sqrt(len(a)))
a = ma.array(a, copy=True, subok=True)
a.unshare_mask()
if limits is None:
return a.std(axis=axis,ddof=1)/ma.sqrt(a.count(axis))
if (not isinstance(limits,tuple)) and isinstance(limits,float):
limits = (limits, limits)
# Check the limits
(lolim, uplim) = limits
errmsg = "The proportion to cut from the %s should be between 0. and 1."
if lolim is not None:
if lolim > 1. or lolim < 0:
raise ValueError(errmsg % 'beginning' + "(got %s)" % lolim)
if uplim is not None:
if uplim > 1. or uplim < 0:
raise ValueError(errmsg % 'end' + "(got %s)" % uplim)
(loinc, upinc) = inclusive
if (axis is None):
return _trimmed_stde_1D(a.ravel(),lolim,uplim,loinc,upinc)
else:
if a.ndim > 2:
raise ValueError("Array 'a' must be at most two dimensional, but got a.ndim = %d" % a.ndim)
return ma.apply_along_axis(_trimmed_stde_1D, axis, a,
lolim,uplim,loinc,upinc)
def _mask_to_limits(a, limits, inclusive):
"""Mask an array for values outside of given limits.
This is primarily a utility function.
Parameters
----------
a : array
limits : (float or None, float or None)
A tuple consisting of the (lower limit, upper limit). Values in the
input array less than the lower limit or greater than the upper limit
will be masked out. None implies no limit.
inclusive : (bool, bool)
A tuple consisting of the (lower flag, upper flag). These flags
determine whether values exactly equal to lower or upper are allowed.
Returns
-------
A MaskedArray.
Raises
------
A ValueError if there are no values within the given limits.
"""
lower_limit, upper_limit = limits
lower_include, upper_include = inclusive
am = ma.MaskedArray(a)
if lower_limit is not None:
if lower_include:
am = ma.masked_less(am, lower_limit)
else:
am = ma.masked_less_equal(am, lower_limit)
if upper_limit is not None:
if upper_include:
am = ma.masked_greater(am, upper_limit)
else:
am = ma.masked_greater_equal(am, upper_limit)
if am.count() == 0:
raise ValueError("No array values within given limits")
return am
def tmean(a, limits=None, inclusive=(True, True), axis=None):
"""
Compute the trimmed mean.
Parameters
----------
a : array_like
Array of values.
limits : None or (lower limit, upper limit), optional
Values in the input array less than the lower limit or greater than the
upper limit will be ignored. When limits is None (default), then all
values are used. Either of the limit values in the tuple can also be
None representing a half-open interval.
inclusive : (bool, bool), optional
A tuple consisting of the (lower flag, upper flag). These flags
determine whether values exactly equal to the lower or upper limits
are included. The default value is (True, True).
axis : int or None, optional
Axis along which to operate. If None, compute over the
whole array. Default is None.
Returns
-------
tmean : float
Notes
-----
For more details on `tmean`, see `stats.tmean`.
Examples
--------
>>> from scipy.stats import mstats
>>> a = np.array([[6, 8, 3, 0],
... [3, 9, 1, 2],
... [8, 7, 8, 2],
... [5, 6, 0, 2],
... [4, 5, 5, 2]])
...
...
>>> mstats.tmean(a, (2,5))
3.3
>>> mstats.tmean(a, (2,5), axis=0)
masked_array(data=[4.0, 5.0, 4.0, 2.0],
mask=[False, False, False, False],
fill_value=1e+20)
"""
return trima(a, limits=limits, inclusive=inclusive).mean(axis=axis)
def tvar(a, limits=None, inclusive=(True, True), axis=0, ddof=1):
"""
Compute the trimmed variance
This function computes the sample variance of an array of values,
while ignoring values which are outside of given `limits`.
Parameters
----------
a : array_like
Array of values.
limits : None or (lower limit, upper limit), optional
Values in the input array less than the lower limit or greater than the
upper limit will be ignored. When limits is None, then all values are
used. Either of the limit values in the tuple can also be None
representing a half-open interval. The default value is None.
inclusive : (bool, bool), optional
A tuple consisting of the (lower flag, upper flag). These flags
determine whether values exactly equal to the lower or upper limits
are included. The default value is (True, True).
axis : int or None, optional
Axis along which to operate. If None, compute over the
whole array. Default is zero.
ddof : int, optional
Delta degrees of freedom. Default is 1.
Returns
-------
tvar : float
Trimmed variance.
Notes
-----
For more details on `tvar`, see `stats.tvar`.
"""
a = a.astype(float).ravel()
if limits is None:
n = (~a.mask).sum() # todo: better way to do that?
return np.ma.var(a) * n/(n-1.)
am = _mask_to_limits(a, limits=limits, inclusive=inclusive)
return np.ma.var(am, axis=axis, ddof=ddof)
def tmin(a, lowerlimit=None, axis=0, inclusive=True):
"""
Compute the trimmed minimum
Parameters
----------
a : array_like
array of values
lowerlimit : None or float, optional
Values in the input array less than the given limit will be ignored.
When lowerlimit is None, then all values are used. The default value
is None.
axis : int or None, optional
Axis along which to operate. Default is 0. If None, compute over the
whole array `a`.
inclusive : {True, False}, optional
This flag determines whether values exactly equal to the lower limit
are included. The default value is True.
Returns
-------
tmin : float, int or ndarray
Notes
-----
For more details on `tmin`, see `stats.tmin`.
Examples
--------
>>> from scipy.stats import mstats
>>> a = np.array([[6, 8, 3, 0],
... [3, 2, 1, 2],
... [8, 1, 8, 2],
... [5, 3, 0, 2],
... [4, 7, 5, 2]])
...
>>> mstats.tmin(a, 5)
masked_array(data=[5, 7, 5, --],
mask=[False, False, False, True],
fill_value=999999)
"""
a, axis = _chk_asarray(a, axis)
am = trima(a, (lowerlimit, None), (inclusive, False))
return ma.minimum.reduce(am, axis)
def tmax(a, upperlimit=None, axis=0, inclusive=True):
"""
Compute the trimmed maximum
This function computes the maximum value of an array along a given axis,
while ignoring values larger than a specified upper limit.
Parameters
----------
a : array_like
array of values
upperlimit : None or float, optional
Values in the input array greater than the given limit will be ignored.
When upperlimit is None, then all values are used. The default value
is None.
axis : int or None, optional
Axis along which to operate. Default is 0. If None, compute over the
whole array `a`.
inclusive : {True, False}, optional
This flag determines whether values exactly equal to the upper limit
are included. The default value is True.
Returns
-------
tmax : float, int or ndarray
Notes
-----
For more details on `tmax`, see `stats.tmax`.
Examples
--------
>>> from scipy.stats import mstats
>>> a = np.array([[6, 8, 3, 0],
... [3, 9, 1, 2],
... [8, 7, 8, 2],
... [5, 6, 0, 2],
... [4, 5, 5, 2]])
...
...
>>> mstats.tmax(a, 4)
masked_array(data=[4, --, 3, 2],
mask=[False, True, False, False],
fill_value=999999)
"""
a, axis = _chk_asarray(a, axis)
am = trima(a, (None, upperlimit), (False, inclusive))
return ma.maximum.reduce(am, axis)
def tsem(a, limits=None, inclusive=(True, True), axis=0, ddof=1):
"""
Compute the trimmed standard error of the mean.
This function finds the standard error of the mean for given
values, ignoring values outside the given `limits`.
Parameters
----------
a : array_like
array of values
limits : None or (lower limit, upper limit), optional
Values in the input array less than the lower limit or greater than the
upper limit will be ignored. When limits is None, then all values are
used. Either of the limit values in the tuple can also be None
representing a half-open interval. The default value is None.
inclusive : (bool, bool), optional
A tuple consisting of the (lower flag, upper flag). These flags
determine whether values exactly equal to the lower or upper limits
are included. The default value is (True, True).
axis : int or None, optional
Axis along which to operate. If None, compute over the
whole array. Default is zero.
ddof : int, optional
Delta degrees of freedom. Default is 1.
Returns
-------
tsem : float
Notes
-----
For more details on `tsem`, see `stats.tsem`.
"""
a = ma.asarray(a).ravel()
if limits is None:
n = float(a.count())
return a.std(axis=axis, ddof=ddof)/ma.sqrt(n)
am = trima(a.ravel(), limits, inclusive)
sd = np.sqrt(am.var(axis=axis, ddof=ddof))
return sd / np.sqrt(am.count())
def winsorize(a, limits=None, inclusive=(True, True), inplace=False,
axis=None):
"""Returns a Winsorized version of the input array.
The (limits[0])th lowest values are set to the (limits[0])th percentile,
and the (limits[1])th highest values are set to the (1 - limits[1])th
percentile.
Masked values are skipped.
Parameters
----------
a : sequence
Input array.
limits : {None, tuple of float}, optional
Tuple of the percentages to cut on each side of the array, with respect
to the number of unmasked data, as floats between 0. and 1.
Noting n the number of unmasked data before trimming, the
(n*limits[0])th smallest data and the (n*limits[1])th largest data are
masked, and the total number of unmasked data after trimming
is n*(1.-sum(limits)) The value of one limit can be set to None to
indicate an open interval.
inclusive : {(True, True) tuple}, optional
Tuple indicating whether the number of data being masked on each side
should be truncated (True) or rounded (False).
inplace : {False, True}, optional
Whether to winsorize in place (True) or to use a copy (False)
axis : {None, int}, optional
Axis along which to trim. If None, the whole array is trimmed, but its
shape is maintained.
Notes
-----
This function is applied to reduce the effect of possibly spurious outliers
by limiting the extreme values.
"""
def _winsorize1D(a, low_limit, up_limit, low_include, up_include):
n = a.count()
idx = a.argsort()
if low_limit:
if low_include:
lowidx = int(low_limit * n)
else:
lowidx = np.round(low_limit * n).astype(int)
a[idx[:lowidx]] = a[idx[lowidx]]
if up_limit is not None:
if up_include:
upidx = n - int(n * up_limit)
else:
upidx = n - np.round(n * up_limit).astype(int)
a[idx[upidx:]] = a[idx[upidx - 1]]
return a
# We are going to modify a: better make a copy
a = ma.array(a, copy=np.logical_not(inplace))
if limits is None:
return a
if (not isinstance(limits, tuple)) and isinstance(limits, float):
limits = (limits, limits)
# Check the limits
(lolim, uplim) = limits
errmsg = "The proportion to cut from the %s should be between 0. and 1."
if lolim is not None:
if lolim > 1. or lolim < 0:
raise ValueError(errmsg % 'beginning' + "(got %s)" % lolim)
if uplim is not None:
if uplim > 1. or uplim < 0:
raise ValueError(errmsg % 'end' + "(got %s)" % uplim)
(loinc, upinc) = inclusive
if axis is None:
shp = a.shape
return _winsorize1D(a.ravel(), lolim, uplim, loinc, upinc).reshape(shp)
else:
return ma.apply_along_axis(_winsorize1D, axis, a, lolim, uplim, loinc,
upinc)
def moment(a, moment=1, axis=0):
"""
Calculates the nth moment about the mean for a sample.
Parameters
----------
a : array_like
data
moment : int, optional
order of central moment that is returned
axis : int or None, optional
Axis along which the central moment is computed. Default is 0.
If None, compute over the whole array `a`.
Returns
-------
n-th central moment : ndarray or float
The appropriate moment along the given axis or over all values if axis
is None. The denominator for the moment calculation is the number of
observations, no degrees of freedom correction is done.
Notes
-----
For more details about `moment`, see `stats.moment`.
"""
a, axis = _chk_asarray(a, axis)
if moment == 1:
# By definition the first moment about the mean is 0.
shape = list(a.shape)
del shape[axis]
if shape:
# return an actual array of the appropriate shape
return np.zeros(shape, dtype=float)
else:
# the input was 1D, so return a scalar instead of a rank-0 array
return np.float64(0.0)
else:
# Exponentiation by squares: form exponent sequence
n_list = [moment]
current_n = moment
while current_n > 2:
if current_n % 2:
current_n = (current_n-1)/2
else:
current_n /= 2
n_list.append(current_n)
# Starting point for exponentiation by squares
a_zero_mean = a - ma.expand_dims(a.mean(axis), axis)
if n_list[-1] == 1:
s = a_zero_mean.copy()
else:
s = a_zero_mean**2
# Perform multiplications
for n in n_list[-2::-1]:
s = s**2
if n % 2:
s *= a_zero_mean
return s.mean(axis)
def variation(a, axis=0):
"""
Computes the coefficient of variation, the ratio of the biased standard
deviation to the mean.
Parameters
----------
a : array_like
Input array.
axis : int or None, optional
Axis along which to calculate the coefficient of variation. Default
is 0. If None, compute over the whole array `a`.
Returns
-------
variation : ndarray
The calculated variation along the requested axis.
Notes
-----
For more details about `variation`, see `stats.variation`.
"""
a, axis = _chk_asarray(a, axis)
return a.std(axis)/a.mean(axis)
def skew(a, axis=0, bias=True):
"""
Computes the skewness of a data set.
Parameters
----------
a : ndarray
data
axis : int or None, optional
Axis along which skewness is calculated. Default is 0.
If None, compute over the whole array `a`.
bias : bool, optional
If False, then the calculations are corrected for statistical bias.
Returns
-------
skewness : ndarray
The skewness of values along an axis, returning 0 where all values are
equal.
Notes
-----
For more details about `skew`, see `stats.skew`.
"""
a, axis = _chk_asarray(a,axis)
n = a.count(axis)
m2 = moment(a, 2, axis)
m3 = moment(a, 3, axis)
olderr = np.seterr(all='ignore')
try:
vals = ma.where(m2 == 0, 0, m3 / m2**1.5)
finally:
np.seterr(**olderr)
if not bias:
can_correct = (n > 2) & (m2 > 0)
if can_correct.any():
m2 = np.extract(can_correct, m2)
m3 = np.extract(can_correct, m3)
nval = ma.sqrt((n-1.0)*n)/(n-2.0)*m3/m2**1.5
np.place(vals, can_correct, nval)
return vals
def kurtosis(a, axis=0, fisher=True, bias=True):
"""
Computes the kurtosis (Fisher or Pearson) of a dataset.
Kurtosis is the fourth central moment divided by the square of the
variance. If Fisher's definition is used, then 3.0 is subtracted from
the result to give 0.0 for a normal distribution.
If bias is False then the kurtosis is calculated using k statistics to
eliminate bias coming from biased moment estimators
Use `kurtosistest` to see if result is close enough to normal.
Parameters
----------
a : array
data for which the kurtosis is calculated
axis : int or None, optional
Axis along which the kurtosis is calculated. Default is 0.
If None, compute over the whole array `a`.
fisher : bool, optional
If True, Fisher's definition is used (normal ==> 0.0). If False,
Pearson's definition is used (normal ==> 3.0).
bias : bool, optional
If False, then the calculations are corrected for statistical bias.
Returns
-------
kurtosis : array
The kurtosis of values along an axis. If all values are equal,
return -3 for Fisher's definition and 0 for Pearson's definition.
Notes
-----
For more details about `kurtosis`, see `stats.kurtosis`.
"""
a, axis = _chk_asarray(a, axis)
m2 = moment(a, 2, axis)
m4 = moment(a, 4, axis)
olderr = np.seterr(all='ignore')
try:
vals = ma.where(m2 == 0, 0, m4 / m2**2.0)
finally:
np.seterr(**olderr)
if not bias:
n = a.count(axis)
can_correct = (n > 3) & (m2 is not ma.masked and m2 > 0)
if can_correct.any():
n = np.extract(can_correct, n)
m2 = np.extract(can_correct, m2)
m4 = np.extract(can_correct, m4)
nval = 1.0/(n-2)/(n-3)*((n*n-1.0)*m4/m2**2.0-3*(n-1)**2.0)
np.place(vals, can_correct, nval+3.0)
if fisher:
return vals - 3
else:
return vals
DescribeResult = namedtuple('DescribeResult', ('nobs', 'minmax', 'mean',
'variance', 'skewness',
'kurtosis'))
def describe(a, axis=0, ddof=0, bias=True):
"""
Computes several descriptive statistics of the passed array.
Parameters
----------
a : array_like
Data array
axis : int or None, optional
Axis along which to calculate statistics. Default 0. If None,
compute over the whole array `a`.
ddof : int, optional
degree of freedom (default 0); note that default ddof is different
from the same routine in stats.describe
bias : bool, optional
If False, then the skewness and kurtosis calculations are corrected for
statistical bias.
Returns
-------
nobs : int
(size of the data (discarding missing values)
minmax : (int, int)
min, max
mean : float
arithmetic mean
variance : float
unbiased variance
skewness : float
biased skewness
kurtosis : float
biased kurtosis
Examples
--------
>>> from scipy.stats.mstats import describe
>>> ma = np.ma.array(range(6), mask=[0, 0, 0, 1, 1, 1])
>>> describe(ma)
DescribeResult(nobs=3, minmax=(masked_array(data=0,
mask=False,
fill_value=999999), masked_array(data=2,
mask=False,
fill_value=999999)), mean=1.0, variance=0.6666666666666666,
skewness=masked_array(data=0., mask=False, fill_value=1e+20),
kurtosis=-1.5)
"""
a, axis = _chk_asarray(a, axis)
n = a.count(axis)
mm = (ma.minimum.reduce(a), ma.maximum.reduce(a))
m = a.mean(axis)
v = a.var(axis, ddof=ddof)
sk = skew(a, axis, bias=bias)
kurt = kurtosis(a, axis, bias=bias)
return DescribeResult(n, mm, m, v, sk, kurt)
def stde_median(data, axis=None):
"""Returns the McKean-Schrader estimate of the standard error of the sample
median along the given axis. masked values are discarded.
Parameters
----------
data : ndarray
Data to trim.
axis : {None,int}, optional
Axis along which to perform the trimming.
If None, the input array is first flattened.
"""
def _stdemed_1D(data):
data = np.sort(data.compressed())
n = len(data)
z = 2.5758293035489004
k = int(np.round((n+1)/2. - z * np.sqrt(n/4.),0))
return ((data[n-k] - data[k-1])/(2.*z))
data = ma.array(data, copy=False, subok=True)
if (axis is None):
return _stdemed_1D(data)
else:
if data.ndim > 2:
raise ValueError("Array 'data' must be at most two dimensional, "
"but got data.ndim = %d" % data.ndim)
return ma.apply_along_axis(_stdemed_1D, axis, data)
SkewtestResult = namedtuple('SkewtestResult', ('statistic', 'pvalue'))
def skewtest(a, axis=0):
"""
Tests whether the skew is different from the normal distribution.
Parameters
----------
a : array
The data to be tested
axis : int or None, optional
Axis along which statistics are calculated. Default is 0.
If None, compute over the whole array `a`.
Returns
-------
statistic : float
The computed z-score for this test.
pvalue : float
a 2-sided p-value for the hypothesis test
Notes
-----
For more details about `skewtest`, see `stats.skewtest`.
"""
a, axis = _chk_asarray(a, axis)
if axis is None:
a = a.ravel()
axis = 0
b2 = skew(a,axis)
n = a.count(axis)
if np.min(n) < 8:
raise ValueError(
"skewtest is not valid with less than 8 samples; %i samples"
" were given." % np.min(n))
y = b2 * ma.sqrt(((n+1)*(n+3)) / (6.0*(n-2)))
beta2 = (3.0*(n*n+27*n-70)*(n+1)*(n+3)) / ((n-2.0)*(n+5)*(n+7)*(n+9))
W2 = -1 + ma.sqrt(2*(beta2-1))
delta = 1/ma.sqrt(0.5*ma.log(W2))
alpha = ma.sqrt(2.0/(W2-1))
y = ma.where(y == 0, 1, y)
Z = delta*ma.log(y/alpha + ma.sqrt((y/alpha)**2+1))
return SkewtestResult(Z, 2 * distributions.norm.sf(np.abs(Z)))
KurtosistestResult = namedtuple('KurtosistestResult', ('statistic', 'pvalue'))
def kurtosistest(a, axis=0):
"""
Tests whether a dataset has normal kurtosis
Parameters
----------
a : array
array of the sample data
axis : int or None, optional
Axis along which to compute test. Default is 0. If None,
compute over the whole array `a`.
Returns
-------
statistic : float
The computed z-score for this test.
pvalue : float
The 2-sided p-value for the hypothesis test
Notes
-----
For more details about `kurtosistest`, see `stats.kurtosistest`.
"""
a, axis = _chk_asarray(a, axis)
n = a.count(axis=axis)
if np.min(n) < 5:
raise ValueError(
"kurtosistest requires at least 5 observations; %i observations"
" were given." % np.min(n))
if np.min(n) < 20:
warnings.warn(
"kurtosistest only valid for n>=20 ... continuing anyway, n=%i" %
np.min(n))
b2 = kurtosis(a, axis, fisher=False)
E = 3.0*(n-1) / (n+1)
varb2 = 24.0*n*(n-2.)*(n-3) / ((n+1)*(n+1.)*(n+3)*(n+5))
x = (b2-E)/ma.sqrt(varb2)
sqrtbeta1 = 6.0*(n*n-5*n+2)/((n+7)*(n+9)) * np.sqrt((6.0*(n+3)*(n+5)) /
(n*(n-2)*(n-3)))
A = 6.0 + 8.0/sqrtbeta1 * (2.0/sqrtbeta1 + np.sqrt(1+4.0/(sqrtbeta1**2)))
term1 = 1 - 2./(9.0*A)
denom = 1 + x*ma.sqrt(2/(A-4.0))
if np.ma.isMaskedArray(denom):
# For multi-dimensional array input
denom[denom == 0.0] = masked
elif denom == 0.0:
denom = masked
term2 = np.ma.where(denom > 0, ma.power((1-2.0/A)/denom, 1/3.0),
-ma.power(-(1-2.0/A)/denom, 1/3.0))
Z = (term1 - term2) / np.sqrt(2/(9.0*A))
return KurtosistestResult(Z, 2 * distributions.norm.sf(np.abs(Z)))
NormaltestResult = namedtuple('NormaltestResult', ('statistic', 'pvalue'))
def normaltest(a, axis=0):
"""
Tests whether a sample differs from a normal distribution.
Parameters
----------
a : array_like
The array containing the data to be tested.
axis : int or None, optional
Axis along which to compute test. Default is 0. If None,
compute over the whole array `a`.
Returns
-------
statistic : float or array
``s^2 + k^2``, where ``s`` is the z-score returned by `skewtest` and
``k`` is the z-score returned by `kurtosistest`.
pvalue : float or array
A 2-sided chi squared probability for the hypothesis test.
Notes
-----
For more details about `normaltest`, see `stats.normaltest`.
"""
a, axis = _chk_asarray(a, axis)
s, _ = skewtest(a, axis)
k, _ = kurtosistest(a, axis)
k2 = s*s + k*k
return NormaltestResult(k2, distributions.chi2.sf(k2, 2))
def mquantiles(a, prob=list([.25,.5,.75]), alphap=.4, betap=.4, axis=None,
limit=()):
"""
Computes empirical quantiles for a data array.
Samples quantile are defined by ``Q(p) = (1-gamma)*x[j] + gamma*x[j+1]``,
where ``x[j]`` is the j-th order statistic, and gamma is a function of
``j = floor(n*p + m)``, ``m = alphap + p*(1 - alphap - betap)`` and
``g = n*p + m - j``.
Reinterpreting the above equations to compare to **R** lead to the
equation: ``p(k) = (k - alphap)/(n + 1 - alphap - betap)``
Typical values of (alphap,betap) are:
- (0,1) : ``p(k) = k/n`` : linear interpolation of cdf
(**R** type 4)
- (.5,.5) : ``p(k) = (k - 1/2.)/n`` : piecewise linear function
(**R** type 5)
- (0,0) : ``p(k) = k/(n+1)`` :
(**R** type 6)
- (1,1) : ``p(k) = (k-1)/(n-1)``: p(k) = mode[F(x[k])].
(**R** type 7, **R** default)
- (1/3,1/3): ``p(k) = (k-1/3)/(n+1/3)``: Then p(k) ~ median[F(x[k])].
The resulting quantile estimates are approximately median-unbiased
regardless of the distribution of x.
(**R** type 8)
- (3/8,3/8): ``p(k) = (k-3/8)/(n+1/4)``: Blom.
The resulting quantile estimates are approximately unbiased
if x is normally distributed
(**R** type 9)
- (.4,.4) : approximately quantile unbiased (Cunnane)
- (.35,.35): APL, used with PWM
Parameters
----------
a : array_like
Input data, as a sequence or array of dimension at most 2.
prob : array_like, optional
List of quantiles to compute.
alphap : float, optional
Plotting positions parameter, default is 0.4.
betap : float, optional
Plotting positions parameter, default is 0.4.
axis : int, optional
Axis along which to perform the trimming.
If None (default), the input array is first flattened.
limit : tuple, optional
Tuple of (lower, upper) values.
Values of `a` outside this open interval are ignored.
Returns
-------
mquantiles : MaskedArray
An array containing the calculated quantiles.
Notes
-----
This formulation is very similar to **R** except the calculation of
``m`` from ``alphap`` and ``betap``, where in **R** ``m`` is defined
with each type.
References
----------
.. [1] *R* statistical software: http://www.r-project.org/
.. [2] *R* ``quantile`` function:
http://stat.ethz.ch/R-manual/R-devel/library/stats/html/quantile.html
Examples
--------
>>> from scipy.stats.mstats import mquantiles
>>> a = np.array([6., 47., 49., 15., 42., 41., 7., 39., 43., 40., 36.])
>>> mquantiles(a)
array([ 19.2, 40. , 42.8])
Using a 2D array, specifying axis and limit.
>>> data = np.array([[ 6., 7., 1.],
... [ 47., 15., 2.],
... [ 49., 36., 3.],
... [ 15., 39., 4.],
... [ 42., 40., -999.],
... [ 41., 41., -999.],
... [ 7., -999., -999.],
... [ 39., -999., -999.],
... [ 43., -999., -999.],
... [ 40., -999., -999.],
... [ 36., -999., -999.]])
>>> print(mquantiles(data, axis=0, limit=(0, 50)))
[[19.2 14.6 1.45]
[40. 37.5 2.5 ]
[42.8 40.05 3.55]]
>>> data[:, 2] = -999.
>>> print(mquantiles(data, axis=0, limit=(0, 50)))
[[19.200000000000003 14.6 --]
[40.0 37.5 --]
[42.800000000000004 40.05 --]]
"""
def _quantiles1D(data,m,p):
x = np.sort(data.compressed())
n = len(x)
if n == 0:
return ma.array(np.empty(len(p), dtype=float), mask=True)
elif n == 1:
return ma.array(np.resize(x, p.shape), mask=nomask)
aleph = (n*p + m)
k = np.floor(aleph.clip(1, n-1)).astype(int)
gamma = (aleph-k).clip(0,1)
return (1.-gamma)*x[(k-1).tolist()] + gamma*x[k.tolist()]
data = ma.array(a, copy=False)
if data.ndim > 2:
raise TypeError("Array should be 2D at most !")
if limit:
condition = (limit[0] < data) & (data < limit[1])
data[~condition.filled(True)] = masked
p = np.array(prob, copy=False, ndmin=1)
m = alphap + p*(1.-alphap-betap)
# Computes quantiles along axis (or globally)
if (axis is None):
return _quantiles1D(data, m, p)
return ma.apply_along_axis(_quantiles1D, axis, data, m, p)
def scoreatpercentile(data, per, limit=(), alphap=.4, betap=.4):
"""Calculate the score at the given 'per' percentile of the
sequence a. For example, the score at per=50 is the median.
This function is a shortcut to mquantile
"""
if (per < 0) or (per > 100.):
raise ValueError("The percentile should be between 0. and 100. !"
" (got %s)" % per)
return mquantiles(data, prob=[per/100.], alphap=alphap, betap=betap,
limit=limit, axis=0).squeeze()
def plotting_positions(data, alpha=0.4, beta=0.4):
"""
Returns plotting positions (or empirical percentile points) for the data.
Plotting positions are defined as ``(i-alpha)/(n+1-alpha-beta)``, where:
- i is the rank order statistics
- n is the number of unmasked values along the given axis
- `alpha` and `beta` are two parameters.
Typical values for `alpha` and `beta` are:
- (0,1) : ``p(k) = k/n``, linear interpolation of cdf (R, type 4)
- (.5,.5) : ``p(k) = (k-1/2.)/n``, piecewise linear function
(R, type 5)
- (0,0) : ``p(k) = k/(n+1)``, Weibull (R type 6)
- (1,1) : ``p(k) = (k-1)/(n-1)``, in this case,
``p(k) = mode[F(x[k])]``. That's R default (R type 7)
- (1/3,1/3): ``p(k) = (k-1/3)/(n+1/3)``, then
``p(k) ~ median[F(x[k])]``.
The resulting quantile estimates are approximately median-unbiased
regardless of the distribution of x. (R type 8)
- (3/8,3/8): ``p(k) = (k-3/8)/(n+1/4)``, Blom.
The resulting quantile estimates are approximately unbiased
if x is normally distributed (R type 9)
- (.4,.4) : approximately quantile unbiased (Cunnane)
- (.35,.35): APL, used with PWM
- (.3175, .3175): used in scipy.stats.probplot
Parameters
----------
data : array_like
Input data, as a sequence or array of dimension at most 2.
alpha : float, optional
Plotting positions parameter. Default is 0.4.
beta : float, optional
Plotting positions parameter. Default is 0.4.
Returns
-------
positions : MaskedArray
The calculated plotting positions.
"""
data = ma.array(data, copy=False).reshape(1,-1)
n = data.count()
plpos = np.empty(data.size, dtype=float)
plpos[n:] = 0
plpos[data.argsort(axis=None)[:n]] = ((np.arange(1, n+1) - alpha) /
(n + 1.0 - alpha - beta))
return ma.array(plpos, mask=data._mask)
meppf = plotting_positions
def obrientransform(*args):
"""
Computes a transform on input data (any number of columns). Used to
test for homogeneity of variance prior to running one-way stats. Each
array in ``*args`` is one level of a factor. If an `f_oneway()` run on
the transformed data and found significant, variances are unequal. From
Maxwell and Delaney, p.112.
Returns: transformed data for use in an ANOVA
"""
data = argstoarray(*args).T
v = data.var(axis=0,ddof=1)
m = data.mean(0)
n = data.count(0).astype(float)
# result = ((N-1.5)*N*(a-m)**2 - 0.5*v*(n-1))/((n-1)*(n-2))
data -= m
data **= 2
data *= (n-1.5)*n
data -= 0.5*v*(n-1)
data /= (n-1.)*(n-2.)
if not ma.allclose(v,data.mean(0)):
raise ValueError("Lack of convergence in obrientransform.")
return data
def sem(a, axis=0, ddof=1):
"""
Calculates the standard error of the mean of the input array.
Also sometimes called standard error of measurement.
Parameters
----------
a : array_like
An array containing the values for which the standard error is
returned.
axis : int or None, optional
If axis is None, ravel `a` first. If axis is an integer, this will be
the axis over which to operate. Defaults to 0.
ddof : int, optional
Delta degrees-of-freedom. How many degrees of freedom to adjust
for bias in limited samples relative to the population estimate
of variance. Defaults to 1.
Returns
-------
s : ndarray or float
The standard error of the mean in the sample(s), along the input axis.
Notes
-----
The default value for `ddof` changed in scipy 0.15.0 to be consistent with
`stats.sem` as well as with the most common definition used (like in the R
documentation).
Examples
--------
Find standard error along the first axis:
>>> from scipy import stats
>>> a = np.arange(20).reshape(5,4)
>>> print(stats.mstats.sem(a))
[2.8284271247461903 2.8284271247461903 2.8284271247461903
2.8284271247461903]
Find standard error across the whole array, using n degrees of freedom:
>>> print(stats.mstats.sem(a, axis=None, ddof=0))
1.2893796958227628
"""
a, axis = _chk_asarray(a, axis)
n = a.count(axis=axis)
s = a.std(axis=axis, ddof=ddof) / ma.sqrt(n)
return s
F_onewayResult = namedtuple('F_onewayResult', ('statistic', 'pvalue'))
def f_oneway(*args):
"""
Performs a 1-way ANOVA, returning an F-value and probability given
any number of groups. From Heiman, pp.394-7.
Usage: ``f_oneway(*args)``, where ``*args`` is 2 or more arrays,
one per treatment group.
Returns
-------
statistic : float
The computed F-value of the test.
pvalue : float
The associated p-value from the F-distribution.
"""
# Construct a single array of arguments: each row is a group
data = argstoarray(*args)
ngroups = len(data)
ntot = data.count()
sstot = (data**2).sum() - (data.sum())**2/float(ntot)
ssbg = (data.count(-1) * (data.mean(-1)-data.mean())**2).sum()
sswg = sstot-ssbg
dfbg = ngroups-1
dfwg = ntot - ngroups
msb = ssbg/float(dfbg)
msw = sswg/float(dfwg)
f = msb/msw
prob = special.fdtrc(dfbg, dfwg, f) # equivalent to stats.f.sf
return F_onewayResult(f, prob)
FriedmanchisquareResult = namedtuple('FriedmanchisquareResult',
('statistic', 'pvalue'))
def friedmanchisquare(*args):
"""Friedman Chi-Square is a non-parametric, one-way within-subjects ANOVA.
This function calculates the Friedman Chi-square test for repeated measures
and returns the result, along with the associated probability value.
Each input is considered a given group. Ideally, the number of treatments
among each group should be equal. If this is not the case, only the first
n treatments are taken into account, where n is the number of treatments
of the smallest group.
If a group has some missing values, the corresponding treatments are masked
in the other groups.
The test statistic is corrected for ties.
Masked values in one group are propagated to the other groups.
Returns
-------
statistic : float
the test statistic.
pvalue : float
the associated p-value.
"""
data = argstoarray(*args).astype(float)
k = len(data)
if k < 3:
raise ValueError("Less than 3 groups (%i): " % k +
"the Friedman test is NOT appropriate.")
ranked = ma.masked_values(rankdata(data, axis=0), 0)
if ranked._mask is not nomask:
ranked = ma.mask_cols(ranked)
ranked = ranked.compressed().reshape(k,-1).view(ndarray)
else:
ranked = ranked._data
(k,n) = ranked.shape
# Ties correction
repeats = [find_repeats(row) for row in ranked.T]
ties = np.array([y for x, y in repeats if x.size > 0])
tie_correction = 1 - (ties**3-ties).sum()/float(n*(k**3-k))
ssbg = np.sum((ranked.sum(-1) - n*(k+1)/2.)**2)
chisq = ssbg * 12./(n*k*(k+1)) * 1./tie_correction
return FriedmanchisquareResult(chisq,
distributions.chi2.sf(chisq, k-1))
BrunnerMunzelResult = namedtuple('BrunnerMunzelResult', ('statistic', 'pvalue'))
def brunnermunzel(x, y, alternative="two-sided", distribution="t"):
"""
Computes the Brunner-Munzel test on samples x and y
Missing values in `x` and/or `y` are discarded.
Parameters
----------
x, y : array_like
Array of samples, should be one-dimensional.
alternative : 'less', 'two-sided', or 'greater', optional
Whether to get the p-value for the one-sided hypothesis ('less'
or 'greater') or for the two-sided hypothesis ('two-sided').
Defaults value is 'two-sided' .
distribution: 't' or 'normal', optional
Whether to get the p-value by t-distribution or by standard normal
distribution.
Defaults value is 't' .
Returns
-------
statistic : float
The Brunner-Munzer W statistic.
pvalue : float
p-value assuming an t distribution. One-sided or
two-sided, depending on the choice of `alternative` and `distribution`.
See Also
--------
mannwhitneyu : Mann-Whitney rank test on two samples.
Notes
-------
For more details on `brunnermunzel`, see `stats.brunnermunzel`.
"""
x = ma.asarray(x).compressed().view(ndarray)
y = ma.asarray(y).compressed().view(ndarray)
nx = len(x)
ny = len(y)
if nx == 0 or ny == 0:
return BrunnerMunzelResult(np.nan, np.nan)
nc = nx + ny
rankc = rankdata(np.concatenate((x,y)))
rankcx = rankc[0:nx]
rankcy = rankc[nx:nx+ny]
rankcx_mean = np.mean(rankcx)
rankcy_mean = np.mean(rankcy)
rankx = rankdata(x)
ranky = rankdata(y)
rankx_mean = np.mean(rankx)
ranky_mean = np.mean(ranky)
Sx = np.sum(np.power(rankcx - rankx - rankcx_mean + rankx_mean, 2.0))
Sx /= nx - 1
Sy = np.sum(np.power(rankcy - ranky - rankcy_mean + ranky_mean, 2.0))
Sy /= ny - 1
sigmax = Sx / np.power(nc - nx, 2.0)
sigmay = Sx / np.power(nc - ny, 2.0)
wbfn = nx * ny * (rankcy_mean - rankcx_mean)
wbfn /= (nx + ny) * np.sqrt(nx * Sx + ny * Sy)
if distribution == "t":
df_numer = np.power(nx * Sx + ny * Sy, 2.0)
df_denom = np.power(nx * Sx, 2.0) / (nx - 1)
df_denom += np.power(ny * Sy, 2.0) / (ny - 1)
df = df_numer / df_denom
p = distributions.t.cdf(wbfn, df)
elif distribution == "normal":
p = distributions.norm.cdf(wbfn)
else:
raise ValueError(
"distribution should be 't' or 'normal'")
if alternative == "greater":
p = p
elif alternative == "less":
p = 1 - p
elif alternative == "two-sided":
p = 2 * np.min([p, 1-p])
else:
raise ValueError(
"alternative should be 'less', 'greater' or 'two-sided'")
return BrunnerMunzelResult(wbfn, p)