You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1766 lines
61 KiB
Python
1766 lines
61 KiB
Python
6 years ago
|
from __future__ import division, print_function, absolute_import
|
||
|
|
||
|
import re
|
||
|
import warnings
|
||
|
import numpy as np
|
||
|
import scipy.linalg
|
||
|
from scipy._lib._util import check_random_state
|
||
|
|
||
|
|
||
|
_AXIS_TO_IND = {'x': 0, 'y': 1, 'z': 2}
|
||
|
|
||
|
|
||
|
def _elementary_basis_vector(axis):
|
||
|
b = np.zeros(3)
|
||
|
b[_AXIS_TO_IND[axis]] = 1
|
||
|
return b
|
||
|
|
||
|
|
||
|
def _compute_euler_from_dcm(dcm, seq, extrinsic=False):
|
||
|
# The algorithm assumes intrinsic frame transformations. For representation
|
||
|
# the paper uses transformation matrices, which are transpose of the
|
||
|
# direction cosine matrices used by our Rotation class.
|
||
|
# Adapt the algorithm for our case by
|
||
|
# 1. Instead of transposing our representation, use the transpose of the
|
||
|
# O matrix as defined in the paper, and be careful to swap indices
|
||
|
# 2. Reversing both axis sequence and angles for extrinsic rotations
|
||
|
|
||
|
if extrinsic:
|
||
|
seq = seq[::-1]
|
||
|
|
||
|
if dcm.ndim == 2:
|
||
|
dcm = dcm[None, :, :]
|
||
|
num_rotations = dcm.shape[0]
|
||
|
|
||
|
# Step 0
|
||
|
# Algorithm assumes axes as column vectors, here we use 1D vectors
|
||
|
n1 = _elementary_basis_vector(seq[0])
|
||
|
n2 = _elementary_basis_vector(seq[1])
|
||
|
n3 = _elementary_basis_vector(seq[2])
|
||
|
|
||
|
# Step 2
|
||
|
sl = np.dot(np.cross(n1, n2), n3)
|
||
|
cl = np.dot(n1, n3)
|
||
|
|
||
|
# angle offset is lambda from the paper referenced in [2] from docstring of
|
||
|
# `as_euler` function
|
||
|
offset = np.arctan2(sl, cl)
|
||
|
c = np.vstack((n2, np.cross(n1, n2), n1))
|
||
|
|
||
|
# Step 3
|
||
|
rot = np.array([
|
||
|
[1, 0, 0],
|
||
|
[0, cl, sl],
|
||
|
[0, -sl, cl],
|
||
|
])
|
||
|
res = np.einsum('...ij,...jk->...ik', c, dcm)
|
||
|
dcm_transformed = np.einsum('...ij,...jk->...ik', res, c.T.dot(rot))
|
||
|
|
||
|
# Step 4
|
||
|
angles = np.empty((num_rotations, 3))
|
||
|
# Ensure less than unit norm
|
||
|
positive_unity = dcm_transformed[:, 2, 2] > 1
|
||
|
negative_unity = dcm_transformed[:, 2, 2] < -1
|
||
|
dcm_transformed[positive_unity, 2, 2] = 1
|
||
|
dcm_transformed[negative_unity, 2, 2] = -1
|
||
|
angles[:, 1] = np.arccos(dcm_transformed[:, 2, 2])
|
||
|
|
||
|
# Steps 5, 6
|
||
|
eps = 1e-7
|
||
|
safe1 = (np.abs(angles[:, 1]) >= eps)
|
||
|
safe2 = (np.abs(angles[:, 1] - np.pi) >= eps)
|
||
|
|
||
|
# Step 4 (Completion)
|
||
|
angles[:, 1] += offset
|
||
|
|
||
|
# 5b
|
||
|
safe_mask = np.logical_and(safe1, safe2)
|
||
|
angles[safe_mask, 0] = np.arctan2(dcm_transformed[safe_mask, 0, 2],
|
||
|
-dcm_transformed[safe_mask, 1, 2])
|
||
|
angles[safe_mask, 2] = np.arctan2(dcm_transformed[safe_mask, 2, 0],
|
||
|
dcm_transformed[safe_mask, 2, 1])
|
||
|
|
||
|
if extrinsic:
|
||
|
# For extrinsic, set first angle to zero so that after reversal we
|
||
|
# ensure that third angle is zero
|
||
|
# 6a
|
||
|
angles[~safe_mask, 0] = 0
|
||
|
# 6b
|
||
|
angles[~safe1, 2] = np.arctan2(
|
||
|
dcm_transformed[~safe1, 1, 0] - dcm_transformed[~safe1, 0, 1],
|
||
|
dcm_transformed[~safe1, 0, 0] + dcm_transformed[~safe1, 1, 1]
|
||
|
)
|
||
|
# 6c
|
||
|
angles[~safe2, 2] = -np.arctan2(
|
||
|
dcm_transformed[~safe2, 1, 0] + dcm_transformed[~safe2, 0, 1],
|
||
|
dcm_transformed[~safe2, 0, 0] - dcm_transformed[~safe2, 1, 1]
|
||
|
)
|
||
|
else:
|
||
|
# For instrinsic, set third angle to zero
|
||
|
# 6a
|
||
|
angles[~safe_mask, 2] = 0
|
||
|
# 6b
|
||
|
angles[~safe1, 0] = np.arctan2(
|
||
|
dcm_transformed[~safe1, 1, 0] - dcm_transformed[~safe1, 0, 1],
|
||
|
dcm_transformed[~safe1, 0, 0] + dcm_transformed[~safe1, 1, 1]
|
||
|
)
|
||
|
# 6c
|
||
|
angles[~safe2, 0] = np.arctan2(
|
||
|
dcm_transformed[~safe2, 1, 0] + dcm_transformed[~safe2, 0, 1],
|
||
|
dcm_transformed[~safe2, 0, 0] - dcm_transformed[~safe2, 1, 1]
|
||
|
)
|
||
|
|
||
|
# Step 7
|
||
|
if seq[0] == seq[2]:
|
||
|
# lambda = 0, so we can only ensure angle2 -> [0, pi]
|
||
|
adjust_mask = np.logical_or(angles[:, 1] < 0, angles[:, 1] > np.pi)
|
||
|
else:
|
||
|
# lambda = + or - pi/2, so we can ensure angle2 -> [-pi/2, pi/2]
|
||
|
adjust_mask = np.logical_or(angles[:, 1] < -np.pi / 2,
|
||
|
angles[:, 1] > np.pi / 2)
|
||
|
|
||
|
# Dont adjust gimbal locked angle sequences
|
||
|
adjust_mask = np.logical_and(adjust_mask, safe_mask)
|
||
|
|
||
|
angles[adjust_mask, 0] += np.pi
|
||
|
angles[adjust_mask, 1] = 2 * offset - angles[adjust_mask, 1]
|
||
|
angles[adjust_mask, 2] -= np.pi
|
||
|
|
||
|
angles[angles < -np.pi] += 2 * np.pi
|
||
|
angles[angles > np.pi] -= 2 * np.pi
|
||
|
|
||
|
# Step 8
|
||
|
if not np.all(safe_mask):
|
||
|
warnings.warn("Gimbal lock detected. Setting third angle to zero since"
|
||
|
" it is not possible to uniquely determine all angles.")
|
||
|
|
||
|
# Reverse role of extrinsic and intrinsic rotations, but let third angle be
|
||
|
# zero for gimbal locked cases
|
||
|
if extrinsic:
|
||
|
angles = angles[:, ::-1]
|
||
|
return angles
|
||
|
|
||
|
|
||
|
def _make_elementary_quat(axis, angles):
|
||
|
quat = np.zeros((angles.shape[0], 4))
|
||
|
|
||
|
quat[:, 3] = np.cos(angles / 2)
|
||
|
quat[:, _AXIS_TO_IND[axis]] = np.sin(angles / 2)
|
||
|
return quat
|
||
|
|
||
|
|
||
|
def _compose_quat(p, q):
|
||
|
product = np.empty((max(p.shape[0], q.shape[0]), 4))
|
||
|
product[:, 3] = p[:, 3] * q[:, 3] - np.sum(p[:, :3] * q[:, :3], axis=1)
|
||
|
product[:, :3] = (p[:, None, 3] * q[:, :3] + q[:, None, 3] * p[:, :3] +
|
||
|
np.cross(p[:, :3], q[:, :3]))
|
||
|
return product
|
||
|
|
||
|
|
||
|
def _elementary_quat_compose(seq, angles, intrinsic=False):
|
||
|
result = _make_elementary_quat(seq[0], angles[:, 0])
|
||
|
|
||
|
for idx, axis in enumerate(seq[1:], start=1):
|
||
|
if intrinsic:
|
||
|
result = _compose_quat(
|
||
|
result,
|
||
|
_make_elementary_quat(axis, angles[:, idx]))
|
||
|
else:
|
||
|
result = _compose_quat(
|
||
|
_make_elementary_quat(axis, angles[:, idx]),
|
||
|
result)
|
||
|
return result
|
||
|
|
||
|
|
||
|
class Rotation(object):
|
||
|
"""Rotation in 3 dimensions.
|
||
|
|
||
|
This class provides an interface to initialize from and represent rotations
|
||
|
with:
|
||
|
|
||
|
- Quaternions
|
||
|
- Direction Cosine Matrices
|
||
|
- Rotation Vectors
|
||
|
- Euler angles
|
||
|
|
||
|
The following operations on rotations are supported:
|
||
|
|
||
|
- Application on vectors
|
||
|
- Rotation Composition
|
||
|
- Rotation Inversion
|
||
|
- Rotation Indexing
|
||
|
|
||
|
Indexing within a rotation is supported since multiple rotation transforms
|
||
|
can be stored within a single `Rotation` instance.
|
||
|
|
||
|
To create `Rotation` objects use `from_...` classmethods, `__init__` is not
|
||
|
supposed to be used directly.
|
||
|
|
||
|
Methods
|
||
|
-------
|
||
|
__len__
|
||
|
from_quat
|
||
|
from_dcm
|
||
|
from_rotvec
|
||
|
from_euler
|
||
|
as_quat
|
||
|
as_dcm
|
||
|
as_rotvec
|
||
|
as_euler
|
||
|
apply
|
||
|
__mul__
|
||
|
inv
|
||
|
__getitem__
|
||
|
random
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> from scipy.spatial.transform import Rotation as R
|
||
|
|
||
|
A `Rotation` instance can be initialized in any of the above formats and
|
||
|
converted to any of the others. The underlying object is independent of the
|
||
|
representation used for initialization.
|
||
|
|
||
|
Consider a counter-clockwise rotation of 90 degrees about the z-axis. This
|
||
|
corresponds to the following quaternion (in scalar-last format):
|
||
|
|
||
|
>>> r = R.from_quat([0, 0, np.sin(np.pi/4), np.cos(np.pi/4)])
|
||
|
|
||
|
The rotation can be expressed in any of the other formats:
|
||
|
|
||
|
>>> r.as_dcm()
|
||
|
array([[ 2.22044605e-16, -1.00000000e+00, 0.00000000e+00],
|
||
|
[ 1.00000000e+00, 2.22044605e-16, 0.00000000e+00],
|
||
|
[ 0.00000000e+00, 0.00000000e+00, 1.00000000e+00]])
|
||
|
>>> r.as_rotvec()
|
||
|
array([0. , 0. , 1.57079633])
|
||
|
>>> r.as_euler('zyx', degrees=True)
|
||
|
array([90., 0., 0.])
|
||
|
|
||
|
The same rotation can be initialized using a direction cosine matrix:
|
||
|
|
||
|
>>> r = R.from_dcm(np.array([
|
||
|
... [0, -1, 0],
|
||
|
... [1, 0, 0],
|
||
|
... [0, 0, 1]]))
|
||
|
|
||
|
Representation in other formats:
|
||
|
|
||
|
>>> r.as_quat()
|
||
|
array([0. , 0. , 0.70710678, 0.70710678])
|
||
|
>>> r.as_rotvec()
|
||
|
array([0. , 0. , 1.57079633])
|
||
|
>>> r.as_euler('zyx', degrees=True)
|
||
|
array([90., 0., 0.])
|
||
|
|
||
|
The rotation vector corresponding to this rotation is given by:
|
||
|
|
||
|
>>> r = R.from_rotvec(np.pi/2 * np.array([0, 0, 1]))
|
||
|
|
||
|
Representation in other formats:
|
||
|
|
||
|
>>> r.as_quat()
|
||
|
array([0. , 0. , 0.70710678, 0.70710678])
|
||
|
>>> r.as_dcm()
|
||
|
array([[ 2.22044605e-16, -1.00000000e+00, 0.00000000e+00],
|
||
|
[ 1.00000000e+00, 2.22044605e-16, 0.00000000e+00],
|
||
|
[ 0.00000000e+00, 0.00000000e+00, 1.00000000e+00]])
|
||
|
>>> r.as_euler('zyx', degrees=True)
|
||
|
array([90., 0., 0.])
|
||
|
|
||
|
The `from_euler` function is quite flexible in the range of input formats
|
||
|
it supports. Here we initialize a single rotation about a single axis:
|
||
|
|
||
|
>>> r = R.from_euler('z', 90, degrees=True)
|
||
|
|
||
|
Again, the object is representation independent and can be converted to any
|
||
|
other format:
|
||
|
|
||
|
>>> r.as_quat()
|
||
|
array([0. , 0. , 0.70710678, 0.70710678])
|
||
|
>>> r.as_dcm()
|
||
|
array([[ 2.22044605e-16, -1.00000000e+00, 0.00000000e+00],
|
||
|
[ 1.00000000e+00, 2.22044605e-16, 0.00000000e+00],
|
||
|
[ 0.00000000e+00, 0.00000000e+00, 1.00000000e+00]])
|
||
|
>>> r.as_rotvec()
|
||
|
array([0. , 0. , 1.57079633])
|
||
|
|
||
|
It is also possible to initialize multiple rotations in a single instance
|
||
|
using any of the `from_...` functions. Here we initialize a stack of 3
|
||
|
rotations using the `from_euler` function:
|
||
|
|
||
|
>>> r = R.from_euler('zyx', [
|
||
|
... [90, 0, 0],
|
||
|
... [0, 45, 0],
|
||
|
... [45, 60, 30]], degrees=True)
|
||
|
|
||
|
The other representations also now return a stack of 3 rotations. For
|
||
|
example:
|
||
|
|
||
|
>>> r.as_quat()
|
||
|
array([[0. , 0. , 0.70710678, 0.70710678],
|
||
|
[0. , 0.38268343, 0. , 0.92387953],
|
||
|
[0.39190384, 0.36042341, 0.43967974, 0.72331741]])
|
||
|
|
||
|
Applying the above rotations onto a vector:
|
||
|
|
||
|
>>> v = [1, 2, 3]
|
||
|
>>> r.apply(v)
|
||
|
array([[-2. , 1. , 3. ],
|
||
|
[ 2.82842712, 2. , 1.41421356],
|
||
|
[ 2.24452282, 0.78093109, 2.89002836]])
|
||
|
|
||
|
A `Rotation` instance can be indexed and sliced as if it were a single
|
||
|
1D array or list:
|
||
|
|
||
|
>>> r.as_quat()
|
||
|
array([[0. , 0. , 0.70710678, 0.70710678],
|
||
|
[0. , 0.38268343, 0. , 0.92387953],
|
||
|
[0.39190384, 0.36042341, 0.43967974, 0.72331741]])
|
||
|
>>> p = r[0]
|
||
|
>>> p.as_dcm()
|
||
|
array([[ 2.22044605e-16, -1.00000000e+00, 0.00000000e+00],
|
||
|
[ 1.00000000e+00, 2.22044605e-16, 0.00000000e+00],
|
||
|
[ 0.00000000e+00, 0.00000000e+00, 1.00000000e+00]])
|
||
|
>>> q = r[1:3]
|
||
|
>>> q.as_quat()
|
||
|
array([[0. , 0.38268343, 0. , 0.92387953],
|
||
|
[0.39190384, 0.36042341, 0.43967974, 0.72331741]])
|
||
|
|
||
|
Multiple rotations can be composed using the `*` operator:
|
||
|
|
||
|
>>> r1 = R.from_euler('z', 90, degrees=True)
|
||
|
>>> r2 = R.from_rotvec([np.pi/4, 0, 0])
|
||
|
>>> v = [1, 2, 3]
|
||
|
>>> r2.apply(r1.apply(v))
|
||
|
array([-2. , -1.41421356, 2.82842712])
|
||
|
>>> r3 = r2 * r1 # Note the order
|
||
|
>>> r3.apply(v)
|
||
|
array([-2. , -1.41421356, 2.82842712])
|
||
|
|
||
|
Finally, it is also possible to invert rotations:
|
||
|
|
||
|
>>> r1 = R.from_euler('z', [90, 45], degrees=True)
|
||
|
>>> r2 = r1.inv()
|
||
|
>>> r2.as_euler('zyx', degrees=True)
|
||
|
array([[-90., 0., 0.],
|
||
|
[-45., 0., 0.]])
|
||
|
|
||
|
These examples serve as an overview into the `Rotation` class and highlight
|
||
|
major functionalities. For more thorough examples of the range of input and
|
||
|
output formats supported, consult the individual method's examples.
|
||
|
|
||
|
"""
|
||
|
def __init__(self, quat, normalized=False, copy=True):
|
||
|
self._single = False
|
||
|
quat = np.asarray(quat, dtype=float)
|
||
|
|
||
|
if quat.ndim not in [1, 2] or quat.shape[-1] != 4:
|
||
|
raise ValueError("Expected `quat` to have shape (4,) or (N x 4), "
|
||
|
"got {}.".format(quat.shape))
|
||
|
|
||
|
# If a single quaternion is given, convert it to a 2D 1 x 4 matrix but
|
||
|
# set self._single to True so that we can return appropriate objects
|
||
|
# in the `to_...` methods
|
||
|
if quat.shape == (4,):
|
||
|
quat = quat[None, :]
|
||
|
self._single = True
|
||
|
|
||
|
if normalized:
|
||
|
self._quat = quat.copy() if copy else quat
|
||
|
else:
|
||
|
self._quat = quat.copy()
|
||
|
norms = scipy.linalg.norm(quat, axis=1)
|
||
|
|
||
|
zero_norms = norms == 0
|
||
|
if zero_norms.any():
|
||
|
raise ValueError("Found zero norm quaternions in `quat`.")
|
||
|
|
||
|
# Ensure norm is broadcasted along each column.
|
||
|
self._quat[~zero_norms] /= norms[~zero_norms][:, None]
|
||
|
|
||
|
def __len__(self):
|
||
|
"""Number of rotations contained in this object.
|
||
|
|
||
|
Multiple rotations can be stored in a single instance.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
length : int
|
||
|
Number of rotations stored in object.
|
||
|
|
||
|
"""
|
||
|
return self._quat.shape[0]
|
||
|
|
||
|
@classmethod
|
||
|
def from_quat(cls, quat, normalized=False):
|
||
|
"""Initialize from quaternions.
|
||
|
|
||
|
3D rotations can be represented using unit-norm quaternions [1]_.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
quat : array_like, shape (N, 4) or (4,)
|
||
|
Each row is a (possibly non-unit norm) quaternion in scalar-last
|
||
|
(x, y, z, w) format.
|
||
|
normalized : boolean, optional
|
||
|
If `False`, input quaternions are normalized to unit norm before
|
||
|
being stored. If `True`, quaternions are assumed to already have
|
||
|
unit norm and are stored as given. Default is `False`.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
rotation : `Rotation` instance
|
||
|
Object containing the rotations represented by input quaternions.
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] `Quaternions and Spatial Rotation
|
||
|
<https://en.wikipedia.org/wiki/Quaternions_and_spatial_rotation>`_
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> from scipy.spatial.transform import Rotation as R
|
||
|
|
||
|
Initialize a single rotation:
|
||
|
|
||
|
>>> r = R.from_quat([1, 0, 0, 0])
|
||
|
>>> r.as_quat()
|
||
|
array([1., 0., 0., 0.])
|
||
|
>>> r.as_quat().shape
|
||
|
(4,)
|
||
|
|
||
|
Initialize multiple rotations in a single object:
|
||
|
|
||
|
>>> r = R.from_quat([
|
||
|
... [1, 0, 0, 0],
|
||
|
... [0, 0, 0, 1]
|
||
|
... ])
|
||
|
>>> r.as_quat()
|
||
|
array([[1., 0., 0., 0.],
|
||
|
[0., 0., 0., 1.]])
|
||
|
>>> r.as_quat().shape
|
||
|
(2, 4)
|
||
|
|
||
|
It is also possible to have a stack of a single rotation:
|
||
|
|
||
|
>>> r = R.from_quat([[0, 0, 0, 1]])
|
||
|
>>> r.as_quat()
|
||
|
array([[0., 0., 0., 1.]])
|
||
|
>>> r.as_quat().shape
|
||
|
(1, 4)
|
||
|
|
||
|
By default, quaternions are normalized before initialization.
|
||
|
|
||
|
>>> r = R.from_quat([0, 0, 1, 1])
|
||
|
>>> r.as_quat()
|
||
|
array([0. , 0. , 0.70710678, 0.70710678])
|
||
|
|
||
|
If unit norms are ensured, skip the normalization step.
|
||
|
|
||
|
>>> r = R.from_quat([0, 0, 1, 0], normalized=True)
|
||
|
>>> r.as_quat()
|
||
|
array([0., 0., 1., 0.])
|
||
|
|
||
|
"""
|
||
|
return cls(quat, normalized)
|
||
|
|
||
|
@classmethod
|
||
|
def from_dcm(cls, dcm):
|
||
|
"""Initialize from direction cosine matrices.
|
||
|
|
||
|
Rotations in 3 dimensions can be represented using 3 x 3 proper
|
||
|
orthogonal matrices [1]_. If the input is not proper orthogonal,
|
||
|
an approximation is created using the method described in [2]_.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
dcm : array_like, shape (N, 3, 3) or (3, 3)
|
||
|
A single matrix or a stack of matrices, where `dcm[i]` is the i-th
|
||
|
matrix.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
rotation : `Rotation` instance
|
||
|
Object containing the rotations represented by the input direction
|
||
|
cosine matrices.
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] `Direction Cosine Matrix
|
||
|
<https://en.wikipedia.org/wiki/Rotation_matrix#In_three_dimensions>`_
|
||
|
.. [2] F. Landis Markley, `Unit Quaternion from Rotation Matrix
|
||
|
<https://arc.aiaa.org/doi/abs/10.2514/1.31730>`_
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> from scipy.spatial.transform import Rotation as R
|
||
|
|
||
|
Initialize a single rotation:
|
||
|
|
||
|
>>> r = R.from_dcm([
|
||
|
... [0, -1, 0],
|
||
|
... [1, 0, 0],
|
||
|
... [0, 0, 1]])
|
||
|
>>> r.as_dcm().shape
|
||
|
(3, 3)
|
||
|
|
||
|
Initialize multiple rotations in a single object:
|
||
|
|
||
|
>>> r = R.from_dcm([
|
||
|
... [
|
||
|
... [0, -1, 0],
|
||
|
... [1, 0, 0],
|
||
|
... [0, 0, 1],
|
||
|
... ],
|
||
|
... [
|
||
|
... [1, 0, 0],
|
||
|
... [0, 0, -1],
|
||
|
... [0, 1, 0],
|
||
|
... ]])
|
||
|
>>> r.as_dcm().shape
|
||
|
(2, 3, 3)
|
||
|
|
||
|
If input matrices are not special orthogonal (orthogonal with
|
||
|
determinant equal to +1), then a special orthogonal estimate is stored:
|
||
|
|
||
|
>>> a = np.array([
|
||
|
... [0, -0.5, 0],
|
||
|
... [0.5, 0, 0],
|
||
|
... [0, 0, 0.5]])
|
||
|
>>> np.linalg.det(a)
|
||
|
0.12500000000000003
|
||
|
>>> r = R.from_dcm(a)
|
||
|
>>> dcm = r.as_dcm()
|
||
|
>>> dcm
|
||
|
array([[-0.38461538, -0.92307692, 0. ],
|
||
|
[ 0.92307692, -0.38461538, 0. ],
|
||
|
[ 0. , 0. , 1. ]])
|
||
|
>>> np.linalg.det(dcm)
|
||
|
1.0000000000000002
|
||
|
|
||
|
It is also possible to have a stack containing a single rotation:
|
||
|
|
||
|
>>> r = R.from_dcm([[
|
||
|
... [0, -1, 0],
|
||
|
... [1, 0, 0],
|
||
|
... [0, 0, 1]]])
|
||
|
>>> r.as_dcm()
|
||
|
array([[[ 0., -1., 0.],
|
||
|
[ 1., 0., 0.],
|
||
|
[ 0., 0., 1.]]])
|
||
|
>>> r.as_dcm().shape
|
||
|
(1, 3, 3)
|
||
|
|
||
|
"""
|
||
|
is_single = False
|
||
|
dcm = np.asarray(dcm, dtype=float)
|
||
|
|
||
|
if dcm.ndim not in [2, 3] or dcm.shape[-2:] != (3, 3):
|
||
|
raise ValueError("Expected `dcm` to have shape (3, 3) or "
|
||
|
"(N, 3, 3), got {}".format(dcm.shape))
|
||
|
|
||
|
# If a single dcm is given, convert it to 3D 1 x 3 x 3 matrix but set
|
||
|
# self._single to True so that we can return appropriate objects in
|
||
|
# the `to_...` methods
|
||
|
if dcm.shape == (3, 3):
|
||
|
dcm = dcm.reshape((1, 3, 3))
|
||
|
is_single = True
|
||
|
|
||
|
num_rotations = dcm.shape[0]
|
||
|
|
||
|
decision_matrix = np.empty((num_rotations, 4))
|
||
|
decision_matrix[:, :3] = dcm.diagonal(axis1=1, axis2=2)
|
||
|
decision_matrix[:, -1] = decision_matrix[:, :3].sum(axis=1)
|
||
|
choices = decision_matrix.argmax(axis=1)
|
||
|
|
||
|
quat = np.empty((num_rotations, 4))
|
||
|
|
||
|
ind = np.nonzero(choices != 3)[0]
|
||
|
i = choices[ind]
|
||
|
j = (i + 1) % 3
|
||
|
k = (j + 1) % 3
|
||
|
|
||
|
quat[ind, i] = 1 - decision_matrix[ind, -1] + 2 * dcm[ind, i, i]
|
||
|
quat[ind, j] = dcm[ind, j, i] + dcm[ind, i, j]
|
||
|
quat[ind, k] = dcm[ind, k, i] + dcm[ind, i, k]
|
||
|
quat[ind, 3] = dcm[ind, k, j] - dcm[ind, j, k]
|
||
|
|
||
|
ind = np.nonzero(choices == 3)[0]
|
||
|
quat[ind, 0] = dcm[ind, 2, 1] - dcm[ind, 1, 2]
|
||
|
quat[ind, 1] = dcm[ind, 0, 2] - dcm[ind, 2, 0]
|
||
|
quat[ind, 2] = dcm[ind, 1, 0] - dcm[ind, 0, 1]
|
||
|
quat[ind, 3] = 1 + decision_matrix[ind, -1]
|
||
|
|
||
|
quat /= np.linalg.norm(quat, axis=1)[:, None]
|
||
|
|
||
|
if is_single:
|
||
|
return cls(quat[0], normalized=True, copy=False)
|
||
|
else:
|
||
|
return cls(quat, normalized=True, copy=False)
|
||
|
|
||
|
@classmethod
|
||
|
def from_rotvec(cls, rotvec):
|
||
|
"""Initialize from rotation vectors.
|
||
|
|
||
|
A rotation vector is a 3 dimensional vector which is co-directional to
|
||
|
the axis of rotation and whose norm gives the angle of rotation (in
|
||
|
radians) [1]_.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
rotvec : array_like, shape (N, 3) or (3,)
|
||
|
A single vector or a stack of vectors, where `rot_vec[i]` gives
|
||
|
the ith rotation vector.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
rotation : `Rotation` instance
|
||
|
Object containing the rotations represented by input rotation
|
||
|
vectors.
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] `Rotation Vectors
|
||
|
<https://en.wikipedia.org/wiki/Axis%E2%80%93angle_representation#Rotation_vector>`_
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> from scipy.spatial.transform import Rotation as R
|
||
|
|
||
|
Initialize a single rotation:
|
||
|
|
||
|
>>> r = R.from_rotvec(np.pi/2 * np.array([0, 0, 1]))
|
||
|
>>> r.as_rotvec()
|
||
|
array([0. , 0. , 1.57079633])
|
||
|
>>> r.as_rotvec().shape
|
||
|
(3,)
|
||
|
|
||
|
Initialize multiple rotations in one object:
|
||
|
|
||
|
>>> r = R.from_rotvec([
|
||
|
... [0, 0, np.pi/2],
|
||
|
... [np.pi/2, 0, 0]])
|
||
|
>>> r.as_rotvec()
|
||
|
array([[0. , 0. , 1.57079633],
|
||
|
[1.57079633, 0. , 0. ]])
|
||
|
>>> r.as_rotvec().shape
|
||
|
(2, 3)
|
||
|
|
||
|
It is also possible to have a stack of a single rotaton:
|
||
|
|
||
|
>>> r = R.from_rotvec([[0, 0, np.pi/2]])
|
||
|
>>> r.as_rotvec().shape
|
||
|
(1, 3)
|
||
|
|
||
|
"""
|
||
|
is_single = False
|
||
|
rotvec = np.asarray(rotvec, dtype=float)
|
||
|
|
||
|
if rotvec.ndim not in [1, 2] or rotvec.shape[-1] != 3:
|
||
|
raise ValueError("Expected `rot_vec` to have shape (3,) "
|
||
|
"or (N, 3), got {}".format(rotvec.shape))
|
||
|
|
||
|
# If a single vector is given, convert it to a 2D 1 x 3 matrix but
|
||
|
# set self._single to True so that we can return appropriate objects
|
||
|
# in the `as_...` methods
|
||
|
if rotvec.shape == (3,):
|
||
|
rotvec = rotvec[None, :]
|
||
|
is_single = True
|
||
|
|
||
|
num_rotations = rotvec.shape[0]
|
||
|
|
||
|
norms = np.linalg.norm(rotvec, axis=1)
|
||
|
small_angle = (norms <= 1e-3)
|
||
|
large_angle = ~small_angle
|
||
|
|
||
|
scale = np.empty(num_rotations)
|
||
|
scale[small_angle] = (0.5 - norms[small_angle] ** 2 / 48 +
|
||
|
norms[small_angle] ** 4 / 3840)
|
||
|
scale[large_angle] = (np.sin(norms[large_angle] / 2) /
|
||
|
norms[large_angle])
|
||
|
|
||
|
quat = np.empty((num_rotations, 4))
|
||
|
quat[:, :3] = scale[:, None] * rotvec
|
||
|
quat[:, 3] = np.cos(norms / 2)
|
||
|
|
||
|
if is_single:
|
||
|
return cls(quat[0], normalized=True, copy=False)
|
||
|
else:
|
||
|
return cls(quat, normalized=True, copy=False)
|
||
|
|
||
|
@classmethod
|
||
|
def from_euler(cls, seq, angles, degrees=False):
|
||
|
"""Initialize from Euler angles.
|
||
|
|
||
|
Rotations in 3 dimensions can be represented by a sequece of 3
|
||
|
rotations around a sequence of axes. In theory, any three axes spanning
|
||
|
the 3D Euclidean space are enough. In practice the axes of rotation are
|
||
|
chosen to be the basis vectors.
|
||
|
|
||
|
The three rotations can either be in a global frame of reference
|
||
|
(extrinsic) or in a body centred frame of refernce (intrinsic), which
|
||
|
is attached to, and moves with, the object under rotation [1]_.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
seq : string
|
||
|
Specifies sequence of axes for rotations. Up to 3 characters
|
||
|
belonging to the set {'X', 'Y', 'Z'} for intrinsic rotations, or
|
||
|
{'x', 'y', 'z'} for extrinsic rotations. Extrinsic and intrinsic
|
||
|
rotations cannot be mixed in one function call.
|
||
|
angles : float or array_like, shape (N,) or (N, [1 or 2 or 3])
|
||
|
Euler angles specified in radians (`degrees` is False) or degrees
|
||
|
(`degrees` is True).
|
||
|
For a single character `seq`, `angles` can be:
|
||
|
|
||
|
- a single value
|
||
|
- array_like with shape (N,), where each `angle[i]`
|
||
|
corresponds to a single rotation
|
||
|
- array_like with shape (N, 1), where each `angle[i, 0]`
|
||
|
corresponds to a single rotation
|
||
|
|
||
|
For 2- and 3-character wide `seq`, `angles` can be:
|
||
|
|
||
|
- array_like with shape (W,) where `W` is the width of
|
||
|
`seq`, which corresponds to a single rotation with `W` axes
|
||
|
- array_like with shape (N, W) where each `angle[i]`
|
||
|
corresponds to a sequence of Euler angles describing a single
|
||
|
rotation
|
||
|
|
||
|
degrees : boolean, optional
|
||
|
If True, then the given angles are assumed to be in degrees.
|
||
|
Default is False.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
rotation : `Rotation` instance
|
||
|
Object containing the rotation represented by the sequence of
|
||
|
rotations around given axes with given angles.
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] `Euler angle definitions
|
||
|
<https://en.wikipedia.org/wiki/Euler_angles#Definition_by_intrinsic_rotations>`_
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> from scipy.spatial.transform import Rotation as R
|
||
|
|
||
|
Initialize a single rotation along a single axis:
|
||
|
|
||
|
>>> r = R.from_euler('x', 90, degrees=True)
|
||
|
>>> r.as_quat().shape
|
||
|
(4,)
|
||
|
|
||
|
Initialize a single rotation with a given axis sequence:
|
||
|
|
||
|
>>> r = R.from_euler('zyx', [90, 45, 30], degrees=True)
|
||
|
>>> r.as_quat().shape
|
||
|
(4,)
|
||
|
|
||
|
Initialize a stack with a single rotation around a single axis:
|
||
|
|
||
|
>>> r = R.from_euler('x', [90], degrees=True)
|
||
|
>>> r.as_quat().shape
|
||
|
(1, 4)
|
||
|
|
||
|
Initialize a stack with a single rotation with an axis sequence:
|
||
|
|
||
|
>>> r = R.from_euler('zyx', [[90, 45, 30]], degrees=True)
|
||
|
>>> r.as_quat().shape
|
||
|
(1, 4)
|
||
|
|
||
|
Initialize multiple elementary rotations in one object:
|
||
|
|
||
|
>>> r = R.from_euler('x', [90, 45, 30], degrees=True)
|
||
|
>>> r.as_quat().shape
|
||
|
(3, 4)
|
||
|
|
||
|
Initialize multiple rotations in one object:
|
||
|
|
||
|
>>> r = R.from_euler('zyx', [[90, 45, 30], [35, 45, 90]], degrees=True)
|
||
|
>>> r.as_quat().shape
|
||
|
(2, 4)
|
||
|
|
||
|
"""
|
||
|
num_axes = len(seq)
|
||
|
if num_axes < 1 or num_axes > 3:
|
||
|
raise ValueError("Expected axis specification to be a non-empty "
|
||
|
"string of upto 3 characters, got {}".format(seq))
|
||
|
|
||
|
intrinsic = (re.match(r'^[XYZ]{1,3}$', seq) is not None)
|
||
|
extrinsic = (re.match(r'^[xyz]{1,3}$', seq) is not None)
|
||
|
if not (intrinsic or extrinsic):
|
||
|
raise ValueError("Expected axes from `seq` to be from ['x', 'y', "
|
||
|
"'z'] or ['X', 'Y', 'Z'], got {}".format(seq))
|
||
|
|
||
|
if any(seq[i] == seq[i+1] for i in range(num_axes - 1)):
|
||
|
raise ValueError("Expected consecutive axes to be different, "
|
||
|
"got {}".format(seq))
|
||
|
|
||
|
seq = seq.lower()
|
||
|
|
||
|
angles = np.asarray(angles, dtype=float)
|
||
|
if degrees:
|
||
|
angles = np.deg2rad(angles)
|
||
|
|
||
|
is_single = False
|
||
|
# Prepare angles to have shape (num_rot, num_axes)
|
||
|
if num_axes == 1:
|
||
|
if angles.ndim == 0:
|
||
|
# (1, 1)
|
||
|
angles = angles.reshape((1, 1))
|
||
|
is_single = True
|
||
|
elif angles.ndim == 1:
|
||
|
# (N, 1)
|
||
|
angles = angles[:, None]
|
||
|
elif angles.ndim == 2 and angles.shape[-1] != 1:
|
||
|
raise ValueError("Expected `angles` parameter to have shape "
|
||
|
"(N, 1), got {}.".format(angles.shape))
|
||
|
elif angles.ndim > 2:
|
||
|
raise ValueError("Expected float, 1D array, or 2D array for "
|
||
|
"parameter `angles` corresponding to `seq`, "
|
||
|
"got shape {}.".format(angles.shape))
|
||
|
else: # 2 or 3 axes
|
||
|
if angles.ndim not in [1, 2] or angles.shape[-1] != num_axes:
|
||
|
raise ValueError("Expected `angles` to be at most "
|
||
|
"2-dimensional with width equal to number "
|
||
|
"of axes specified, got {} for shape").format(
|
||
|
angles.shape)
|
||
|
|
||
|
if angles.ndim == 1:
|
||
|
# (1, num_axes)
|
||
|
angles = angles[None, :]
|
||
|
is_single = True
|
||
|
|
||
|
# By now angles should have shape (num_rot, num_axes)
|
||
|
# sanity check
|
||
|
if angles.ndim != 2 or angles.shape[-1] != num_axes:
|
||
|
raise ValueError("Expected angles to have shape (num_rotations, "
|
||
|
"num_axes), got {}.".format(angles.shape))
|
||
|
|
||
|
quat = _elementary_quat_compose(seq, angles, intrinsic)
|
||
|
return cls(quat[0] if is_single else quat, normalized=True, copy=False)
|
||
|
|
||
|
def as_quat(self):
|
||
|
"""Represent as quaternions.
|
||
|
|
||
|
Rotations in 3 dimensions can be represented using unit norm
|
||
|
quaternions [1]_. The mapping from quaternions to rotations is
|
||
|
two-to-one, i.e. quaternions `q` and `-q`, where `-q` simply reverses
|
||
|
the sign of each component, represent the same spatial rotation.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
quat : `numpy.ndarray`, shape (4,) or (N, 4)
|
||
|
Shape depends on shape of inputs used for initialization.
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] `Quaternions and Spatial Rotation
|
||
|
<https://en.wikipedia.org/wiki/Quaternions_and_spatial_rotation>`_
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> from scipy.spatial.transform import Rotation as R
|
||
|
|
||
|
Represent a single rotation:
|
||
|
|
||
|
>>> r = R.from_dcm([
|
||
|
... [0, -1, 0],
|
||
|
... [1, 0, 0],
|
||
|
... [0, 0, 1]])
|
||
|
>>> r.as_quat()
|
||
|
array([0. , 0. , 0.70710678, 0.70710678])
|
||
|
>>> r.as_quat().shape
|
||
|
(4,)
|
||
|
|
||
|
Represent a stack with a single rotation:
|
||
|
|
||
|
>>> r = R.from_quat([[0, 0, 0, 1]])
|
||
|
>>> r.as_quat().shape
|
||
|
(1, 4)
|
||
|
|
||
|
Represent multiple rotaions in a single object:
|
||
|
|
||
|
>>> r = R.from_rotvec([[np.pi, 0, 0], [0, 0, np.pi/2]])
|
||
|
>>> r.as_quat().shape
|
||
|
(2, 4)
|
||
|
|
||
|
"""
|
||
|
if self._single:
|
||
|
return self._quat[0].copy()
|
||
|
else:
|
||
|
return self._quat.copy()
|
||
|
|
||
|
def as_dcm(self):
|
||
|
"""Represent as direction cosine matrices.
|
||
|
|
||
|
3D rotations can be represented using direction cosine matrices, which
|
||
|
are 3 x 3 real orthogonal matrices with determinant equal to +1 [1]_.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
dcm : `numpy.ndarray`, shape (3, 3) or (N, 3, 3)
|
||
|
Shape depends on shape of inputs used for initialization.
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] `Direction Cosine Matrix
|
||
|
<https://en.wikipedia.org/wiki/Rotation_matrix#In_three_dimensions>`_
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> from scipy.spatial.transform import Rotation as R
|
||
|
|
||
|
Represent a single rotation:
|
||
|
|
||
|
>>> r = R.from_rotvec([0, 0, np.pi/2])
|
||
|
>>> r.as_dcm()
|
||
|
array([[ 2.22044605e-16, -1.00000000e+00, 0.00000000e+00],
|
||
|
[ 1.00000000e+00, 2.22044605e-16, 0.00000000e+00],
|
||
|
[ 0.00000000e+00, 0.00000000e+00, 1.00000000e+00]])
|
||
|
>>> r.as_dcm().shape
|
||
|
(3, 3)
|
||
|
|
||
|
Represent a stack with a single rotation:
|
||
|
|
||
|
>>> r = R.from_quat([[1, 1, 0, 0]])
|
||
|
>>> r.as_dcm()
|
||
|
array([[[ 0., 1., 0.],
|
||
|
[ 1., 0., 0.],
|
||
|
[ 0., 0., -1.]]])
|
||
|
>>> r.as_dcm().shape
|
||
|
(1, 3, 3)
|
||
|
|
||
|
Represent multiple rotations:
|
||
|
|
||
|
>>> r = R.from_rotvec([[np.pi/2, 0, 0], [0, 0, np.pi/2]])
|
||
|
>>> r.as_dcm()
|
||
|
array([[[ 1.00000000e+00, 0.00000000e+00, 0.00000000e+00],
|
||
|
[ 0.00000000e+00, 2.22044605e-16, -1.00000000e+00],
|
||
|
[ 0.00000000e+00, 1.00000000e+00, 2.22044605e-16]],
|
||
|
[[ 2.22044605e-16, -1.00000000e+00, 0.00000000e+00],
|
||
|
[ 1.00000000e+00, 2.22044605e-16, 0.00000000e+00],
|
||
|
[ 0.00000000e+00, 0.00000000e+00, 1.00000000e+00]]])
|
||
|
>>> r.as_dcm().shape
|
||
|
(2, 3, 3)
|
||
|
|
||
|
"""
|
||
|
x = self._quat[:, 0]
|
||
|
y = self._quat[:, 1]
|
||
|
z = self._quat[:, 2]
|
||
|
w = self._quat[:, 3]
|
||
|
|
||
|
x2 = x * x
|
||
|
y2 = y * y
|
||
|
z2 = z * z
|
||
|
w2 = w * w
|
||
|
|
||
|
xy = x * y
|
||
|
zw = z * w
|
||
|
xz = x * z
|
||
|
yw = y * w
|
||
|
yz = y * z
|
||
|
xw = x * w
|
||
|
|
||
|
num_rotations = len(self)
|
||
|
dcm = np.empty((num_rotations, 3, 3))
|
||
|
|
||
|
dcm[:, 0, 0] = x2 - y2 - z2 + w2
|
||
|
dcm[:, 1, 0] = 2 * (xy + zw)
|
||
|
dcm[:, 2, 0] = 2 * (xz - yw)
|
||
|
|
||
|
dcm[:, 0, 1] = 2 * (xy - zw)
|
||
|
dcm[:, 1, 1] = - x2 + y2 - z2 + w2
|
||
|
dcm[:, 2, 1] = 2 * (yz + xw)
|
||
|
|
||
|
dcm[:, 0, 2] = 2 * (xz + yw)
|
||
|
dcm[:, 1, 2] = 2 * (yz - xw)
|
||
|
dcm[:, 2, 2] = - x2 - y2 + z2 + w2
|
||
|
|
||
|
if self._single:
|
||
|
return dcm[0]
|
||
|
else:
|
||
|
return dcm
|
||
|
|
||
|
def as_rotvec(self):
|
||
|
"""Represent as rotation vectors.
|
||
|
|
||
|
A rotation vector is a 3 dimensional vector which is co-directional to
|
||
|
the axis of rotation and whose norm gives the angle of rotation (in
|
||
|
radians) [1]_.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
rotvec : `numpy.ndarray`, shape (3,) or (N, 3)
|
||
|
Shape depends on shape of inputs used for initialization.
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] `Rotation Vectors
|
||
|
<https://en.wikipedia.org/wiki/Axis%E2%80%93angle_representation#Rotation_vector>`_
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> from scipy.spatial.transform import Rotation as R
|
||
|
|
||
|
Represent a single rotation:
|
||
|
|
||
|
>>> r = R.from_euler('z', 90, degrees=True)
|
||
|
>>> r.as_rotvec()
|
||
|
array([0. , 0. , 1.57079633])
|
||
|
>>> r.as_rotvec().shape
|
||
|
(3,)
|
||
|
|
||
|
Represent a stack with a single rotation:
|
||
|
|
||
|
>>> r = R.from_quat([[0, 0, 1, 1]])
|
||
|
>>> r.as_rotvec()
|
||
|
array([[0. , 0. , 1.57079633]])
|
||
|
>>> r.as_rotvec().shape
|
||
|
(1, 3)
|
||
|
|
||
|
Represent multiple rotations in a single object:
|
||
|
|
||
|
>>> r = R.from_quat([[0, 0, 1, 1], [1, 1, 0, 1]])
|
||
|
>>> r.as_rotvec()
|
||
|
array([[0. , 0. , 1.57079633],
|
||
|
[1.35102172, 1.35102172, 0. ]])
|
||
|
>>> r.as_rotvec().shape
|
||
|
(2, 3)
|
||
|
|
||
|
"""
|
||
|
quat = self._quat.copy()
|
||
|
# w > 0 to ensure 0 <= angle <= pi
|
||
|
quat[quat[:, 3] < 0] *= -1
|
||
|
|
||
|
angle = 2 * np.arctan2(np.linalg.norm(quat[:, :3], axis=1), quat[:, 3])
|
||
|
|
||
|
small_angle = (angle <= 1e-3)
|
||
|
large_angle = ~small_angle
|
||
|
|
||
|
num_rotations = len(self)
|
||
|
scale = np.empty(num_rotations)
|
||
|
scale[small_angle] = (2 + angle[small_angle] ** 2 / 12 +
|
||
|
7 * angle[small_angle] ** 4 / 2880)
|
||
|
scale[large_angle] = (angle[large_angle] /
|
||
|
np.sin(angle[large_angle] / 2))
|
||
|
|
||
|
rotvec = scale[:, None] * quat[:, :3]
|
||
|
|
||
|
if self._single:
|
||
|
return rotvec[0]
|
||
|
else:
|
||
|
return rotvec
|
||
|
|
||
|
def as_euler(self, seq, degrees=False):
|
||
|
"""Represent as Euler angles.
|
||
|
|
||
|
Any orientation can be expressed as a composition of 3 elementary
|
||
|
rotations. Once the axis sequence has been chosen, Euler angles define
|
||
|
the angle of rotation around each respective axis [1]_.
|
||
|
|
||
|
The algorithm from [2]_ has been used to calculate Euler angles for the
|
||
|
rotation about a given sequence of axes.
|
||
|
|
||
|
Euler angles suffer from the problem of gimbal lock [3]_, where the
|
||
|
representation loses a degree of freedom and it is not possible to
|
||
|
determine the first and third angles uniquely. In this case,
|
||
|
a warning is raised, and the third angle is set to zero. Note however
|
||
|
that the returned angles still represent the correct rotation.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
seq : string, length 3
|
||
|
3 characters belonging to the set {'X', 'Y', 'Z'} for intrinsic
|
||
|
rotations, or {'x', 'y', 'z'} for extrinsic rotations [1]_.
|
||
|
Adjacent axes cannot be the same.
|
||
|
Extrinsic and intrinsic rotations cannot be mixed in one function
|
||
|
call.
|
||
|
degrees : boolean, optional
|
||
|
Returned angles are in degrees if this flag is True, else they are
|
||
|
in radians. Default is False.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
angles : `numpy.ndarray`, shape (3,) or (N, 3)
|
||
|
Shape depends on shape of inputs used to initialize object.
|
||
|
|
||
|
The returned angles are in the range:
|
||
|
|
||
|
- First angle belongs to [-180, 180] degrees (both inclusive)
|
||
|
- Third angle belongs to [-180, 180] degrees (both inclusive)
|
||
|
- Second angle belongs to:
|
||
|
|
||
|
- [-90, 90] degrees if all axes are different (like xyz)
|
||
|
- [0, 180] degrees if first and third axes are the same
|
||
|
(like zxz)
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] `Euler angle definitions
|
||
|
<https://en.wikipedia.org/wiki/Euler_angles#Definition_by_intrinsic_rotations>`_
|
||
|
.. [2] Malcolm D. Shuster, F. Landis Markley
|
||
|
`General Formula for Euler Angles
|
||
|
<https://arc.aiaa.org/doi/abs/10.2514/1.16622>`_
|
||
|
.. [3] `Gimbal lock
|
||
|
<https://en.wikipedia.org/wiki/Gimbal_lock#In_applied_mathematics>`_
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> from scipy.spatial.transform import Rotation as R
|
||
|
|
||
|
Represent a single rotation:
|
||
|
|
||
|
>>> r = R.from_rotvec([0, 0, np.pi/2])
|
||
|
>>> r.as_euler('zxy', degrees=True)
|
||
|
array([90., 0., 0.])
|
||
|
>>> r.as_euler('zxy', degrees=True).shape
|
||
|
(3,)
|
||
|
|
||
|
Represent a stack of single rotation:
|
||
|
|
||
|
>>> r = R.from_rotvec([[0, 0, np.pi/2]])
|
||
|
>>> r.as_euler('zxy', degrees=True)
|
||
|
array([[90., 0., 0.]])
|
||
|
>>> r.as_euler('zxy', degrees=True).shape
|
||
|
(1, 3)
|
||
|
|
||
|
Represent multiple rotations in a single object:
|
||
|
|
||
|
>>> r = R.from_rotvec([
|
||
|
... [0, 0, np.pi/2],
|
||
|
... [0, -np.pi/3, 0],
|
||
|
... [np.pi/4, 0, 0]])
|
||
|
>>> r.as_euler('zxy', degrees=True)
|
||
|
array([[ 90., 0., 0.],
|
||
|
[ 0., 0., -60.],
|
||
|
[ 0., 45., 0.]])
|
||
|
>>> r.as_euler('zxy', degrees=True).shape
|
||
|
(3, 3)
|
||
|
|
||
|
"""
|
||
|
if len(seq) != 3:
|
||
|
raise ValueError("Expected 3 axes, got {}.".format(seq))
|
||
|
|
||
|
intrinsic = (re.match(r'^[XYZ]{1,3}$', seq) is not None)
|
||
|
extrinsic = (re.match(r'^[xyz]{1,3}$', seq) is not None)
|
||
|
if not (intrinsic or extrinsic):
|
||
|
raise ValueError("Expected axes from `seq` to be from "
|
||
|
"['x', 'y', 'z'] or ['X', 'Y', 'Z'], "
|
||
|
"got {}".format(seq))
|
||
|
|
||
|
if any(seq[i] == seq[i+1] for i in range(2)):
|
||
|
raise ValueError("Expected consecutive axes to be different, "
|
||
|
"got {}".format(seq))
|
||
|
|
||
|
seq = seq.lower()
|
||
|
|
||
|
angles = _compute_euler_from_dcm(self.as_dcm(), seq, extrinsic)
|
||
|
if degrees:
|
||
|
angles = np.rad2deg(angles)
|
||
|
|
||
|
return angles[0] if self._single else angles
|
||
|
|
||
|
def apply(self, vectors, inverse=False):
|
||
|
"""Apply this rotation to a set of vectors.
|
||
|
|
||
|
If the original frame rotates to the final frame by this rotation, then
|
||
|
its application to a vector can be seen in two ways:
|
||
|
|
||
|
- As a projection of vector components expressed in the final frame
|
||
|
to the original frame.
|
||
|
- As the physical rotation of a vector being glued to the original
|
||
|
frame as it rotates. In this case the vector components are
|
||
|
expressed in the original frame before and after the rotation.
|
||
|
|
||
|
In terms of DCMs, this application is the same as
|
||
|
`self.as_dcm().dot(vectors)`.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
vectors : array_like, shape (3,) or (N, 3)
|
||
|
Each `vectors[i]` represents a vector in 3D space. A single vector
|
||
|
can either be specified with shape `(3, )` or `(1, 3)`. The number
|
||
|
of rotations and number of vectors given must follow standard numpy
|
||
|
broadcasting rules: either one of them equals unity or they both
|
||
|
equal each other.
|
||
|
inverse : boolean, optional
|
||
|
If `inverse` is `True` then the inverse of the rotation(s) is
|
||
|
applied to the input vectors. Default is `False`.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
rotated_vectors : `numpy.ndarray`, shape (3,) or (N, 3)
|
||
|
Result of applying rotation on input vectors.
|
||
|
Shape depends on the following cases:
|
||
|
|
||
|
- If object contains a single rotation (as opposed to a stack
|
||
|
with a single rotation) and a single vector is specified with
|
||
|
shape `(3,)`, then `output` has shape `(3,)`.
|
||
|
- In all other cases, `output` has shape `(N, 3)`, where `N` is
|
||
|
either the number of rotations or vectors.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> from scipy.spatial.transform import Rotation as R
|
||
|
|
||
|
Single rotation applied on a single vector:
|
||
|
|
||
|
>>> vector = np.array([1, 0, 0])
|
||
|
>>> r = R.from_rotvec([0, 0, np.pi/2])
|
||
|
>>> r.as_dcm()
|
||
|
array([[ 2.22044605e-16, -1.00000000e+00, 0.00000000e+00],
|
||
|
[ 1.00000000e+00, 2.22044605e-16, 0.00000000e+00],
|
||
|
[ 0.00000000e+00, 0.00000000e+00, 1.00000000e+00]])
|
||
|
>>> r.apply(vector)
|
||
|
array([2.22044605e-16, 1.00000000e+00, 0.00000000e+00])
|
||
|
>>> r.apply(vector).shape
|
||
|
(3,)
|
||
|
|
||
|
Single rotation applied on multiple vectors:
|
||
|
|
||
|
>>> vectors = np.array([
|
||
|
... [1, 0, 0],
|
||
|
... [1, 2, 3]])
|
||
|
>>> r = R.from_rotvec([0, 0, np.pi/4])
|
||
|
>>> r.as_dcm()
|
||
|
array([[ 0.70710678, -0.70710678, 0. ],
|
||
|
[ 0.70710678, 0.70710678, 0. ],
|
||
|
[ 0. , 0. , 1. ]])
|
||
|
>>> r.apply(vectors)
|
||
|
array([[ 0.70710678, 0.70710678, 0. ],
|
||
|
[-0.70710678, 2.12132034, 3. ]])
|
||
|
>>> r.apply(vectors).shape
|
||
|
(2, 3)
|
||
|
|
||
|
Multiple rotations on a single vector:
|
||
|
|
||
|
>>> r = R.from_rotvec([[0, 0, np.pi/4], [np.pi/2, 0, 0]])
|
||
|
>>> vector = np.array([1,2,3])
|
||
|
>>> r.as_dcm()
|
||
|
array([[[ 7.07106781e-01, -7.07106781e-01, 0.00000000e+00],
|
||
|
[ 7.07106781e-01, 7.07106781e-01, 0.00000000e+00],
|
||
|
[ 0.00000000e+00, 0.00000000e+00, 1.00000000e+00]],
|
||
|
[[ 1.00000000e+00, 0.00000000e+00, 0.00000000e+00],
|
||
|
[ 0.00000000e+00, 2.22044605e-16, -1.00000000e+00],
|
||
|
[ 0.00000000e+00, 1.00000000e+00, 2.22044605e-16]]])
|
||
|
>>> r.apply(vector)
|
||
|
array([[-0.70710678, 2.12132034, 3. ],
|
||
|
[ 1. , -3. , 2. ]])
|
||
|
>>> r.apply(vector).shape
|
||
|
(2, 3)
|
||
|
|
||
|
Multiple rotations on multiple vectors. Each rotation is applied on the
|
||
|
corresponding vector:
|
||
|
|
||
|
>>> r = R.from_euler('zxy', [
|
||
|
... [0, 0, 90],
|
||
|
... [45, 30, 60]], degrees=True)
|
||
|
>>> vectors = [
|
||
|
... [1, 2, 3],
|
||
|
... [1, 0, -1]]
|
||
|
>>> r.apply(vectors)
|
||
|
array([[ 3. , 2. , -1. ],
|
||
|
[-0.09026039, 1.11237244, -0.86860844]])
|
||
|
>>> r.apply(vectors).shape
|
||
|
(2, 3)
|
||
|
|
||
|
It is also possible to apply the inverse rotation:
|
||
|
|
||
|
>>> r = R.from_euler('zxy', [
|
||
|
... [0, 0, 90],
|
||
|
... [45, 30, 60]], degrees=True)
|
||
|
>>> vectors = [
|
||
|
... [1, 2, 3],
|
||
|
... [1, 0, -1]]
|
||
|
>>> r.apply(vectors, inverse=True)
|
||
|
array([[-3. , 2. , 1. ],
|
||
|
[ 1.09533535, -0.8365163 , 0.3169873 ]])
|
||
|
|
||
|
"""
|
||
|
vectors = np.asarray(vectors)
|
||
|
if vectors.ndim > 2 or vectors.shape[-1] != 3:
|
||
|
raise ValueError("Expected input of shape (3,) or (P, 3), "
|
||
|
"got {}.".format(vectors.shape))
|
||
|
|
||
|
single_vector = False
|
||
|
if vectors.shape == (3,):
|
||
|
single_vector = True
|
||
|
vectors = vectors[None, :]
|
||
|
|
||
|
dcm = self.as_dcm()
|
||
|
if self._single:
|
||
|
dcm = dcm[None, :, :]
|
||
|
|
||
|
n_vectors = vectors.shape[0]
|
||
|
n_rotations = len(self)
|
||
|
|
||
|
if n_vectors != 1 and n_rotations != 1 and n_vectors != n_rotations:
|
||
|
raise ValueError("Expected equal numbers of rotations and vectors "
|
||
|
", or a single rotation, or a single vector, got "
|
||
|
"{} rotations and {} vectors.".format(
|
||
|
n_rotations, n_vectors))
|
||
|
|
||
|
if inverse:
|
||
|
result = np.einsum('ikj,ik->ij', dcm, vectors)
|
||
|
else:
|
||
|
result = np.einsum('ijk,ik->ij', dcm, vectors)
|
||
|
|
||
|
if self._single and single_vector:
|
||
|
return result[0]
|
||
|
else:
|
||
|
return result
|
||
|
|
||
|
def __mul__(self, other):
|
||
|
"""Compose this rotation with the other.
|
||
|
|
||
|
If `p` and `q` are two rotations, then the composition of 'q followed
|
||
|
by p' is equivalent to `p * q`. In terms of DCMs, the composition can
|
||
|
be expressed as `p.as_dcm().dot(q.as_dcm())`.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
other : `Rotation` instance
|
||
|
Object containing the rotaions to be composed with this one. Note
|
||
|
that rotation compositions are not commutative, so `p * q` is
|
||
|
different from `q * p`.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
composition : `Rotation` instance
|
||
|
This function supports composition of multiple rotations at a time.
|
||
|
The following cases are possible:
|
||
|
|
||
|
- Either `p` or `q` contains a single rotation. In this case
|
||
|
`output` contains the result of composing each rotation in the
|
||
|
other object with the single rotation.
|
||
|
- Both `p` and `q` contain `N` rotations. In this case each
|
||
|
rotation `p[i]` is composed with the corresponding rotation
|
||
|
`q[i]` and `output` contains `N` rotations.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> from scipy.spatial.transform import Rotation as R
|
||
|
|
||
|
Composition of two single rotations:
|
||
|
|
||
|
>>> p = R.from_quat([0, 0, 1, 1])
|
||
|
>>> q = R.from_quat([1, 0, 0, 1])
|
||
|
>>> p.as_dcm()
|
||
|
array([[ 0., -1., 0.],
|
||
|
[ 1., 0., 0.],
|
||
|
[ 0., 0., 1.]])
|
||
|
>>> q.as_dcm()
|
||
|
array([[ 1., 0., 0.],
|
||
|
[ 0., 0., -1.],
|
||
|
[ 0., 1., 0.]])
|
||
|
>>> r = p * q
|
||
|
>>> r.as_dcm()
|
||
|
array([[0., 0., 1.],
|
||
|
[1., 0., 0.],
|
||
|
[0., 1., 0.]])
|
||
|
|
||
|
Composition of two objects containing equal number of rotations:
|
||
|
|
||
|
>>> p = R.from_quat([[0, 0, 1, 1], [1, 0, 0, 1]])
|
||
|
>>> q = R.from_rotvec([[np.pi/4, 0, 0], [-np.pi/4, 0, np.pi/4]])
|
||
|
>>> p.as_quat()
|
||
|
array([[0. , 0. , 0.70710678, 0.70710678],
|
||
|
[0.70710678, 0. , 0. , 0.70710678]])
|
||
|
>>> q.as_quat()
|
||
|
array([[ 0.38268343, 0. , 0. , 0.92387953],
|
||
|
[-0.37282173, 0. , 0.37282173, 0.84971049]])
|
||
|
>>> r = p * q
|
||
|
>>> r.as_quat()
|
||
|
array([[ 0.27059805, 0.27059805, 0.65328148, 0.65328148],
|
||
|
[ 0.33721128, -0.26362477, 0.26362477, 0.86446082]])
|
||
|
|
||
|
"""
|
||
|
if not(len(self) == 1 or len(other) == 1 or len(self) == len(other)):
|
||
|
raise ValueError("Expected equal number of rotations in both "
|
||
|
"or a single rotation in either object, "
|
||
|
"got {} rotations in first and {} rotations in "
|
||
|
"second object.".format(
|
||
|
len(self), len(other)))
|
||
|
result = _compose_quat(self._quat, other._quat)
|
||
|
if self._single and other._single:
|
||
|
result = result[0]
|
||
|
return self.__class__(result, normalized=True, copy=False)
|
||
|
|
||
|
def inv(self):
|
||
|
"""Invert this rotation.
|
||
|
|
||
|
Composition of a rotation with its inverse results in an identity
|
||
|
transformation.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
inverse : `Rotation` instance
|
||
|
Object containing inverse of the rotations in the current instance.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> from scipy.spatial.transform import Rotation as R
|
||
|
|
||
|
Inverting a single rotation:
|
||
|
|
||
|
>>> p = R.from_euler('z', 45, degrees=True)
|
||
|
>>> q = p.inv()
|
||
|
>>> q.as_euler('zyx', degrees=True)
|
||
|
array([-45., 0., 0.])
|
||
|
|
||
|
Inverting multiple rotations:
|
||
|
|
||
|
>>> p = R.from_rotvec([[0, 0, np.pi/3], [-np.pi/4, 0, 0]])
|
||
|
>>> q = p.inv()
|
||
|
>>> q.as_rotvec()
|
||
|
array([[-0. , -0. , -1.04719755],
|
||
|
[ 0.78539816, -0. , -0. ]])
|
||
|
|
||
|
"""
|
||
|
quat = self._quat.copy()
|
||
|
quat[:, -1] *= -1
|
||
|
if self._single:
|
||
|
quat = quat[0]
|
||
|
return self.__class__(quat, normalized=True, copy=False)
|
||
|
|
||
|
def __getitem__(self, indexer):
|
||
|
"""Extract rotation(s) at given index(es) from object.
|
||
|
|
||
|
Create a new `Rotation` instance containing a subset of rotations
|
||
|
stored in this object.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
indexer : index, slice, or index array
|
||
|
Specifies which rotation(s) to extract. A single indexer must be
|
||
|
specified, i.e. as if indexing a 1 dimensional array or list.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
rotation : `Rotation` instance
|
||
|
Contains
|
||
|
- a single rotation, if `indexer` is a single index
|
||
|
- a stack of rotation(s), if `indexer` is a slice, or and index
|
||
|
array.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> from scipy.spatial.transform import Rotation as R
|
||
|
>>> r = R.from_quat([
|
||
|
... [1, 1, 0, 0],
|
||
|
... [0, 1, 0, 1],
|
||
|
... [1, 1, -1, 0]])
|
||
|
>>> r.as_quat()
|
||
|
array([[ 0.70710678, 0.70710678, 0. , 0. ],
|
||
|
[ 0. , 0.70710678, 0. , 0.70710678],
|
||
|
[ 0.57735027, 0.57735027, -0.57735027, 0. ]])
|
||
|
|
||
|
Indexing using a single index:
|
||
|
|
||
|
>>> p = r[0]
|
||
|
>>> p.as_quat()
|
||
|
array([0.70710678, 0.70710678, 0. , 0. ])
|
||
|
|
||
|
Array slicing:
|
||
|
|
||
|
>>> q = r[1:3]
|
||
|
>>> q.as_quat()
|
||
|
array([[ 0. , 0.70710678, 0. , 0.70710678],
|
||
|
[ 0.57735027, 0.57735027, -0.57735027, 0. ]])
|
||
|
|
||
|
"""
|
||
|
return self.__class__(self._quat[indexer], normalized=True)
|
||
|
|
||
|
@classmethod
|
||
|
def random(cls, num=None, random_state=None):
|
||
|
"""Generate uniformly distributed rotations.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
num : int or None, optional
|
||
|
Number of random rotations to generate. If None (default), then a
|
||
|
single rotation is generated.
|
||
|
random_state : int, RandomState instance or None, optional
|
||
|
Accepts an `int` as a seed for the random generator or a
|
||
|
RandomState object. If None (default), uses global `np.random`
|
||
|
random state.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
random_rotation : `Rotation` instance
|
||
|
Contains a single rotation if `num` is None. Otherwise contains a
|
||
|
stack of `num` rotations.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> from scipy.spatial.transform import Rotation as R
|
||
|
|
||
|
Sample a single rotation:
|
||
|
|
||
|
>>> R.random(random_state=1234).as_euler('zxy', degrees=True)
|
||
|
array([-110.5976185 , 55.32758512, 76.3289269 ])
|
||
|
|
||
|
Sample a stack of rotations:
|
||
|
|
||
|
>>> R.random(5, random_state=1234).as_euler('zxy', degrees=True)
|
||
|
array([[-110.5976185 , 55.32758512, 76.3289269 ],
|
||
|
[ -91.59132005, -14.3629884 , -93.91933182],
|
||
|
[ 25.23835501, 45.02035145, -121.67867086],
|
||
|
[ -51.51414184, -15.29022692, -172.46870023],
|
||
|
[ -81.63376847, -27.39521579, 2.60408416]])
|
||
|
|
||
|
"""
|
||
|
random_state = check_random_state(random_state)
|
||
|
|
||
|
if num is None:
|
||
|
sample = random_state.normal(size=4)
|
||
|
else:
|
||
|
sample = random_state.normal(size=(num, 4))
|
||
|
|
||
|
return Rotation.from_quat(sample)
|
||
|
|
||
|
@classmethod
|
||
|
def match_vectors(cls, a, b, weights=None, normalized=False):
|
||
|
"""Estimate a rotation to match two sets of vectors.
|
||
|
|
||
|
Find a rotation between frames A and B which best matches a set of unit
|
||
|
vectors `a` and `b` observed in these frames. The following loss
|
||
|
function is minimized to solve for the direction cosine matrix
|
||
|
:math:`C`:
|
||
|
|
||
|
.. math::
|
||
|
|
||
|
L(C) = \\frac{1}{2} \\sum_{i = 1}^{n} w_i \\lVert \\mathbf{a}_i -
|
||
|
C \\mathbf{b}_i \\rVert^2 ,
|
||
|
|
||
|
where :math:`w_i`'s are the `weights` corresponding to each vector.
|
||
|
|
||
|
The rotation is estimated using Markley's SVD method [1]_.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
a : array_like, shape (N, 3)
|
||
|
Vector components observed in initial frame A. Each row of `a`
|
||
|
denotes a vector.
|
||
|
b : array_like, shape (N, 3)
|
||
|
Vector components observed in another frame B. Each row of `b`
|
||
|
denotes a vector.
|
||
|
weights : array_like shape (N,), optional
|
||
|
Weights describing the relative importance of the vectors in
|
||
|
`a`. If None (default), then all values in `weights` are assumed to
|
||
|
be equal.
|
||
|
normalized : boolean, optional
|
||
|
If True, assume input vectors `a` and `b` to have unit norm. If
|
||
|
False, normalize `a` and `b` before estimating rotation. Default
|
||
|
is False.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
estimated_rotation : `Rotation` instance
|
||
|
Best estimate of the rotation that transforms `b` to `a`.
|
||
|
sensitivity_matrix : `numpy.ndarray`, shape (3, 3)
|
||
|
Scaled covariance of the attitude errors expressed as the small
|
||
|
rotation vector of frame A. Multiply with harmonic mean [3]_ of
|
||
|
variance in each observation to get true covariance matrix. The
|
||
|
error model is detailed in [2]_.
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] F. Landis Markley,
|
||
|
"Attitude determination using vector observations: a fast
|
||
|
optimal matrix algorithm", Journal of Astronautical Sciences,
|
||
|
Vol. 41, No.2, 1993, pp. 261-280.
|
||
|
.. [2] F. Landis Markley,
|
||
|
"Attitude determination using vector observations and the
|
||
|
Singular Value Decomposition", Journal of Astronautical
|
||
|
Sciences, Vol. 38, No.3, 1988, pp. 245-258.
|
||
|
.. [3] `Harmonic Mean <https://en.wikipedia.org/wiki/Harmonic_mean>`_
|
||
|
|
||
|
"""
|
||
|
a = np.asarray(a)
|
||
|
if a.ndim != 2 or a.shape[-1] != 3:
|
||
|
raise ValueError("Expected input `a` to have shape (N, 3), "
|
||
|
"got {}".format(a.shape))
|
||
|
b = np.asarray(b)
|
||
|
if b.ndim != 2 or b.shape[-1] != 3:
|
||
|
raise ValueError("Expected input `b` to have shape (N, 3), "
|
||
|
"got {}.".format(b.shape))
|
||
|
|
||
|
if a.shape != b.shape:
|
||
|
raise ValueError("Expected inputs `a` and `b` to have same shapes"
|
||
|
", got {} and {} respectively.".format(
|
||
|
a.shape, b.shape))
|
||
|
|
||
|
if b.shape[0] == 1:
|
||
|
raise ValueError("Rotation cannot be estimated using a single "
|
||
|
"vector.")
|
||
|
|
||
|
if weights is None:
|
||
|
weights = np.ones(b.shape[0])
|
||
|
else:
|
||
|
weights = np.asarray(weights)
|
||
|
if weights.ndim != 1:
|
||
|
raise ValueError("Expected `weights` to be 1 dimensional, got "
|
||
|
"shape {}.".format(weights.shape))
|
||
|
if weights.shape[0] != b.shape[0]:
|
||
|
raise ValueError("Expected `weights` to have number of values "
|
||
|
"equal to number of input vectors, got "
|
||
|
"{} values and {} vectors.".format(
|
||
|
weights.shape[0], b.shape[0]))
|
||
|
weights = weights / np.sum(weights)
|
||
|
|
||
|
if not normalized:
|
||
|
a = a / scipy.linalg.norm(a, axis=1)[:, None]
|
||
|
b = b / scipy.linalg.norm(b, axis=1)[:, None]
|
||
|
|
||
|
B = np.einsum('ji,jk->ik', weights[:, None] * a, b)
|
||
|
u, s, vh = np.linalg.svd(B)
|
||
|
C = np.dot(u, vh)
|
||
|
|
||
|
zeta = (s[0]+s[1]) * (s[1]+s[2]) * (s[2]+s[0])
|
||
|
if np.abs(zeta) <= 1e-16:
|
||
|
raise ValueError("Three component error vector has infinite "
|
||
|
"covariance. It is impossible to determine the "
|
||
|
"rotation uniquely.")
|
||
|
|
||
|
kappa = s[0]*s[1] + s[1]*s[2] + s[2]*s[0]
|
||
|
sensitivity = ((kappa * np.eye(3) + np.dot(B, B.T)) /
|
||
|
(zeta * a.shape[0]))
|
||
|
return cls.from_dcm(C), sensitivity
|
||
|
|
||
|
|
||
|
class Slerp(object):
|
||
|
"""Spherical Linear Interpolation of Rotations.
|
||
|
|
||
|
The interpolation between consecutive rotations is performed as a rotation
|
||
|
around a fixed axis with a constant angular velocity [1]_. This ensures
|
||
|
that the interpolated rotations follow the shortest path between initial
|
||
|
and final orientations.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
times : array_like, shape (N,)
|
||
|
Times of the known rotations. At least 2 times must be specified.
|
||
|
rotations : `Rotation` instance
|
||
|
Rotations to perform the interpolation between. Must contain N
|
||
|
rotations.
|
||
|
|
||
|
Methods
|
||
|
-------
|
||
|
__call__
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] `Quaternion Slerp
|
||
|
<https://en.wikipedia.org/wiki/Slerp#Quaternion_Slerp>`_
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> from scipy.spatial.transform import Rotation as R
|
||
|
>>> from scipy.spatial.transform import Slerp
|
||
|
|
||
|
Setup the fixed keyframe rotations and times:
|
||
|
|
||
|
>>> key_rots = R.random(5, random_state=2342345)
|
||
|
>>> key_times = [0, 1, 2, 3, 4]
|
||
|
|
||
|
Create the interpolator object:
|
||
|
|
||
|
>>> slerp = Slerp(key_times, key_rots)
|
||
|
|
||
|
Interpolate the rotations at the given times:
|
||
|
|
||
|
>>> times = [0, 0.5, 0.25, 1, 1.5, 2, 2.75, 3, 3.25, 3.60, 4]
|
||
|
>>> interp_rots = slerp(times)
|
||
|
|
||
|
The keyframe rotations expressed as Euler angles:
|
||
|
|
||
|
>>> key_rots.as_euler('xyz', degrees=True)
|
||
|
array([[ 14.31443779, -27.50095894, -3.7275787 ],
|
||
|
[ -1.79924227, -24.69421529, 164.57701743],
|
||
|
[146.15020772, 43.22849451, -31.34891088],
|
||
|
[ 46.39959442, 11.62126073, -45.99719267],
|
||
|
[-88.94647804, -49.64400082, -65.80546984]])
|
||
|
|
||
|
The interpolated rotations expressed as Euler angles. These agree with the
|
||
|
keyframe rotations at both endpoints of the range of keyframe times.
|
||
|
|
||
|
>>> interp_rots.as_euler('xyz', degrees=True)
|
||
|
array([[ 14.31443779, -27.50095894, -3.7275787 ],
|
||
|
[ 4.74588574, -32.44683966, 81.25139984],
|
||
|
[ 10.71094749, -31.56690154, 38.06896408],
|
||
|
[ -1.79924227, -24.69421529, 164.57701743],
|
||
|
[ 11.72796022, 51.64207311, -171.7374683 ],
|
||
|
[ 146.15020772, 43.22849451, -31.34891088],
|
||
|
[ 68.10921869, 20.67625074, -48.74886034],
|
||
|
[ 46.39959442, 11.62126073, -45.99719267],
|
||
|
[ 12.35552615, 4.21525086, -64.89288124],
|
||
|
[ -30.08117143, -19.90769513, -78.98121326],
|
||
|
[ -88.94647804, -49.64400082, -65.80546984]])
|
||
|
|
||
|
"""
|
||
|
def __init__(self, times, rotations):
|
||
|
if len(rotations) == 1:
|
||
|
raise ValueError("`rotations` must contain at least 2 rotations.")
|
||
|
|
||
|
times = np.asarray(times)
|
||
|
if times.ndim != 1:
|
||
|
raise ValueError("Expected times to be specified in a 1 "
|
||
|
"dimensional array, got {} "
|
||
|
"dimensions.".format(times.ndim))
|
||
|
|
||
|
if times.shape[0] != len(rotations):
|
||
|
raise ValueError("Expected number of rotations to be equal to "
|
||
|
"number of timestamps given, got {} rotations "
|
||
|
"and {} timestamps.".format(
|
||
|
len(rotations), times.shape[0]))
|
||
|
self.times = times
|
||
|
self.timedelta = np.diff(times)
|
||
|
|
||
|
if np.any(self.timedelta <= 0):
|
||
|
raise ValueError("Times must be in strictly increasing order.")
|
||
|
|
||
|
self.rotations = rotations[:-1]
|
||
|
self.rotvecs = (self.rotations.inv() * rotations[1:]).as_rotvec()
|
||
|
|
||
|
def __call__(self, times):
|
||
|
"""Interpolate rotations.
|
||
|
|
||
|
Compute the interpolated rotations at the given `times`.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
times : array_like, 1D
|
||
|
Times to compute the interpolations at.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
interpolated_rotation : `Rotation` instance
|
||
|
Object containing the rotations computed at given `times`.
|
||
|
|
||
|
"""
|
||
|
# Clearly differentiate from self.times property
|
||
|
compute_times = np.asarray(times)
|
||
|
if compute_times.ndim != 1:
|
||
|
raise ValueError("Expected times to be specified in a 1 "
|
||
|
"dimensional array, got {} "
|
||
|
"dimensions.".format(compute_times.ndim))
|
||
|
|
||
|
# side = 'left' (default) excludes t_min.
|
||
|
ind = np.searchsorted(self.times, compute_times) - 1
|
||
|
# Include t_min. Without this step, index for t_min equals -1
|
||
|
ind[compute_times == self.times[0]] = 0
|
||
|
if np.any(np.logical_or(ind < 0, ind > len(self.rotations) - 1)):
|
||
|
raise ValueError("Interpolation times must be within the range "
|
||
|
"[{}, {}], both inclusive.".format(
|
||
|
self.times[0], self.times[-1]))
|
||
|
|
||
|
alpha = (compute_times - self.times[ind]) / self.timedelta[ind]
|
||
|
|
||
|
return (self.rotations[ind] *
|
||
|
Rotation.from_rotvec(self.rotvecs[ind] * alpha[:, None]))
|