You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
366 lines
10 KiB
Python
366 lines
10 KiB
Python
6 years ago
|
from __future__ import division, print_function, absolute_import
|
||
|
|
||
|
import numpy as np
|
||
|
from numpy.dual import eig
|
||
|
from scipy.special import comb
|
||
|
from scipy import linspace, pi, exp
|
||
|
from scipy.signal import convolve
|
||
|
|
||
|
__all__ = ['daub', 'qmf', 'cascade', 'morlet', 'ricker', 'cwt']
|
||
|
|
||
|
|
||
|
def daub(p):
|
||
|
"""
|
||
|
The coefficients for the FIR low-pass filter producing Daubechies wavelets.
|
||
|
|
||
|
p>=1 gives the order of the zero at f=1/2.
|
||
|
There are 2p filter coefficients.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
p : int
|
||
|
Order of the zero at f=1/2, can have values from 1 to 34.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
daub : ndarray
|
||
|
Return
|
||
|
|
||
|
"""
|
||
|
sqrt = np.sqrt
|
||
|
if p < 1:
|
||
|
raise ValueError("p must be at least 1.")
|
||
|
if p == 1:
|
||
|
c = 1 / sqrt(2)
|
||
|
return np.array([c, c])
|
||
|
elif p == 2:
|
||
|
f = sqrt(2) / 8
|
||
|
c = sqrt(3)
|
||
|
return f * np.array([1 + c, 3 + c, 3 - c, 1 - c])
|
||
|
elif p == 3:
|
||
|
tmp = 12 * sqrt(10)
|
||
|
z1 = 1.5 + sqrt(15 + tmp) / 6 - 1j * (sqrt(15) + sqrt(tmp - 15)) / 6
|
||
|
z1c = np.conj(z1)
|
||
|
f = sqrt(2) / 8
|
||
|
d0 = np.real((1 - z1) * (1 - z1c))
|
||
|
a0 = np.real(z1 * z1c)
|
||
|
a1 = 2 * np.real(z1)
|
||
|
return f / d0 * np.array([a0, 3 * a0 - a1, 3 * a0 - 3 * a1 + 1,
|
||
|
a0 - 3 * a1 + 3, 3 - a1, 1])
|
||
|
elif p < 35:
|
||
|
# construct polynomial and factor it
|
||
|
if p < 35:
|
||
|
P = [comb(p - 1 + k, k, exact=1) for k in range(p)][::-1]
|
||
|
yj = np.roots(P)
|
||
|
else: # try different polynomial --- needs work
|
||
|
P = [comb(p - 1 + k, k, exact=1) / 4.0**k
|
||
|
for k in range(p)][::-1]
|
||
|
yj = np.roots(P) / 4
|
||
|
# for each root, compute two z roots, select the one with |z|>1
|
||
|
# Build up final polynomial
|
||
|
c = np.poly1d([1, 1])**p
|
||
|
q = np.poly1d([1])
|
||
|
for k in range(p - 1):
|
||
|
yval = yj[k]
|
||
|
part = 2 * sqrt(yval * (yval - 1))
|
||
|
const = 1 - 2 * yval
|
||
|
z1 = const + part
|
||
|
if (abs(z1)) < 1:
|
||
|
z1 = const - part
|
||
|
q = q * [1, -z1]
|
||
|
|
||
|
q = c * np.real(q)
|
||
|
# Normalize result
|
||
|
q = q / np.sum(q) * sqrt(2)
|
||
|
return q.c[::-1]
|
||
|
else:
|
||
|
raise ValueError("Polynomial factorization does not work "
|
||
|
"well for p too large.")
|
||
|
|
||
|
|
||
|
def qmf(hk):
|
||
|
"""
|
||
|
Return high-pass qmf filter from low-pass
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
hk : array_like
|
||
|
Coefficients of high-pass filter.
|
||
|
|
||
|
"""
|
||
|
N = len(hk) - 1
|
||
|
asgn = [{0: 1, 1: -1}[k % 2] for k in range(N + 1)]
|
||
|
return hk[::-1] * np.array(asgn)
|
||
|
|
||
|
|
||
|
def cascade(hk, J=7):
|
||
|
"""
|
||
|
Return (x, phi, psi) at dyadic points ``K/2**J`` from filter coefficients.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
hk : array_like
|
||
|
Coefficients of low-pass filter.
|
||
|
J : int, optional
|
||
|
Values will be computed at grid points ``K/2**J``. Default is 7.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
x : ndarray
|
||
|
The dyadic points ``K/2**J`` for ``K=0...N * (2**J)-1`` where
|
||
|
``len(hk) = len(gk) = N+1``.
|
||
|
phi : ndarray
|
||
|
The scaling function ``phi(x)`` at `x`:
|
||
|
``phi(x) = sum(hk * phi(2x-k))``, where k is from 0 to N.
|
||
|
psi : ndarray, optional
|
||
|
The wavelet function ``psi(x)`` at `x`:
|
||
|
``phi(x) = sum(gk * phi(2x-k))``, where k is from 0 to N.
|
||
|
`psi` is only returned if `gk` is not None.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
The algorithm uses the vector cascade algorithm described by Strang and
|
||
|
Nguyen in "Wavelets and Filter Banks". It builds a dictionary of values
|
||
|
and slices for quick reuse. Then inserts vectors into final vector at the
|
||
|
end.
|
||
|
|
||
|
"""
|
||
|
N = len(hk) - 1
|
||
|
|
||
|
if (J > 30 - np.log2(N + 1)):
|
||
|
raise ValueError("Too many levels.")
|
||
|
if (J < 1):
|
||
|
raise ValueError("Too few levels.")
|
||
|
|
||
|
# construct matrices needed
|
||
|
nn, kk = np.ogrid[:N, :N]
|
||
|
s2 = np.sqrt(2)
|
||
|
# append a zero so that take works
|
||
|
thk = np.r_[hk, 0]
|
||
|
gk = qmf(hk)
|
||
|
tgk = np.r_[gk, 0]
|
||
|
|
||
|
indx1 = np.clip(2 * nn - kk, -1, N + 1)
|
||
|
indx2 = np.clip(2 * nn - kk + 1, -1, N + 1)
|
||
|
m = np.zeros((2, 2, N, N), 'd')
|
||
|
m[0, 0] = np.take(thk, indx1, 0)
|
||
|
m[0, 1] = np.take(thk, indx2, 0)
|
||
|
m[1, 0] = np.take(tgk, indx1, 0)
|
||
|
m[1, 1] = np.take(tgk, indx2, 0)
|
||
|
m *= s2
|
||
|
|
||
|
# construct the grid of points
|
||
|
x = np.arange(0, N * (1 << J), dtype=float) / (1 << J)
|
||
|
phi = 0 * x
|
||
|
|
||
|
psi = 0 * x
|
||
|
|
||
|
# find phi0, and phi1
|
||
|
lam, v = eig(m[0, 0])
|
||
|
ind = np.argmin(np.absolute(lam - 1))
|
||
|
# a dictionary with a binary representation of the
|
||
|
# evaluation points x < 1 -- i.e. position is 0.xxxx
|
||
|
v = np.real(v[:, ind])
|
||
|
# need scaling function to integrate to 1 so find
|
||
|
# eigenvector normalized to sum(v,axis=0)=1
|
||
|
sm = np.sum(v)
|
||
|
if sm < 0: # need scaling function to integrate to 1
|
||
|
v = -v
|
||
|
sm = -sm
|
||
|
bitdic = {'0': v / sm}
|
||
|
bitdic['1'] = np.dot(m[0, 1], bitdic['0'])
|
||
|
step = 1 << J
|
||
|
phi[::step] = bitdic['0']
|
||
|
phi[(1 << (J - 1))::step] = bitdic['1']
|
||
|
psi[::step] = np.dot(m[1, 0], bitdic['0'])
|
||
|
psi[(1 << (J - 1))::step] = np.dot(m[1, 1], bitdic['0'])
|
||
|
# descend down the levels inserting more and more values
|
||
|
# into bitdic -- store the values in the correct location once we
|
||
|
# have computed them -- stored in the dictionary
|
||
|
# for quicker use later.
|
||
|
prevkeys = ['1']
|
||
|
for level in range(2, J + 1):
|
||
|
newkeys = ['%d%s' % (xx, yy) for xx in [0, 1] for yy in prevkeys]
|
||
|
fac = 1 << (J - level)
|
||
|
for key in newkeys:
|
||
|
# convert key to number
|
||
|
num = 0
|
||
|
for pos in range(level):
|
||
|
if key[pos] == '1':
|
||
|
num += (1 << (level - 1 - pos))
|
||
|
pastphi = bitdic[key[1:]]
|
||
|
ii = int(key[0])
|
||
|
temp = np.dot(m[0, ii], pastphi)
|
||
|
bitdic[key] = temp
|
||
|
phi[num * fac::step] = temp
|
||
|
psi[num * fac::step] = np.dot(m[1, ii], pastphi)
|
||
|
prevkeys = newkeys
|
||
|
|
||
|
return x, phi, psi
|
||
|
|
||
|
|
||
|
def morlet(M, w=5.0, s=1.0, complete=True):
|
||
|
"""
|
||
|
Complex Morlet wavelet.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
M : int
|
||
|
Length of the wavelet.
|
||
|
w : float, optional
|
||
|
Omega0. Default is 5
|
||
|
s : float, optional
|
||
|
Scaling factor, windowed from ``-s*2*pi`` to ``+s*2*pi``. Default is 1.
|
||
|
complete : bool, optional
|
||
|
Whether to use the complete or the standard version.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
morlet : (M,) ndarray
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
scipy.signal.gausspulse
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
The standard version::
|
||
|
|
||
|
pi**-0.25 * exp(1j*w*x) * exp(-0.5*(x**2))
|
||
|
|
||
|
This commonly used wavelet is often referred to simply as the
|
||
|
Morlet wavelet. Note that this simplified version can cause
|
||
|
admissibility problems at low values of `w`.
|
||
|
|
||
|
The complete version::
|
||
|
|
||
|
pi**-0.25 * (exp(1j*w*x) - exp(-0.5*(w**2))) * exp(-0.5*(x**2))
|
||
|
|
||
|
This version has a correction
|
||
|
term to improve admissibility. For `w` greater than 5, the
|
||
|
correction term is negligible.
|
||
|
|
||
|
Note that the energy of the return wavelet is not normalised
|
||
|
according to `s`.
|
||
|
|
||
|
The fundamental frequency of this wavelet in Hz is given
|
||
|
by ``f = 2*s*w*r / M`` where `r` is the sampling rate.
|
||
|
|
||
|
Note: This function was created before `cwt` and is not compatible
|
||
|
with it.
|
||
|
|
||
|
"""
|
||
|
x = linspace(-s * 2 * pi, s * 2 * pi, M)
|
||
|
output = exp(1j * w * x)
|
||
|
|
||
|
if complete:
|
||
|
output -= exp(-0.5 * (w**2))
|
||
|
|
||
|
output *= exp(-0.5 * (x**2)) * pi**(-0.25)
|
||
|
|
||
|
return output
|
||
|
|
||
|
|
||
|
def ricker(points, a):
|
||
|
"""
|
||
|
Return a Ricker wavelet, also known as the "Mexican hat wavelet".
|
||
|
|
||
|
It models the function:
|
||
|
|
||
|
``A (1 - x^2/a^2) exp(-x^2/2 a^2)``,
|
||
|
|
||
|
where ``A = 2/sqrt(3a)pi^1/4``.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
points : int
|
||
|
Number of points in `vector`.
|
||
|
Will be centered around 0.
|
||
|
a : scalar
|
||
|
Width parameter of the wavelet.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
vector : (N,) ndarray
|
||
|
Array of length `points` in shape of ricker curve.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> from scipy import signal
|
||
|
>>> import matplotlib.pyplot as plt
|
||
|
|
||
|
>>> points = 100
|
||
|
>>> a = 4.0
|
||
|
>>> vec2 = signal.ricker(points, a)
|
||
|
>>> print(len(vec2))
|
||
|
100
|
||
|
>>> plt.plot(vec2)
|
||
|
>>> plt.show()
|
||
|
|
||
|
"""
|
||
|
A = 2 / (np.sqrt(3 * a) * (np.pi**0.25))
|
||
|
wsq = a**2
|
||
|
vec = np.arange(0, points) - (points - 1.0) / 2
|
||
|
xsq = vec**2
|
||
|
mod = (1 - xsq / wsq)
|
||
|
gauss = np.exp(-xsq / (2 * wsq))
|
||
|
total = A * mod * gauss
|
||
|
return total
|
||
|
|
||
|
|
||
|
def cwt(data, wavelet, widths):
|
||
|
"""
|
||
|
Continuous wavelet transform.
|
||
|
|
||
|
Performs a continuous wavelet transform on `data`,
|
||
|
using the `wavelet` function. A CWT performs a convolution
|
||
|
with `data` using the `wavelet` function, which is characterized
|
||
|
by a width parameter and length parameter.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
data : (N,) ndarray
|
||
|
data on which to perform the transform.
|
||
|
wavelet : function
|
||
|
Wavelet function, which should take 2 arguments.
|
||
|
The first argument is the number of points that the returned vector
|
||
|
will have (len(wavelet(length,width)) == length).
|
||
|
The second is a width parameter, defining the size of the wavelet
|
||
|
(e.g. standard deviation of a gaussian). See `ricker`, which
|
||
|
satisfies these requirements.
|
||
|
widths : (M,) sequence
|
||
|
Widths to use for transform.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
cwt: (M, N) ndarray
|
||
|
Will have shape of (len(widths), len(data)).
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
::
|
||
|
|
||
|
length = min(10 * width[ii], len(data))
|
||
|
cwt[ii,:] = signal.convolve(data, wavelet(length,
|
||
|
width[ii]), mode='same')
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> from scipy import signal
|
||
|
>>> import matplotlib.pyplot as plt
|
||
|
>>> t = np.linspace(-1, 1, 200, endpoint=False)
|
||
|
>>> sig = np.cos(2 * np.pi * 7 * t) + signal.gausspulse(t - 0.4, fc=2)
|
||
|
>>> widths = np.arange(1, 31)
|
||
|
>>> cwtmatr = signal.cwt(sig, signal.ricker, widths)
|
||
|
>>> plt.imshow(cwtmatr, extent=[-1, 1, 31, 1], cmap='PRGn', aspect='auto',
|
||
|
... vmax=abs(cwtmatr).max(), vmin=-abs(cwtmatr).max())
|
||
|
>>> plt.show()
|
||
|
|
||
|
"""
|
||
|
output = np.zeros([len(widths), len(data)])
|
||
|
for ind, width in enumerate(widths):
|
||
|
wavelet_data = wavelet(min(10 * width, len(data)), width)
|
||
|
output[ind, :] = convolve(data, wavelet_data,
|
||
|
mode='same')
|
||
|
return output
|