You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
167 lines
5.9 KiB
Python
167 lines
5.9 KiB
Python
6 years ago
|
"""
|
||
|
========================
|
||
|
Random Number Generation
|
||
|
========================
|
||
|
|
||
|
==================== =========================================================
|
||
|
Utility functions
|
||
|
==============================================================================
|
||
|
random_sample Uniformly distributed floats over ``[0, 1)``.
|
||
|
random Alias for `random_sample`.
|
||
|
bytes Uniformly distributed random bytes.
|
||
|
random_integers Uniformly distributed integers in a given range.
|
||
|
permutation Randomly permute a sequence / generate a random sequence.
|
||
|
shuffle Randomly permute a sequence in place.
|
||
|
seed Seed the random number generator.
|
||
|
choice Random sample from 1-D array.
|
||
|
|
||
|
==================== =========================================================
|
||
|
|
||
|
==================== =========================================================
|
||
|
Compatibility functions
|
||
|
==============================================================================
|
||
|
rand Uniformly distributed values.
|
||
|
randn Normally distributed values.
|
||
|
ranf Uniformly distributed floating point numbers.
|
||
|
randint Uniformly distributed integers in a given range.
|
||
|
==================== =========================================================
|
||
|
|
||
|
==================== =========================================================
|
||
|
Univariate distributions
|
||
|
==============================================================================
|
||
|
beta Beta distribution over ``[0, 1]``.
|
||
|
binomial Binomial distribution.
|
||
|
chisquare :math:`\\chi^2` distribution.
|
||
|
exponential Exponential distribution.
|
||
|
f F (Fisher-Snedecor) distribution.
|
||
|
gamma Gamma distribution.
|
||
|
geometric Geometric distribution.
|
||
|
gumbel Gumbel distribution.
|
||
|
hypergeometric Hypergeometric distribution.
|
||
|
laplace Laplace distribution.
|
||
|
logistic Logistic distribution.
|
||
|
lognormal Log-normal distribution.
|
||
|
logseries Logarithmic series distribution.
|
||
|
negative_binomial Negative binomial distribution.
|
||
|
noncentral_chisquare Non-central chi-square distribution.
|
||
|
noncentral_f Non-central F distribution.
|
||
|
normal Normal / Gaussian distribution.
|
||
|
pareto Pareto distribution.
|
||
|
poisson Poisson distribution.
|
||
|
power Power distribution.
|
||
|
rayleigh Rayleigh distribution.
|
||
|
triangular Triangular distribution.
|
||
|
uniform Uniform distribution.
|
||
|
vonmises Von Mises circular distribution.
|
||
|
wald Wald (inverse Gaussian) distribution.
|
||
|
weibull Weibull distribution.
|
||
|
zipf Zipf's distribution over ranked data.
|
||
|
==================== =========================================================
|
||
|
|
||
|
==================== =========================================================
|
||
|
Multivariate distributions
|
||
|
==============================================================================
|
||
|
dirichlet Multivariate generalization of Beta distribution.
|
||
|
multinomial Multivariate generalization of the binomial distribution.
|
||
|
multivariate_normal Multivariate generalization of the normal distribution.
|
||
|
==================== =========================================================
|
||
|
|
||
|
==================== =========================================================
|
||
|
Standard distributions
|
||
|
==============================================================================
|
||
|
standard_cauchy Standard Cauchy-Lorentz distribution.
|
||
|
standard_exponential Standard exponential distribution.
|
||
|
standard_gamma Standard Gamma distribution.
|
||
|
standard_normal Standard normal distribution.
|
||
|
standard_t Standard Student's t-distribution.
|
||
|
==================== =========================================================
|
||
|
|
||
|
==================== =========================================================
|
||
|
Internal functions
|
||
|
==============================================================================
|
||
|
get_state Get tuple representing internal state of generator.
|
||
|
set_state Set state of generator.
|
||
|
==================== =========================================================
|
||
|
|
||
|
"""
|
||
|
from __future__ import division, absolute_import, print_function
|
||
|
|
||
|
import warnings
|
||
|
|
||
|
__all__ = [
|
||
|
'beta',
|
||
|
'binomial',
|
||
|
'bytes',
|
||
|
'chisquare',
|
||
|
'choice',
|
||
|
'dirichlet',
|
||
|
'exponential',
|
||
|
'f',
|
||
|
'gamma',
|
||
|
'geometric',
|
||
|
'get_state',
|
||
|
'gumbel',
|
||
|
'hypergeometric',
|
||
|
'laplace',
|
||
|
'logistic',
|
||
|
'lognormal',
|
||
|
'logseries',
|
||
|
'multinomial',
|
||
|
'multivariate_normal',
|
||
|
'negative_binomial',
|
||
|
'noncentral_chisquare',
|
||
|
'noncentral_f',
|
||
|
'normal',
|
||
|
'pareto',
|
||
|
'permutation',
|
||
|
'poisson',
|
||
|
'power',
|
||
|
'rand',
|
||
|
'randint',
|
||
|
'randn',
|
||
|
'random_integers',
|
||
|
'random_sample',
|
||
|
'rayleigh',
|
||
|
'seed',
|
||
|
'set_state',
|
||
|
'shuffle',
|
||
|
'standard_cauchy',
|
||
|
'standard_exponential',
|
||
|
'standard_gamma',
|
||
|
'standard_normal',
|
||
|
'standard_t',
|
||
|
'triangular',
|
||
|
'uniform',
|
||
|
'vonmises',
|
||
|
'wald',
|
||
|
'weibull',
|
||
|
'zipf'
|
||
|
]
|
||
|
|
||
|
with warnings.catch_warnings():
|
||
|
warnings.filterwarnings("ignore", message="numpy.ndarray size changed")
|
||
|
from .mtrand import *
|
||
|
|
||
|
# Some aliases:
|
||
|
ranf = random = sample = random_sample
|
||
|
__all__.extend(['ranf', 'random', 'sample'])
|
||
|
|
||
|
def __RandomState_ctor():
|
||
|
"""Return a RandomState instance.
|
||
|
|
||
|
This function exists solely to assist (un)pickling.
|
||
|
|
||
|
Note that the state of the RandomState returned here is irrelevant, as this function's
|
||
|
entire purpose is to return a newly allocated RandomState whose state pickle can set.
|
||
|
Consequently the RandomState returned by this function is a freshly allocated copy
|
||
|
with a seed=0.
|
||
|
|
||
|
See https://github.com/numpy/numpy/issues/4763 for a detailed discussion
|
||
|
|
||
|
"""
|
||
|
return RandomState(seed=0)
|
||
|
|
||
|
from numpy._pytesttester import PytestTester
|
||
|
test = PytestTester(__name__)
|
||
|
del PytestTester
|