You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1246 lines
44 KiB
Python
1246 lines
44 KiB
Python
6 years ago
|
#
|
||
|
# Created by: Pearu Peterson, September 2002
|
||
|
#
|
||
|
|
||
|
from __future__ import division, print_function, absolute_import
|
||
|
|
||
|
import sys
|
||
|
import subprocess
|
||
|
import time
|
||
|
from functools import reduce
|
||
|
|
||
|
from numpy.testing import (assert_equal, assert_array_almost_equal, assert_,
|
||
|
assert_allclose, assert_almost_equal,
|
||
|
assert_array_equal)
|
||
|
import pytest
|
||
|
from pytest import raises as assert_raises
|
||
|
|
||
|
import numpy as np
|
||
|
from numpy import (eye, ones, zeros, zeros_like, triu, tril, tril_indices,
|
||
|
triu_indices)
|
||
|
|
||
|
from numpy.random import rand, seed
|
||
|
|
||
|
from scipy.linalg import _flapack as flapack
|
||
|
from scipy.linalg import inv, svd, cholesky, solve
|
||
|
from scipy.linalg.lapack import _compute_lwork
|
||
|
|
||
|
try:
|
||
|
from scipy.linalg import _clapack as clapack
|
||
|
except ImportError:
|
||
|
clapack = None
|
||
|
from scipy.linalg.lapack import get_lapack_funcs
|
||
|
from scipy.linalg.blas import get_blas_funcs
|
||
|
|
||
|
REAL_DTYPES = [np.float32, np.float64]
|
||
|
COMPLEX_DTYPES = [np.complex64, np.complex128]
|
||
|
DTYPES = REAL_DTYPES + COMPLEX_DTYPES
|
||
|
|
||
|
|
||
|
class TestFlapackSimple(object):
|
||
|
|
||
|
def test_gebal(self):
|
||
|
a = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
|
||
|
a1 = [[1, 0, 0, 3e-4],
|
||
|
[4, 0, 0, 2e-3],
|
||
|
[7, 1, 0, 0],
|
||
|
[0, 1, 0, 0]]
|
||
|
for p in 'sdzc':
|
||
|
f = getattr(flapack, p+'gebal', None)
|
||
|
if f is None:
|
||
|
continue
|
||
|
ba, lo, hi, pivscale, info = f(a)
|
||
|
assert_(not info, repr(info))
|
||
|
assert_array_almost_equal(ba, a)
|
||
|
assert_equal((lo, hi), (0, len(a[0])-1))
|
||
|
assert_array_almost_equal(pivscale, np.ones(len(a)))
|
||
|
|
||
|
ba, lo, hi, pivscale, info = f(a1, permute=1, scale=1)
|
||
|
assert_(not info, repr(info))
|
||
|
# print(a1)
|
||
|
# print(ba, lo, hi, pivscale)
|
||
|
|
||
|
def test_gehrd(self):
|
||
|
a = [[-149, -50, -154],
|
||
|
[537, 180, 546],
|
||
|
[-27, -9, -25]]
|
||
|
for p in 'd':
|
||
|
f = getattr(flapack, p+'gehrd', None)
|
||
|
if f is None:
|
||
|
continue
|
||
|
ht, tau, info = f(a)
|
||
|
assert_(not info, repr(info))
|
||
|
|
||
|
def test_trsyl(self):
|
||
|
a = np.array([[1, 2], [0, 4]])
|
||
|
b = np.array([[5, 6], [0, 8]])
|
||
|
c = np.array([[9, 10], [11, 12]])
|
||
|
trans = 'T'
|
||
|
|
||
|
# Test single and double implementations, including most
|
||
|
# of the options
|
||
|
for dtype in 'fdFD':
|
||
|
a1, b1, c1 = a.astype(dtype), b.astype(dtype), c.astype(dtype)
|
||
|
trsyl, = get_lapack_funcs(('trsyl',), (a1,))
|
||
|
if dtype.isupper(): # is complex dtype
|
||
|
a1[0] += 1j
|
||
|
trans = 'C'
|
||
|
|
||
|
x, scale, info = trsyl(a1, b1, c1)
|
||
|
assert_array_almost_equal(np.dot(a1, x) + np.dot(x, b1),
|
||
|
scale * c1)
|
||
|
|
||
|
x, scale, info = trsyl(a1, b1, c1, trana=trans, tranb=trans)
|
||
|
assert_array_almost_equal(
|
||
|
np.dot(a1.conjugate().T, x) + np.dot(x, b1.conjugate().T),
|
||
|
scale * c1, decimal=4)
|
||
|
|
||
|
x, scale, info = trsyl(a1, b1, c1, isgn=-1)
|
||
|
assert_array_almost_equal(np.dot(a1, x) - np.dot(x, b1),
|
||
|
scale * c1, decimal=4)
|
||
|
|
||
|
def test_lange(self):
|
||
|
a = np.array([
|
||
|
[-149, -50, -154],
|
||
|
[537, 180, 546],
|
||
|
[-27, -9, -25]])
|
||
|
|
||
|
for dtype in 'fdFD':
|
||
|
for norm in 'Mm1OoIiFfEe':
|
||
|
a1 = a.astype(dtype)
|
||
|
if dtype.isupper():
|
||
|
# is complex dtype
|
||
|
a1[0, 0] += 1j
|
||
|
|
||
|
lange, = get_lapack_funcs(('lange',), (a1,))
|
||
|
value = lange(norm, a1)
|
||
|
|
||
|
if norm in 'FfEe':
|
||
|
if dtype in 'Ff':
|
||
|
decimal = 3
|
||
|
else:
|
||
|
decimal = 7
|
||
|
ref = np.sqrt(np.sum(np.square(np.abs(a1))))
|
||
|
assert_almost_equal(value, ref, decimal)
|
||
|
else:
|
||
|
if norm in 'Mm':
|
||
|
ref = np.max(np.abs(a1))
|
||
|
elif norm in '1Oo':
|
||
|
ref = np.max(np.sum(np.abs(a1), axis=0))
|
||
|
elif norm in 'Ii':
|
||
|
ref = np.max(np.sum(np.abs(a1), axis=1))
|
||
|
|
||
|
assert_equal(value, ref)
|
||
|
|
||
|
|
||
|
class TestLapack(object):
|
||
|
|
||
|
def test_flapack(self):
|
||
|
if hasattr(flapack, 'empty_module'):
|
||
|
# flapack module is empty
|
||
|
pass
|
||
|
|
||
|
def test_clapack(self):
|
||
|
if hasattr(clapack, 'empty_module'):
|
||
|
# clapack module is empty
|
||
|
pass
|
||
|
|
||
|
|
||
|
class TestLeastSquaresSolvers(object):
|
||
|
|
||
|
def test_gels(self):
|
||
|
seed(1234)
|
||
|
# Test fat/tall matrix argument handling - gh-issue #8329
|
||
|
for ind, dtype in enumerate(DTYPES):
|
||
|
m = 10
|
||
|
n = 20
|
||
|
nrhs = 1
|
||
|
a1 = rand(m, n).astype(dtype)
|
||
|
b1 = rand(n).astype(dtype)
|
||
|
gls, glslw = get_lapack_funcs(('gels', 'gels_lwork'), dtype=dtype)
|
||
|
|
||
|
# Request of sizes
|
||
|
lwork = _compute_lwork(glslw, m, n, nrhs)
|
||
|
_, _, info = gls(a1, b1, lwork=lwork)
|
||
|
assert_(info >= 0)
|
||
|
_, _, info = gls(a1, b1, trans='TTCC'[ind], lwork=lwork)
|
||
|
assert_(info >= 0)
|
||
|
|
||
|
for dtype in REAL_DTYPES:
|
||
|
a1 = np.array([[1.0, 2.0],
|
||
|
[4.0, 5.0],
|
||
|
[7.0, 8.0]], dtype=dtype)
|
||
|
b1 = np.array([16.0, 17.0, 20.0], dtype=dtype)
|
||
|
gels, gels_lwork, geqrf = get_lapack_funcs(
|
||
|
('gels', 'gels_lwork', 'geqrf'), (a1, b1))
|
||
|
|
||
|
m, n = a1.shape
|
||
|
if len(b1.shape) == 2:
|
||
|
nrhs = b1.shape[1]
|
||
|
else:
|
||
|
nrhs = 1
|
||
|
|
||
|
# Request of sizes
|
||
|
lwork = _compute_lwork(gels_lwork, m, n, nrhs)
|
||
|
|
||
|
lqr, x, info = gels(a1, b1, lwork=lwork)
|
||
|
assert_allclose(x[:-1], np.array([-14.333333333333323,
|
||
|
14.999999999999991],
|
||
|
dtype=dtype),
|
||
|
rtol=25*np.finfo(dtype).eps)
|
||
|
lqr_truth, _, _, _ = geqrf(a1)
|
||
|
assert_array_equal(lqr, lqr_truth)
|
||
|
|
||
|
for dtype in COMPLEX_DTYPES:
|
||
|
a1 = np.array([[1.0+4.0j, 2.0],
|
||
|
[4.0+0.5j, 5.0-3.0j],
|
||
|
[7.0-2.0j, 8.0+0.7j]], dtype=dtype)
|
||
|
b1 = np.array([16.0, 17.0+2.0j, 20.0-4.0j], dtype=dtype)
|
||
|
gels, gels_lwork, geqrf = get_lapack_funcs(
|
||
|
('gels', 'gels_lwork', 'geqrf'), (a1, b1))
|
||
|
|
||
|
m, n = a1.shape
|
||
|
if len(b1.shape) == 2:
|
||
|
nrhs = b1.shape[1]
|
||
|
else:
|
||
|
nrhs = 1
|
||
|
|
||
|
# Request of sizes
|
||
|
lwork = _compute_lwork(gels_lwork, m, n, nrhs)
|
||
|
|
||
|
lqr, x, info = gels(a1, b1, lwork=lwork)
|
||
|
assert_allclose(x[:-1],
|
||
|
np.array([1.161753632288328-1.901075709391912j,
|
||
|
1.735882340522193+1.521240901196909j],
|
||
|
dtype=dtype), rtol=25*np.finfo(dtype).eps)
|
||
|
lqr_truth, _, _, _ = geqrf(a1)
|
||
|
assert_array_equal(lqr, lqr_truth)
|
||
|
|
||
|
def test_gelsd(self):
|
||
|
for dtype in REAL_DTYPES:
|
||
|
a1 = np.array([[1.0, 2.0],
|
||
|
[4.0, 5.0],
|
||
|
[7.0, 8.0]], dtype=dtype)
|
||
|
b1 = np.array([16.0, 17.0, 20.0], dtype=dtype)
|
||
|
gelsd, gelsd_lwork = get_lapack_funcs(('gelsd', 'gelsd_lwork'),
|
||
|
(a1, b1))
|
||
|
|
||
|
m, n = a1.shape
|
||
|
if len(b1.shape) == 2:
|
||
|
nrhs = b1.shape[1]
|
||
|
else:
|
||
|
nrhs = 1
|
||
|
|
||
|
# Request of sizes
|
||
|
work, iwork, info = gelsd_lwork(m, n, nrhs, -1)
|
||
|
lwork = int(np.real(work))
|
||
|
iwork_size = iwork
|
||
|
|
||
|
x, s, rank, info = gelsd(a1, b1, lwork, iwork_size,
|
||
|
-1, False, False)
|
||
|
assert_allclose(x[:-1], np.array([-14.333333333333323,
|
||
|
14.999999999999991], dtype=dtype),
|
||
|
rtol=25*np.finfo(dtype).eps)
|
||
|
assert_allclose(s, np.array([12.596017180511966,
|
||
|
0.583396253199685], dtype=dtype),
|
||
|
rtol=25*np.finfo(dtype).eps)
|
||
|
|
||
|
for dtype in COMPLEX_DTYPES:
|
||
|
a1 = np.array([[1.0+4.0j, 2.0],
|
||
|
[4.0+0.5j, 5.0-3.0j],
|
||
|
[7.0-2.0j, 8.0+0.7j]], dtype=dtype)
|
||
|
b1 = np.array([16.0, 17.0+2.0j, 20.0-4.0j], dtype=dtype)
|
||
|
gelsd, gelsd_lwork = get_lapack_funcs(('gelsd', 'gelsd_lwork'),
|
||
|
(a1, b1))
|
||
|
|
||
|
m, n = a1.shape
|
||
|
if len(b1.shape) == 2:
|
||
|
nrhs = b1.shape[1]
|
||
|
else:
|
||
|
nrhs = 1
|
||
|
|
||
|
# Request of sizes
|
||
|
work, rwork, iwork, info = gelsd_lwork(m, n, nrhs, -1)
|
||
|
lwork = int(np.real(work))
|
||
|
rwork_size = int(rwork)
|
||
|
iwork_size = iwork
|
||
|
|
||
|
x, s, rank, info = gelsd(a1, b1, lwork, rwork_size, iwork_size,
|
||
|
-1, False, False)
|
||
|
assert_allclose(x[:-1],
|
||
|
np.array([1.161753632288328-1.901075709391912j,
|
||
|
1.735882340522193+1.521240901196909j],
|
||
|
dtype=dtype), rtol=25*np.finfo(dtype).eps)
|
||
|
assert_allclose(s,
|
||
|
np.array([13.035514762572043, 4.337666985231382],
|
||
|
dtype=dtype), rtol=25*np.finfo(dtype).eps)
|
||
|
|
||
|
def test_gelss(self):
|
||
|
|
||
|
for dtype in REAL_DTYPES:
|
||
|
a1 = np.array([[1.0, 2.0],
|
||
|
[4.0, 5.0],
|
||
|
[7.0, 8.0]], dtype=dtype)
|
||
|
b1 = np.array([16.0, 17.0, 20.0], dtype=dtype)
|
||
|
gelss, gelss_lwork = get_lapack_funcs(('gelss', 'gelss_lwork'),
|
||
|
(a1, b1))
|
||
|
|
||
|
m, n = a1.shape
|
||
|
if len(b1.shape) == 2:
|
||
|
nrhs = b1.shape[1]
|
||
|
else:
|
||
|
nrhs = 1
|
||
|
|
||
|
# Request of sizes
|
||
|
work, info = gelss_lwork(m, n, nrhs, -1)
|
||
|
lwork = int(np.real(work))
|
||
|
|
||
|
v, x, s, rank, work, info = gelss(a1, b1, -1, lwork, False, False)
|
||
|
assert_allclose(x[:-1], np.array([-14.333333333333323,
|
||
|
14.999999999999991], dtype=dtype),
|
||
|
rtol=25*np.finfo(dtype).eps)
|
||
|
assert_allclose(s, np.array([12.596017180511966,
|
||
|
0.583396253199685], dtype=dtype),
|
||
|
rtol=25*np.finfo(dtype).eps)
|
||
|
|
||
|
for dtype in COMPLEX_DTYPES:
|
||
|
a1 = np.array([[1.0+4.0j, 2.0],
|
||
|
[4.0+0.5j, 5.0-3.0j],
|
||
|
[7.0-2.0j, 8.0+0.7j]], dtype=dtype)
|
||
|
b1 = np.array([16.0, 17.0+2.0j, 20.0-4.0j], dtype=dtype)
|
||
|
gelss, gelss_lwork = get_lapack_funcs(('gelss', 'gelss_lwork'),
|
||
|
(a1, b1))
|
||
|
|
||
|
m, n = a1.shape
|
||
|
if len(b1.shape) == 2:
|
||
|
nrhs = b1.shape[1]
|
||
|
else:
|
||
|
nrhs = 1
|
||
|
|
||
|
# Request of sizes
|
||
|
work, info = gelss_lwork(m, n, nrhs, -1)
|
||
|
lwork = int(np.real(work))
|
||
|
|
||
|
v, x, s, rank, work, info = gelss(a1, b1, -1, lwork, False, False)
|
||
|
assert_allclose(x[:-1],
|
||
|
np.array([1.161753632288328-1.901075709391912j,
|
||
|
1.735882340522193+1.521240901196909j],
|
||
|
dtype=dtype),
|
||
|
rtol=25*np.finfo(dtype).eps)
|
||
|
assert_allclose(s, np.array([13.035514762572043,
|
||
|
4.337666985231382], dtype=dtype),
|
||
|
rtol=25*np.finfo(dtype).eps)
|
||
|
|
||
|
def test_gelsy(self):
|
||
|
|
||
|
for dtype in REAL_DTYPES:
|
||
|
a1 = np.array([[1.0, 2.0],
|
||
|
[4.0, 5.0],
|
||
|
[7.0, 8.0]], dtype=dtype)
|
||
|
b1 = np.array([16.0, 17.0, 20.0], dtype=dtype)
|
||
|
gelsy, gelsy_lwork = get_lapack_funcs(('gelsy', 'gelss_lwork'),
|
||
|
(a1, b1))
|
||
|
|
||
|
m, n = a1.shape
|
||
|
if len(b1.shape) == 2:
|
||
|
nrhs = b1.shape[1]
|
||
|
else:
|
||
|
nrhs = 1
|
||
|
|
||
|
# Request of sizes
|
||
|
work, info = gelsy_lwork(m, n, nrhs, 10*np.finfo(dtype).eps)
|
||
|
lwork = int(np.real(work))
|
||
|
|
||
|
jptv = np.zeros((a1.shape[1], 1), dtype=np.int32)
|
||
|
v, x, j, rank, info = gelsy(a1, b1, jptv, np.finfo(dtype).eps,
|
||
|
lwork, False, False)
|
||
|
assert_allclose(x[:-1], np.array([-14.333333333333323,
|
||
|
14.999999999999991], dtype=dtype),
|
||
|
rtol=25*np.finfo(dtype).eps)
|
||
|
|
||
|
for dtype in COMPLEX_DTYPES:
|
||
|
a1 = np.array([[1.0+4.0j, 2.0],
|
||
|
[4.0+0.5j, 5.0-3.0j],
|
||
|
[7.0-2.0j, 8.0+0.7j]], dtype=dtype)
|
||
|
b1 = np.array([16.0, 17.0+2.0j, 20.0-4.0j], dtype=dtype)
|
||
|
gelsy, gelsy_lwork = get_lapack_funcs(('gelsy', 'gelss_lwork'),
|
||
|
(a1, b1))
|
||
|
|
||
|
m, n = a1.shape
|
||
|
if len(b1.shape) == 2:
|
||
|
nrhs = b1.shape[1]
|
||
|
else:
|
||
|
nrhs = 1
|
||
|
|
||
|
# Request of sizes
|
||
|
work, info = gelsy_lwork(m, n, nrhs, 10*np.finfo(dtype).eps)
|
||
|
lwork = int(np.real(work))
|
||
|
|
||
|
jptv = np.zeros((a1.shape[1], 1), dtype=np.int32)
|
||
|
v, x, j, rank, info = gelsy(a1, b1, jptv, np.finfo(dtype).eps,
|
||
|
lwork, False, False)
|
||
|
assert_allclose(x[:-1],
|
||
|
np.array([1.161753632288328-1.901075709391912j,
|
||
|
1.735882340522193+1.521240901196909j],
|
||
|
dtype=dtype),
|
||
|
rtol=25*np.finfo(dtype).eps)
|
||
|
|
||
|
|
||
|
class TestRegression(object):
|
||
|
|
||
|
def test_ticket_1645(self):
|
||
|
# Check that RQ routines have correct lwork
|
||
|
for dtype in DTYPES:
|
||
|
a = np.zeros((300, 2), dtype=dtype)
|
||
|
|
||
|
gerqf, = get_lapack_funcs(['gerqf'], [a])
|
||
|
assert_raises(Exception, gerqf, a, lwork=2)
|
||
|
rq, tau, work, info = gerqf(a)
|
||
|
|
||
|
if dtype in REAL_DTYPES:
|
||
|
orgrq, = get_lapack_funcs(['orgrq'], [a])
|
||
|
assert_raises(Exception, orgrq, rq[-2:], tau, lwork=1)
|
||
|
orgrq(rq[-2:], tau, lwork=2)
|
||
|
elif dtype in COMPLEX_DTYPES:
|
||
|
ungrq, = get_lapack_funcs(['ungrq'], [a])
|
||
|
assert_raises(Exception, ungrq, rq[-2:], tau, lwork=1)
|
||
|
ungrq(rq[-2:], tau, lwork=2)
|
||
|
|
||
|
|
||
|
class TestDpotr(object):
|
||
|
def test_gh_2691(self):
|
||
|
# 'lower' argument of dportf/dpotri
|
||
|
for lower in [True, False]:
|
||
|
for clean in [True, False]:
|
||
|
np.random.seed(42)
|
||
|
x = np.random.normal(size=(3, 3))
|
||
|
a = x.dot(x.T)
|
||
|
|
||
|
dpotrf, dpotri = get_lapack_funcs(("potrf", "potri"), (a, ))
|
||
|
|
||
|
c, info = dpotrf(a, lower, clean=clean)
|
||
|
dpt = dpotri(c, lower)[0]
|
||
|
|
||
|
if lower:
|
||
|
assert_allclose(np.tril(dpt), np.tril(inv(a)))
|
||
|
else:
|
||
|
assert_allclose(np.triu(dpt), np.triu(inv(a)))
|
||
|
|
||
|
|
||
|
class TestDlasd4(object):
|
||
|
def test_sing_val_update(self):
|
||
|
|
||
|
sigmas = np.array([4., 3., 2., 0])
|
||
|
m_vec = np.array([3.12, 5.7, -4.8, -2.2])
|
||
|
|
||
|
M = np.hstack((np.vstack((np.diag(sigmas[0:-1]),
|
||
|
np.zeros((1, len(m_vec) - 1)))), m_vec[:, np.newaxis]))
|
||
|
SM = svd(M, full_matrices=False, compute_uv=False, overwrite_a=False,
|
||
|
check_finite=False)
|
||
|
|
||
|
it_len = len(sigmas)
|
||
|
sgm = np.concatenate((sigmas[::-1], (sigmas[0] +
|
||
|
it_len*np.sqrt(np.sum(np.power(m_vec, 2))),)))
|
||
|
mvc = np.concatenate((m_vec[::-1], (0,)))
|
||
|
|
||
|
lasd4 = get_lapack_funcs('lasd4', (sigmas,))
|
||
|
|
||
|
roots = []
|
||
|
for i in range(0, it_len):
|
||
|
res = lasd4(i, sgm, mvc)
|
||
|
roots.append(res[1])
|
||
|
|
||
|
assert_((res[3] <= 0), "LAPACK root finding dlasd4 failed to find \
|
||
|
the singular value %i" % i)
|
||
|
roots = np.array(roots)[::-1]
|
||
|
|
||
|
assert_((not np.any(np.isnan(roots)), "There are NaN roots"))
|
||
|
assert_allclose(SM, roots, atol=100*np.finfo(np.float64).eps,
|
||
|
rtol=100*np.finfo(np.float64).eps)
|
||
|
|
||
|
|
||
|
def test_lartg():
|
||
|
for dtype in 'fdFD':
|
||
|
lartg = get_lapack_funcs('lartg', dtype=dtype)
|
||
|
|
||
|
f = np.array(3, dtype)
|
||
|
g = np.array(4, dtype)
|
||
|
|
||
|
if np.iscomplexobj(g):
|
||
|
g *= 1j
|
||
|
|
||
|
cs, sn, r = lartg(f, g)
|
||
|
|
||
|
assert_allclose(cs, 3.0/5.0)
|
||
|
assert_allclose(r, 5.0)
|
||
|
|
||
|
if np.iscomplexobj(g):
|
||
|
assert_allclose(sn, -4.0j/5.0)
|
||
|
assert_(type(r) == complex)
|
||
|
assert_(type(cs) == float)
|
||
|
else:
|
||
|
assert_allclose(sn, 4.0/5.0)
|
||
|
|
||
|
|
||
|
def test_rot():
|
||
|
# srot, drot from blas and crot and zrot from lapack.
|
||
|
|
||
|
for dtype in 'fdFD':
|
||
|
c = 0.6
|
||
|
s = 0.8
|
||
|
|
||
|
u = np.ones(4, dtype) * 3
|
||
|
v = np.ones(4, dtype) * 4
|
||
|
atol = 10**-(np.finfo(dtype).precision-1)
|
||
|
|
||
|
if dtype in 'fd':
|
||
|
rot = get_blas_funcs('rot', dtype=dtype)
|
||
|
f = 4
|
||
|
else:
|
||
|
rot = get_lapack_funcs('rot', dtype=dtype)
|
||
|
s *= -1j
|
||
|
v *= 1j
|
||
|
f = 4j
|
||
|
|
||
|
assert_allclose(rot(u, v, c, s), [[5, 5, 5, 5],
|
||
|
[0, 0, 0, 0]], atol=atol)
|
||
|
assert_allclose(rot(u, v, c, s, n=2), [[5, 5, 3, 3],
|
||
|
[0, 0, f, f]], atol=atol)
|
||
|
assert_allclose(rot(u, v, c, s, offx=2, offy=2),
|
||
|
[[3, 3, 5, 5], [f, f, 0, 0]], atol=atol)
|
||
|
assert_allclose(rot(u, v, c, s, incx=2, offy=2, n=2),
|
||
|
[[5, 3, 5, 3], [f, f, 0, 0]], atol=atol)
|
||
|
assert_allclose(rot(u, v, c, s, offx=2, incy=2, n=2),
|
||
|
[[3, 3, 5, 5], [0, f, 0, f]], atol=atol)
|
||
|
assert_allclose(rot(u, v, c, s, offx=2, incx=2, offy=2, incy=2, n=1),
|
||
|
[[3, 3, 5, 3], [f, f, 0, f]], atol=atol)
|
||
|
assert_allclose(rot(u, v, c, s, incx=-2, incy=-2, n=2),
|
||
|
[[5, 3, 5, 3], [0, f, 0, f]], atol=atol)
|
||
|
|
||
|
a, b = rot(u, v, c, s, overwrite_x=1, overwrite_y=1)
|
||
|
assert_(a is u)
|
||
|
assert_(b is v)
|
||
|
assert_allclose(a, [5, 5, 5, 5], atol=atol)
|
||
|
assert_allclose(b, [0, 0, 0, 0], atol=atol)
|
||
|
|
||
|
|
||
|
def test_larfg_larf():
|
||
|
np.random.seed(1234)
|
||
|
a0 = np.random.random((4, 4))
|
||
|
a0 = a0.T.dot(a0)
|
||
|
|
||
|
a0j = np.random.random((4, 4)) + 1j*np.random.random((4, 4))
|
||
|
a0j = a0j.T.conj().dot(a0j)
|
||
|
|
||
|
# our test here will be to do one step of reducing a hermetian matrix to
|
||
|
# tridiagonal form using householder transforms.
|
||
|
|
||
|
for dtype in 'fdFD':
|
||
|
larfg, larf = get_lapack_funcs(['larfg', 'larf'], dtype=dtype)
|
||
|
|
||
|
if dtype in 'FD':
|
||
|
a = a0j.copy()
|
||
|
else:
|
||
|
a = a0.copy()
|
||
|
|
||
|
# generate a householder transform to clear a[2:,0]
|
||
|
alpha, x, tau = larfg(a.shape[0]-1, a[1, 0], a[2:, 0])
|
||
|
|
||
|
# create expected output
|
||
|
expected = np.zeros_like(a[:, 0])
|
||
|
expected[0] = a[0, 0]
|
||
|
expected[1] = alpha
|
||
|
|
||
|
# assemble householder vector
|
||
|
v = np.zeros_like(a[1:, 0])
|
||
|
v[0] = 1.0
|
||
|
v[1:] = x
|
||
|
|
||
|
# apply transform from the left
|
||
|
a[1:, :] = larf(v, tau.conjugate(), a[1:, :], np.zeros(a.shape[1]))
|
||
|
|
||
|
# apply transform from the right
|
||
|
a[:, 1:] = larf(v, tau, a[:, 1:], np.zeros(a.shape[0]), side='R')
|
||
|
|
||
|
assert_allclose(a[:, 0], expected, atol=1e-5)
|
||
|
assert_allclose(a[0, :], expected, atol=1e-5)
|
||
|
|
||
|
|
||
|
@pytest.mark.xslow
|
||
|
def test_sgesdd_lwork_bug_workaround():
|
||
|
# Test that SGESDD lwork is sufficiently large for LAPACK.
|
||
|
#
|
||
|
# This checks that workaround around an apparent LAPACK bug
|
||
|
# actually works. cf. gh-5401
|
||
|
#
|
||
|
# xslow: requires 1GB+ of memory
|
||
|
|
||
|
p = subprocess.Popen([sys.executable, '-c',
|
||
|
'import numpy as np; '
|
||
|
'from scipy.linalg import svd; '
|
||
|
'a = np.zeros([9537, 9537], dtype=np.float32); '
|
||
|
'svd(a)'],
|
||
|
stdout=subprocess.PIPE,
|
||
|
stderr=subprocess.STDOUT)
|
||
|
|
||
|
# Check if it an error occurred within 5 sec; the computation can
|
||
|
# take substantially longer, and we will not wait for it to finish
|
||
|
for j in range(50):
|
||
|
time.sleep(0.1)
|
||
|
if p.poll() is not None:
|
||
|
returncode = p.returncode
|
||
|
break
|
||
|
else:
|
||
|
# Didn't exit in time -- probably entered computation. The
|
||
|
# error is raised before entering computation, so things are
|
||
|
# probably OK.
|
||
|
returncode = 0
|
||
|
p.terminate()
|
||
|
|
||
|
assert_equal(returncode, 0,
|
||
|
"Code apparently failed: " + p.stdout.read())
|
||
|
|
||
|
|
||
|
class TestSytrd(object):
|
||
|
def test_sytrd(self):
|
||
|
for dtype in REAL_DTYPES:
|
||
|
# Assert that a 0x0 matrix raises an error
|
||
|
A = np.zeros((0, 0), dtype=dtype)
|
||
|
sytrd, sytrd_lwork = \
|
||
|
get_lapack_funcs(('sytrd', 'sytrd_lwork'), (A,))
|
||
|
assert_raises(ValueError, sytrd, A)
|
||
|
|
||
|
# Tests for n = 1 currently fail with
|
||
|
# ```
|
||
|
# ValueError: failed to create intent(cache|hide)|optional array--
|
||
|
# must have defined dimensions but got (0,)
|
||
|
# ```
|
||
|
# This is a NumPy issue
|
||
|
# <https://github.com/numpy/numpy/issues/9617>.
|
||
|
# TODO once the issue has been resolved, test for n=1
|
||
|
|
||
|
# some upper triangular array
|
||
|
n = 3
|
||
|
A = np.zeros((n, n), dtype=dtype)
|
||
|
A[np.triu_indices_from(A)] = \
|
||
|
np.arange(1, n*(n+1)//2+1, dtype=dtype)
|
||
|
|
||
|
# query lwork
|
||
|
lwork, info = sytrd_lwork(n)
|
||
|
assert_equal(info, 0)
|
||
|
|
||
|
# check lower=1 behavior (shouldn't do much since the matrix is
|
||
|
# upper triangular)
|
||
|
data, d, e, tau, info = sytrd(A, lower=1, lwork=lwork)
|
||
|
assert_equal(info, 0)
|
||
|
|
||
|
assert_allclose(data, A, atol=5*np.finfo(dtype).eps, rtol=1.0)
|
||
|
assert_allclose(d, np.diag(A))
|
||
|
assert_allclose(e, 0.0)
|
||
|
assert_allclose(tau, 0.0)
|
||
|
|
||
|
# and now for the proper test (lower=0 is the default)
|
||
|
data, d, e, tau, info = sytrd(A, lwork=lwork)
|
||
|
assert_equal(info, 0)
|
||
|
|
||
|
# assert Q^T*A*Q = tridiag(e, d, e)
|
||
|
|
||
|
# build tridiagonal matrix
|
||
|
T = np.zeros_like(A, dtype=dtype)
|
||
|
k = np.arange(A.shape[0])
|
||
|
T[k, k] = d
|
||
|
k2 = np.arange(A.shape[0]-1)
|
||
|
T[k2+1, k2] = e
|
||
|
T[k2, k2+1] = e
|
||
|
|
||
|
# build Q
|
||
|
Q = np.eye(n, n, dtype=dtype)
|
||
|
for i in range(n-1):
|
||
|
v = np.zeros(n, dtype=dtype)
|
||
|
v[:i] = data[:i, i+1]
|
||
|
v[i] = 1.0
|
||
|
H = np.eye(n, n, dtype=dtype) - tau[i] * np.outer(v, v)
|
||
|
Q = np.dot(H, Q)
|
||
|
|
||
|
# Make matrix fully symmetric
|
||
|
i_lower = np.tril_indices(n, -1)
|
||
|
A[i_lower] = A.T[i_lower]
|
||
|
|
||
|
QTAQ = np.dot(Q.T, np.dot(A, Q))
|
||
|
|
||
|
# disable rtol here since some values in QTAQ and T are very close
|
||
|
# to 0.
|
||
|
assert_allclose(QTAQ, T, atol=5*np.finfo(dtype).eps, rtol=1.0)
|
||
|
|
||
|
|
||
|
class TestHetrd(object):
|
||
|
def test_hetrd(self):
|
||
|
for real_dtype, complex_dtype in zip(REAL_DTYPES, COMPLEX_DTYPES):
|
||
|
# Assert that a 0x0 matrix raises an error
|
||
|
A = np.zeros((0, 0), dtype=complex_dtype)
|
||
|
hetrd, hetrd_lwork = \
|
||
|
get_lapack_funcs(('hetrd', 'hetrd_lwork'), (A,))
|
||
|
assert_raises(ValueError, hetrd, A)
|
||
|
|
||
|
# Tests for n = 1 currently fail with
|
||
|
# ```
|
||
|
# ValueError: failed to create intent(cache|hide)|optional array--
|
||
|
# must have defined dimensions but got (0,)
|
||
|
# ```
|
||
|
# This is a NumPy issue
|
||
|
# <https://github.com/numpy/numpy/issues/9617>.
|
||
|
# TODO once the issue has been resolved, test for n=1
|
||
|
|
||
|
# some upper triangular array
|
||
|
n = 3
|
||
|
A = np.zeros((n, n), dtype=complex_dtype)
|
||
|
A[np.triu_indices_from(A)] = (
|
||
|
np.arange(1, n*(n+1)//2+1, dtype=real_dtype)
|
||
|
+ 1j * np.arange(1, n*(n+1)//2+1, dtype=real_dtype)
|
||
|
)
|
||
|
np.fill_diagonal(A, np.real(np.diag(A)))
|
||
|
|
||
|
# query lwork
|
||
|
lwork, info = hetrd_lwork(n)
|
||
|
assert_equal(info, 0)
|
||
|
|
||
|
# check lower=1 behavior (shouldn't do much since the matrix is
|
||
|
# upper triangular)
|
||
|
data, d, e, tau, info = hetrd(A, lower=1, lwork=lwork)
|
||
|
assert_equal(info, 0)
|
||
|
|
||
|
assert_allclose(data, A, atol=5*np.finfo(real_dtype).eps, rtol=1.0)
|
||
|
|
||
|
assert_allclose(d, np.real(np.diag(A)))
|
||
|
assert_allclose(e, 0.0)
|
||
|
assert_allclose(tau, 0.0)
|
||
|
|
||
|
# and now for the proper test (lower=0 is the default)
|
||
|
data, d, e, tau, info = hetrd(A, lwork=lwork)
|
||
|
assert_equal(info, 0)
|
||
|
|
||
|
# assert Q^T*A*Q = tridiag(e, d, e)
|
||
|
|
||
|
# build tridiagonal matrix
|
||
|
T = np.zeros_like(A, dtype=real_dtype)
|
||
|
k = np.arange(A.shape[0], dtype=int)
|
||
|
T[k, k] = d
|
||
|
k2 = np.arange(A.shape[0]-1, dtype=int)
|
||
|
T[k2+1, k2] = e
|
||
|
T[k2, k2+1] = e
|
||
|
|
||
|
# build Q
|
||
|
Q = np.eye(n, n, dtype=complex_dtype)
|
||
|
for i in range(n-1):
|
||
|
v = np.zeros(n, dtype=complex_dtype)
|
||
|
v[:i] = data[:i, i+1]
|
||
|
v[i] = 1.0
|
||
|
H = np.eye(n, n, dtype=complex_dtype) \
|
||
|
- tau[i] * np.outer(v, np.conj(v))
|
||
|
Q = np.dot(H, Q)
|
||
|
|
||
|
# Make matrix fully Hermetian
|
||
|
i_lower = np.tril_indices(n, -1)
|
||
|
A[i_lower] = np.conj(A.T[i_lower])
|
||
|
|
||
|
QHAQ = np.dot(np.conj(Q.T), np.dot(A, Q))
|
||
|
|
||
|
# disable rtol here since some values in QTAQ and T are very close
|
||
|
# to 0.
|
||
|
assert_allclose(
|
||
|
QHAQ, T, atol=10*np.finfo(real_dtype).eps, rtol=1.0
|
||
|
)
|
||
|
|
||
|
|
||
|
def test_gglse():
|
||
|
# Example data taken from NAG manual
|
||
|
for ind, dtype in enumerate(DTYPES):
|
||
|
# DTYPES = <s,d,c,z> gglse
|
||
|
func, func_lwork = get_lapack_funcs(('gglse', 'gglse_lwork'),
|
||
|
dtype=dtype)
|
||
|
lwork = _compute_lwork(func_lwork, m=6, n=4, p=2)
|
||
|
# For <s,d>gglse
|
||
|
if ind < 2:
|
||
|
a = np.array([[-0.57, -1.28, -0.39, 0.25],
|
||
|
[-1.93, 1.08, -0.31, -2.14],
|
||
|
[2.30, 0.24, 0.40, -0.35],
|
||
|
[-1.93, 0.64, -0.66, 0.08],
|
||
|
[0.15, 0.30, 0.15, -2.13],
|
||
|
[-0.02, 1.03, -1.43, 0.50]], dtype=dtype)
|
||
|
c = np.array([-1.50, -2.14, 1.23, -0.54, -1.68, 0.82], dtype=dtype)
|
||
|
d = np.array([0., 0.], dtype=dtype)
|
||
|
# For <s,d>gglse
|
||
|
else:
|
||
|
a = np.array([[0.96-0.81j, -0.03+0.96j, -0.91+2.06j, -0.05+0.41j],
|
||
|
[-0.98+1.98j, -1.20+0.19j, -0.66+0.42j, -0.81+0.56j],
|
||
|
[0.62-0.46j, 1.01+0.02j, 0.63-0.17j, -1.11+0.60j],
|
||
|
[0.37+0.38j, 0.19-0.54j, -0.98-0.36j, 0.22-0.20j],
|
||
|
[0.83+0.51j, 0.20+0.01j, -0.17-0.46j, 1.47+1.59j],
|
||
|
[1.08-0.28j, 0.20-0.12j, -0.07+1.23j, 0.26+0.26j]])
|
||
|
c = np.array([[-2.54+0.09j],
|
||
|
[1.65-2.26j],
|
||
|
[-2.11-3.96j],
|
||
|
[1.82+3.30j],
|
||
|
[-6.41+3.77j],
|
||
|
[2.07+0.66j]])
|
||
|
d = np.zeros(2, dtype=dtype)
|
||
|
|
||
|
b = np.array([[1., 0., -1., 0.], [0., 1., 0., -1.]], dtype=dtype)
|
||
|
|
||
|
_, _, _, result, _ = func(a, b, c, d, lwork=lwork)
|
||
|
if ind < 2:
|
||
|
expected = np.array([0.48904455,
|
||
|
0.99754786,
|
||
|
0.48904455,
|
||
|
0.99754786])
|
||
|
else:
|
||
|
expected = np.array([1.08742917-1.96205783j,
|
||
|
-0.74093902+3.72973919j,
|
||
|
1.08742917-1.96205759j,
|
||
|
-0.74093896+3.72973895j])
|
||
|
assert_array_almost_equal(result, expected, decimal=4)
|
||
|
|
||
|
|
||
|
def test_sycon_hecon():
|
||
|
seed(1234)
|
||
|
for ind, dtype in enumerate(DTYPES+COMPLEX_DTYPES):
|
||
|
# DTYPES + COMPLEX DTYPES = <s,d,c,z> sycon + <c,z>hecon
|
||
|
n = 10
|
||
|
# For <s,d,c,z>sycon
|
||
|
if ind < 4:
|
||
|
func_lwork = get_lapack_funcs('sytrf_lwork', dtype=dtype)
|
||
|
funcon, functrf = get_lapack_funcs(('sycon', 'sytrf'), dtype=dtype)
|
||
|
A = (rand(n, n)).astype(dtype)
|
||
|
# For <c,z>hecon
|
||
|
else:
|
||
|
func_lwork = get_lapack_funcs('hetrf_lwork', dtype=dtype)
|
||
|
funcon, functrf = get_lapack_funcs(('hecon', 'hetrf'), dtype=dtype)
|
||
|
A = (rand(n, n) + rand(n, n)*1j).astype(dtype)
|
||
|
|
||
|
# Since sycon only refers to upper/lower part, conj() is safe here.
|
||
|
A = (A + A.conj().T)/2 + 2*np.eye(n, dtype=dtype)
|
||
|
|
||
|
anorm = np.linalg.norm(A, 1)
|
||
|
lwork = _compute_lwork(func_lwork, n)
|
||
|
ldu, ipiv, _ = functrf(A, lwork=lwork, lower=1)
|
||
|
rcond, _ = funcon(a=ldu, ipiv=ipiv, anorm=anorm, lower=1)
|
||
|
# The error is at most 1-fold
|
||
|
assert_(abs(1/rcond - np.linalg.cond(A, p=1))*rcond < 1)
|
||
|
|
||
|
|
||
|
def test_sygst():
|
||
|
seed(1234)
|
||
|
for ind, dtype in enumerate(REAL_DTYPES):
|
||
|
# DTYPES = <s,d> sygst
|
||
|
n = 10
|
||
|
|
||
|
potrf, sygst, syevd, sygvd = get_lapack_funcs(('potrf', 'sygst',
|
||
|
'syevd', 'sygvd'),
|
||
|
dtype=dtype)
|
||
|
|
||
|
A = rand(n, n).astype(dtype)
|
||
|
A = (A + A.T)/2
|
||
|
# B must be positive definite
|
||
|
B = rand(n, n).astype(dtype)
|
||
|
B = (B + B.T)/2 + 2 * np.eye(n, dtype=dtype)
|
||
|
|
||
|
# Perform eig (sygvd)
|
||
|
_, eig_gvd, info = sygvd(A, B)
|
||
|
assert_(info == 0)
|
||
|
|
||
|
# Convert to std problem potrf
|
||
|
b, info = potrf(B)
|
||
|
assert_(info == 0)
|
||
|
a, info = sygst(A, b)
|
||
|
assert_(info == 0)
|
||
|
|
||
|
eig, _, info = syevd(a)
|
||
|
assert_(info == 0)
|
||
|
assert_allclose(eig, eig_gvd, rtol=1e-4)
|
||
|
|
||
|
|
||
|
def test_hegst():
|
||
|
seed(1234)
|
||
|
for ind, dtype in enumerate(COMPLEX_DTYPES):
|
||
|
# DTYPES = <c,z> hegst
|
||
|
n = 10
|
||
|
|
||
|
potrf, hegst, heevd, hegvd = get_lapack_funcs(('potrf', 'hegst',
|
||
|
'heevd', 'hegvd'),
|
||
|
dtype=dtype)
|
||
|
|
||
|
A = rand(n, n).astype(dtype) + 1j * rand(n, n).astype(dtype)
|
||
|
A = (A + A.conj().T)/2
|
||
|
# B must be positive definite
|
||
|
B = rand(n, n).astype(dtype) + 1j * rand(n, n).astype(dtype)
|
||
|
B = (B + B.conj().T)/2 + 2 * np.eye(n, dtype=dtype)
|
||
|
|
||
|
# Perform eig (hegvd)
|
||
|
_, eig_gvd, info = hegvd(A, B)
|
||
|
assert_(info == 0)
|
||
|
|
||
|
# Convert to std problem potrf
|
||
|
b, info = potrf(B)
|
||
|
assert_(info == 0)
|
||
|
a, info = hegst(A, b)
|
||
|
assert_(info == 0)
|
||
|
|
||
|
eig, _, info = heevd(a)
|
||
|
assert_(info == 0)
|
||
|
assert_allclose(eig, eig_gvd, rtol=1e-4)
|
||
|
|
||
|
|
||
|
def test_tzrzf():
|
||
|
"""
|
||
|
This test performs an RZ decomposition in which an m x n upper trapezoidal
|
||
|
array M (m <= n) is factorized as M = [R 0] * Z where R is upper triangular
|
||
|
and Z is unitary.
|
||
|
"""
|
||
|
seed(1234)
|
||
|
m, n = 10, 15
|
||
|
for ind, dtype in enumerate(DTYPES):
|
||
|
tzrzf, tzrzf_lw = get_lapack_funcs(('tzrzf', 'tzrzf_lwork'),
|
||
|
dtype=dtype)
|
||
|
lwork = _compute_lwork(tzrzf_lw, m, n)
|
||
|
|
||
|
if ind < 2:
|
||
|
A = triu(rand(m, n).astype(dtype))
|
||
|
else:
|
||
|
A = triu((rand(m, n) + rand(m, n)*1j).astype(dtype))
|
||
|
|
||
|
# assert wrong shape arg, f2py returns generic error
|
||
|
assert_raises(Exception, tzrzf, A.T)
|
||
|
rz, tau, info = tzrzf(A, lwork=lwork)
|
||
|
# Check success
|
||
|
assert_(info == 0)
|
||
|
|
||
|
# Get Z manually for comparison
|
||
|
R = np.hstack((rz[:, :m], np.zeros((m, n-m), dtype=dtype)))
|
||
|
V = np.hstack((np.eye(m, dtype=dtype), rz[:, m:]))
|
||
|
Id = np.eye(n, dtype=dtype)
|
||
|
ref = [Id-tau[x]*V[[x], :].T.dot(V[[x], :].conj()) for x in range(m)]
|
||
|
Z = reduce(np.dot, ref)
|
||
|
assert_allclose(R.dot(Z) - A, zeros_like(A, dtype=dtype),
|
||
|
atol=10*np.spacing(dtype(1.0).real), rtol=0.)
|
||
|
|
||
|
|
||
|
def test_tfsm():
|
||
|
"""
|
||
|
Test for solving a linear system with the coefficient matrix is a
|
||
|
triangular array stored in Full Packed (RFP) format.
|
||
|
"""
|
||
|
seed(1234)
|
||
|
for ind, dtype in enumerate(DTYPES):
|
||
|
n = 20
|
||
|
if ind > 1:
|
||
|
A = triu(rand(n, n) + rand(n, n)*1j + eye(n)).astype(dtype)
|
||
|
trans = 'C'
|
||
|
else:
|
||
|
A = triu(rand(n, n) + eye(n)).astype(dtype)
|
||
|
trans = 'T'
|
||
|
|
||
|
trttf, tfttr, tfsm = get_lapack_funcs(('trttf', 'tfttr', 'tfsm'),
|
||
|
dtype=dtype)
|
||
|
|
||
|
Afp, _ = trttf(A)
|
||
|
B = rand(n, 2).astype(dtype)
|
||
|
soln = tfsm(-1, Afp, B)
|
||
|
assert_array_almost_equal(soln, solve(-A, B),
|
||
|
decimal=4 if ind % 2 == 0 else 6)
|
||
|
|
||
|
soln = tfsm(-1, Afp, B, trans=trans)
|
||
|
assert_array_almost_equal(soln, solve(-A.conj().T, B),
|
||
|
decimal=4 if ind % 2 == 0 else 6)
|
||
|
|
||
|
# Make A, unit diagonal
|
||
|
A[np.arange(n), np.arange(n)] = dtype(1.)
|
||
|
soln = tfsm(-1, Afp, B, trans=trans, diag='U')
|
||
|
assert_array_almost_equal(soln, solve(-A.conj().T, B),
|
||
|
decimal=4 if ind % 2 == 0 else 6)
|
||
|
|
||
|
# Change side
|
||
|
B2 = rand(3, n).astype(dtype)
|
||
|
soln = tfsm(-1, Afp, B2, trans=trans, diag='U', side='R')
|
||
|
assert_array_almost_equal(soln, solve(-A, B2.T).conj().T,
|
||
|
decimal=4 if ind % 2 == 0 else 6)
|
||
|
|
||
|
|
||
|
def test_ormrz_unmrz():
|
||
|
"""
|
||
|
This test performs a matrix multiplication with an arbitrary m x n matric C
|
||
|
and a unitary matrix Q without explicitly forming the array. The array data
|
||
|
is encoded in the rectangular part of A which is obtained from ?TZRZF. Q
|
||
|
size is inferred by m, n, side keywords.
|
||
|
"""
|
||
|
seed(1234)
|
||
|
qm, qn, cn = 10, 15, 15
|
||
|
for ind, dtype in enumerate(DTYPES):
|
||
|
tzrzf, tzrzf_lw = get_lapack_funcs(('tzrzf', 'tzrzf_lwork'),
|
||
|
dtype=dtype)
|
||
|
lwork_rz = _compute_lwork(tzrzf_lw, qm, qn)
|
||
|
|
||
|
if ind < 2:
|
||
|
A = triu(rand(qm, qn).astype(dtype))
|
||
|
C = rand(cn, cn).astype(dtype)
|
||
|
orun_mrz, orun_mrz_lw = get_lapack_funcs(('ormrz', 'ormrz_lwork'),
|
||
|
dtype=dtype)
|
||
|
else:
|
||
|
A = triu((rand(qm, qn) + rand(qm, qn)*1j).astype(dtype))
|
||
|
C = (rand(cn, cn) + rand(cn, cn)*1j).astype(dtype)
|
||
|
orun_mrz, orun_mrz_lw = get_lapack_funcs(('unmrz', 'unmrz_lwork'),
|
||
|
dtype=dtype)
|
||
|
|
||
|
lwork_mrz = _compute_lwork(orun_mrz_lw, cn, cn)
|
||
|
rz, tau, info = tzrzf(A, lwork=lwork_rz)
|
||
|
|
||
|
# Get Q manually for comparison
|
||
|
V = np.hstack((np.eye(qm, dtype=dtype), rz[:, qm:]))
|
||
|
Id = np.eye(qn, dtype=dtype)
|
||
|
ref = [Id-tau[x]*V[[x], :].T.dot(V[[x], :].conj()) for x in range(qm)]
|
||
|
Q = reduce(np.dot, ref)
|
||
|
|
||
|
# Now that we have Q, we can test whether lapack results agree with
|
||
|
# each case of CQ, CQ^H, QC, and QC^H
|
||
|
trans = 'T' if ind < 2 else 'C'
|
||
|
tol = 10*np.spacing(dtype(1.0).real)
|
||
|
|
||
|
cq, info = orun_mrz(rz, tau, C, lwork=lwork_mrz)
|
||
|
assert_(info == 0)
|
||
|
assert_allclose(cq - Q.dot(C), zeros_like(C), atol=tol, rtol=0.)
|
||
|
|
||
|
cq, info = orun_mrz(rz, tau, C, trans=trans, lwork=lwork_mrz)
|
||
|
assert_(info == 0)
|
||
|
assert_allclose(cq - Q.conj().T.dot(C), zeros_like(C), atol=tol,
|
||
|
rtol=0.)
|
||
|
|
||
|
cq, info = orun_mrz(rz, tau, C, side='R', lwork=lwork_mrz)
|
||
|
assert_(info == 0)
|
||
|
assert_allclose(cq - C.dot(Q), zeros_like(C), atol=tol, rtol=0.)
|
||
|
|
||
|
cq, info = orun_mrz(rz, tau, C, side='R', trans=trans, lwork=lwork_mrz)
|
||
|
assert_(info == 0)
|
||
|
assert_allclose(cq - C.dot(Q.conj().T), zeros_like(C), atol=tol,
|
||
|
rtol=0.)
|
||
|
|
||
|
|
||
|
def test_tfttr_trttf():
|
||
|
"""
|
||
|
Test conversion routines between the Rectengular Full Packed (RFP) format
|
||
|
and Standard Triangular Array (TR)
|
||
|
"""
|
||
|
seed(1234)
|
||
|
for ind, dtype in enumerate(DTYPES):
|
||
|
n = 20
|
||
|
if ind > 1:
|
||
|
A_full = (rand(n, n) + rand(n, n)*1j).astype(dtype)
|
||
|
transr = 'C'
|
||
|
else:
|
||
|
A_full = (rand(n, n)).astype(dtype)
|
||
|
transr = 'T'
|
||
|
|
||
|
trttf, tfttr = get_lapack_funcs(('trttf', 'tfttr'), dtype=dtype)
|
||
|
A_tf_U, info = trttf(A_full)
|
||
|
assert_(info == 0)
|
||
|
A_tf_L, info = trttf(A_full, uplo='L')
|
||
|
assert_(info == 0)
|
||
|
A_tf_U_T, info = trttf(A_full, transr=transr, uplo='U')
|
||
|
assert_(info == 0)
|
||
|
A_tf_L_T, info = trttf(A_full, transr=transr, uplo='L')
|
||
|
assert_(info == 0)
|
||
|
|
||
|
# Create the RFP array manually (n is even!)
|
||
|
A_tf_U_m = zeros((n+1, n//2), dtype=dtype)
|
||
|
A_tf_U_m[:-1, :] = triu(A_full)[:, n//2:]
|
||
|
A_tf_U_m[n//2+1:, :] += triu(A_full)[:n//2, :n//2].conj().T
|
||
|
|
||
|
A_tf_L_m = zeros((n+1, n//2), dtype=dtype)
|
||
|
A_tf_L_m[1:, :] = tril(A_full)[:, :n//2]
|
||
|
A_tf_L_m[:n//2, :] += tril(A_full)[n//2:, n//2:].conj().T
|
||
|
|
||
|
assert_array_almost_equal(A_tf_U, A_tf_U_m.reshape(-1, order='F'))
|
||
|
assert_array_almost_equal(A_tf_U_T,
|
||
|
A_tf_U_m.conj().T.reshape(-1, order='F'))
|
||
|
|
||
|
assert_array_almost_equal(A_tf_L, A_tf_L_m.reshape(-1, order='F'))
|
||
|
assert_array_almost_equal(A_tf_L_T,
|
||
|
A_tf_L_m.conj().T.reshape(-1, order='F'))
|
||
|
|
||
|
# Get the original array from RFP
|
||
|
A_tr_U, info = tfttr(n, A_tf_U)
|
||
|
assert_(info == 0)
|
||
|
A_tr_L, info = tfttr(n, A_tf_L, uplo='L')
|
||
|
assert_(info == 0)
|
||
|
A_tr_U_T, info = tfttr(n, A_tf_U_T, transr=transr, uplo='U')
|
||
|
assert_(info == 0)
|
||
|
A_tr_L_T, info = tfttr(n, A_tf_L_T, transr=transr, uplo='L')
|
||
|
assert_(info == 0)
|
||
|
|
||
|
assert_array_almost_equal(A_tr_U, triu(A_full))
|
||
|
assert_array_almost_equal(A_tr_U_T, triu(A_full))
|
||
|
assert_array_almost_equal(A_tr_L, tril(A_full))
|
||
|
assert_array_almost_equal(A_tr_L_T, tril(A_full))
|
||
|
|
||
|
|
||
|
def test_tpttr_trttp():
|
||
|
"""
|
||
|
Test conversion routines between the Rectengular Full Packed (RFP) format
|
||
|
and Standard Triangular Array (TR)
|
||
|
"""
|
||
|
seed(1234)
|
||
|
for ind, dtype in enumerate(DTYPES):
|
||
|
n = 20
|
||
|
if ind > 1:
|
||
|
A_full = (rand(n, n) + rand(n, n)*1j).astype(dtype)
|
||
|
else:
|
||
|
A_full = (rand(n, n)).astype(dtype)
|
||
|
|
||
|
trttp, tpttr = get_lapack_funcs(('trttp', 'tpttr'), dtype=dtype)
|
||
|
A_tp_U, info = trttp(A_full)
|
||
|
assert_(info == 0)
|
||
|
A_tp_L, info = trttp(A_full, uplo='L')
|
||
|
assert_(info == 0)
|
||
|
|
||
|
# Create the TP array manually
|
||
|
inds = tril_indices(n)
|
||
|
A_tp_U_m = zeros(n*(n+1)//2, dtype=dtype)
|
||
|
A_tp_U_m[:] = (triu(A_full).T)[inds]
|
||
|
|
||
|
inds = triu_indices(n)
|
||
|
A_tp_L_m = zeros(n*(n+1)//2, dtype=dtype)
|
||
|
A_tp_L_m[:] = (tril(A_full).T)[inds]
|
||
|
|
||
|
assert_array_almost_equal(A_tp_U, A_tp_U_m)
|
||
|
assert_array_almost_equal(A_tp_L, A_tp_L_m)
|
||
|
|
||
|
# Get the original array from TP
|
||
|
A_tr_U, info = tpttr(n, A_tp_U)
|
||
|
assert_(info == 0)
|
||
|
A_tr_L, info = tpttr(n, A_tp_L, uplo='L')
|
||
|
assert_(info == 0)
|
||
|
|
||
|
assert_array_almost_equal(A_tr_U, triu(A_full))
|
||
|
assert_array_almost_equal(A_tr_L, tril(A_full))
|
||
|
|
||
|
|
||
|
def test_pftrf():
|
||
|
"""
|
||
|
Test Cholesky factorization of a positive definite Rectengular Full
|
||
|
Packed (RFP) format array
|
||
|
"""
|
||
|
seed(1234)
|
||
|
for ind, dtype in enumerate(DTYPES):
|
||
|
n = 20
|
||
|
if ind > 1:
|
||
|
A = (rand(n, n) + rand(n, n)*1j).astype(dtype)
|
||
|
A = A + A.conj().T + n*eye(n)
|
||
|
else:
|
||
|
A = (rand(n, n)).astype(dtype)
|
||
|
A = A + A.T + n*eye(n)
|
||
|
|
||
|
pftrf, trttf, tfttr = get_lapack_funcs(('pftrf', 'trttf', 'tfttr'),
|
||
|
dtype=dtype)
|
||
|
|
||
|
# Get the original array from TP
|
||
|
Afp, info = trttf(A)
|
||
|
Achol_rfp, info = pftrf(n, Afp)
|
||
|
assert_(info == 0)
|
||
|
A_chol_r, _ = tfttr(n, Achol_rfp)
|
||
|
Achol = cholesky(A)
|
||
|
assert_array_almost_equal(A_chol_r, Achol)
|
||
|
|
||
|
|
||
|
def test_pftri():
|
||
|
"""
|
||
|
Test Cholesky factorization of a positive definite Rectengular Full
|
||
|
Packed (RFP) format array to find its inverse
|
||
|
"""
|
||
|
seed(1234)
|
||
|
for ind, dtype in enumerate(DTYPES):
|
||
|
n = 20
|
||
|
if ind > 1:
|
||
|
A = (rand(n, n) + rand(n, n)*1j).astype(dtype)
|
||
|
A = A + A.conj().T + n*eye(n)
|
||
|
else:
|
||
|
A = (rand(n, n)).astype(dtype)
|
||
|
A = A + A.T + n*eye(n)
|
||
|
|
||
|
pftri, pftrf, trttf, tfttr = get_lapack_funcs(('pftri',
|
||
|
'pftrf',
|
||
|
'trttf',
|
||
|
'tfttr'),
|
||
|
dtype=dtype)
|
||
|
|
||
|
# Get the original array from TP
|
||
|
Afp, info = trttf(A)
|
||
|
A_chol_rfp, info = pftrf(n, Afp)
|
||
|
A_inv_rfp, info = pftri(n, A_chol_rfp)
|
||
|
assert_(info == 0)
|
||
|
A_inv_r, _ = tfttr(n, A_inv_rfp)
|
||
|
Ainv = inv(A)
|
||
|
assert_array_almost_equal(A_inv_r, triu(Ainv),
|
||
|
decimal=4 if ind % 2 == 0 else 6)
|
||
|
|
||
|
|
||
|
def test_pftrs():
|
||
|
"""
|
||
|
Test Cholesky factorization of a positive definite Rectengular Full
|
||
|
Packed (RFP) format array and solve a linear system
|
||
|
"""
|
||
|
seed(1234)
|
||
|
for ind, dtype in enumerate(DTYPES):
|
||
|
n = 20
|
||
|
if ind > 1:
|
||
|
A = (rand(n, n) + rand(n, n)*1j).astype(dtype)
|
||
|
A = A + A.conj().T + n*eye(n)
|
||
|
else:
|
||
|
A = (rand(n, n)).astype(dtype)
|
||
|
A = A + A.T + n*eye(n)
|
||
|
|
||
|
B = ones((n, 3), dtype=dtype)
|
||
|
Bf1 = ones((n+2, 3), dtype=dtype)
|
||
|
Bf2 = ones((n-2, 3), dtype=dtype)
|
||
|
pftrs, pftrf, trttf, tfttr = get_lapack_funcs(('pftrs',
|
||
|
'pftrf',
|
||
|
'trttf',
|
||
|
'tfttr'),
|
||
|
dtype=dtype)
|
||
|
|
||
|
# Get the original array from TP
|
||
|
Afp, info = trttf(A)
|
||
|
A_chol_rfp, info = pftrf(n, Afp)
|
||
|
# larger B arrays shouldn't segfault
|
||
|
soln, info = pftrs(n, A_chol_rfp, Bf1)
|
||
|
assert_(info == 0)
|
||
|
assert_raises(Exception, pftrs, n, A_chol_rfp, Bf2)
|
||
|
soln, info = pftrs(n, A_chol_rfp, B)
|
||
|
assert_(info == 0)
|
||
|
assert_array_almost_equal(solve(A, B), soln,
|
||
|
decimal=4 if ind % 2 == 0 else 6)
|
||
|
|
||
|
|
||
|
def test_sfrk_hfrk():
|
||
|
"""
|
||
|
Test for performing a symmetric rank-k operation for matrix in RFP format.
|
||
|
"""
|
||
|
seed(1234)
|
||
|
for ind, dtype in enumerate(DTYPES):
|
||
|
n = 20
|
||
|
if ind > 1:
|
||
|
A = (rand(n, n) + rand(n, n)*1j).astype(dtype)
|
||
|
A = A + A.conj().T + n*eye(n)
|
||
|
else:
|
||
|
A = (rand(n, n)).astype(dtype)
|
||
|
A = A + A.T + n*eye(n)
|
||
|
|
||
|
prefix = 's'if ind < 2 else 'h'
|
||
|
trttf, tfttr, shfrk = get_lapack_funcs(('trttf', 'tfttr', '{}frk'
|
||
|
''.format(prefix)),
|
||
|
dtype=dtype)
|
||
|
|
||
|
Afp, _ = trttf(A)
|
||
|
C = np.random.rand(n, 2).astype(dtype)
|
||
|
Afp_out = shfrk(n, 2, -1, C, 2, Afp)
|
||
|
A_out, _ = tfttr(n, Afp_out)
|
||
|
assert_array_almost_equal(A_out, triu(-C.dot(C.conj().T) + 2*A),
|
||
|
decimal=4 if ind % 2 == 0 else 6)
|