You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

719 lines
24 KiB
Python

5 years ago
from __future__ import division, print_function, absolute_import
import sys
import threading
import numpy as np
from numpy import array, finfo, arange, eye, all, unique, ones, dot, matrix
import numpy.random as random
from numpy.testing import (
assert_array_almost_equal, assert_almost_equal,
assert_equal, assert_array_equal, assert_, assert_allclose,
assert_warns)
import pytest
from pytest import raises as assert_raises
import scipy.linalg
from scipy.linalg import norm, inv
from scipy.sparse import (spdiags, SparseEfficiencyWarning, csc_matrix,
csr_matrix, identity, isspmatrix, dok_matrix, lil_matrix, bsr_matrix)
from scipy.sparse.linalg import SuperLU
from scipy.sparse.linalg.dsolve import (spsolve, use_solver, splu, spilu,
MatrixRankWarning, _superlu, spsolve_triangular, factorized)
from scipy._lib._numpy_compat import suppress_warnings
sup_sparse_efficiency = suppress_warnings()
sup_sparse_efficiency.filter(SparseEfficiencyWarning)
# scikits.umfpack is not a SciPy dependency but it is optionally used in
# dsolve, so check whether it's available
try:
import scikits.umfpack as umfpack
has_umfpack = True
except ImportError:
has_umfpack = False
def toarray(a):
if isspmatrix(a):
return a.toarray()
else:
return a
class TestFactorized(object):
def setup_method(self):
n = 5
d = arange(n) + 1
self.n = n
self.A = spdiags((d, 2*d, d[::-1]), (-3, 0, 5), n, n).tocsc()
random.seed(1234)
def _check_singular(self):
A = csc_matrix((5,5), dtype='d')
b = ones(5)
assert_array_almost_equal(0. * b, factorized(A)(b))
def _check_non_singular(self):
# Make a diagonal dominant, to make sure it is not singular
n = 5
a = csc_matrix(random.rand(n, n))
b = ones(n)
expected = splu(a).solve(b)
assert_array_almost_equal(factorized(a)(b), expected)
def test_singular_without_umfpack(self):
use_solver(useUmfpack=False)
with assert_raises(RuntimeError, match="Factor is exactly singular"):
self._check_singular()
@pytest.mark.skipif(not has_umfpack, reason="umfpack not available")
def test_singular_with_umfpack(self):
use_solver(useUmfpack=True)
with suppress_warnings() as sup:
sup.filter(RuntimeWarning, "divide by zero encountered in double_scalars")
assert_warns(umfpack.UmfpackWarning, self._check_singular)
def test_non_singular_without_umfpack(self):
use_solver(useUmfpack=False)
self._check_non_singular()
@pytest.mark.skipif(not has_umfpack, reason="umfpack not available")
def test_non_singular_with_umfpack(self):
use_solver(useUmfpack=True)
self._check_non_singular()
def test_cannot_factorize_nonsquare_matrix_without_umfpack(self):
use_solver(useUmfpack=False)
msg = "can only factor square matrices"
with assert_raises(ValueError, match=msg):
factorized(self.A[:, :4])
@pytest.mark.skipif(not has_umfpack, reason="umfpack not available")
def test_factorizes_nonsquare_matrix_with_umfpack(self):
use_solver(useUmfpack=True)
# does not raise
factorized(self.A[:,:4])
def test_call_with_incorrectly_sized_matrix_without_umfpack(self):
use_solver(useUmfpack=False)
solve = factorized(self.A)
b = random.rand(4)
B = random.rand(4, 3)
BB = random.rand(self.n, 3, 9)
with assert_raises(ValueError, match="is of incompatible size"):
solve(b)
with assert_raises(ValueError, match="is of incompatible size"):
solve(B)
with assert_raises(ValueError,
match="object too deep for desired array"):
solve(BB)
@pytest.mark.skipif(not has_umfpack, reason="umfpack not available")
def test_call_with_incorrectly_sized_matrix_with_umfpack(self):
use_solver(useUmfpack=True)
solve = factorized(self.A)
b = random.rand(4)
B = random.rand(4, 3)
BB = random.rand(self.n, 3, 9)
# does not raise
solve(b)
msg = "object too deep for desired array"
with assert_raises(ValueError, match=msg):
solve(B)
with assert_raises(ValueError, match=msg):
solve(BB)
def test_call_with_cast_to_complex_without_umfpack(self):
use_solver(useUmfpack=False)
solve = factorized(self.A)
b = random.rand(4)
for t in [np.complex64, np.complex128]:
with assert_raises(TypeError, match="Cannot cast array data"):
solve(b.astype(t))
@pytest.mark.skipif(not has_umfpack, reason="umfpack not available")
def test_call_with_cast_to_complex_with_umfpack(self):
use_solver(useUmfpack=True)
solve = factorized(self.A)
b = random.rand(4)
for t in [np.complex64, np.complex128]:
assert_warns(np.ComplexWarning, solve, b.astype(t))
@pytest.mark.skipif(not has_umfpack, reason="umfpack not available")
def test_assume_sorted_indices_flag(self):
# a sparse matrix with unsorted indices
unsorted_inds = np.array([2, 0, 1, 0])
data = np.array([10, 16, 5, 0.4])
indptr = np.array([0, 1, 2, 4])
A = csc_matrix((data, unsorted_inds, indptr), (3, 3))
b = ones(3)
# should raise when incorrectly assuming indices are sorted
use_solver(useUmfpack=True, assumeSortedIndices=True)
with assert_raises(RuntimeError,
match="UMFPACK_ERROR_invalid_matrix"):
factorized(A)
# should sort indices and succeed when not assuming indices are sorted
use_solver(useUmfpack=True, assumeSortedIndices=False)
expected = splu(A.copy()).solve(b)
assert_equal(A.has_sorted_indices, 0)
assert_array_almost_equal(factorized(A)(b), expected)
assert_equal(A.has_sorted_indices, 1)
class TestLinsolve(object):
def setup_method(self):
use_solver(useUmfpack=False)
def test_singular(self):
A = csc_matrix((5,5), dtype='d')
b = array([1, 2, 3, 4, 5],dtype='d')
with suppress_warnings() as sup:
sup.filter(MatrixRankWarning, "Matrix is exactly singular")
x = spsolve(A, b)
assert_(not np.isfinite(x).any())
def test_singular_gh_3312(self):
# "Bad" test case that leads SuperLU to call LAPACK with invalid
# arguments. Check that it fails moderately gracefully.
ij = np.array([(17, 0), (17, 6), (17, 12), (10, 13)], dtype=np.int32)
v = np.array([0.284213, 0.94933781, 0.15767017, 0.38797296])
A = csc_matrix((v, ij.T), shape=(20, 20))
b = np.arange(20)
try:
# should either raise a runtimeerror or return value
# appropriate for singular input
x = spsolve(A, b)
assert_(not np.isfinite(x).any())
except RuntimeError:
pass
def test_twodiags(self):
A = spdiags([[1, 2, 3, 4, 5], [6, 5, 8, 9, 10]], [0, 1], 5, 5)
b = array([1, 2, 3, 4, 5])
# condition number of A
cond_A = norm(A.todense(),2) * norm(inv(A.todense()),2)
for t in ['f','d','F','D']:
eps = finfo(t).eps # floating point epsilon
b = b.astype(t)
for format in ['csc','csr']:
Asp = A.astype(t).asformat(format)
x = spsolve(Asp,b)
assert_(norm(b - Asp*x) < 10 * cond_A * eps)
def test_bvector_smoketest(self):
Adense = matrix([[0., 1., 1.],
[1., 0., 1.],
[0., 0., 1.]])
As = csc_matrix(Adense)
random.seed(1234)
x = random.randn(3)
b = As*x
x2 = spsolve(As, b)
assert_array_almost_equal(x, x2)
def test_bmatrix_smoketest(self):
Adense = matrix([[0., 1., 1.],
[1., 0., 1.],
[0., 0., 1.]])
As = csc_matrix(Adense)
random.seed(1234)
x = random.randn(3, 4)
Bdense = As.dot(x)
Bs = csc_matrix(Bdense)
x2 = spsolve(As, Bs)
assert_array_almost_equal(x, x2.todense())
@sup_sparse_efficiency
def test_non_square(self):
# A is not square.
A = ones((3, 4))
b = ones((4, 1))
assert_raises(ValueError, spsolve, A, b)
# A2 and b2 have incompatible shapes.
A2 = csc_matrix(eye(3))
b2 = array([1.0, 2.0])
assert_raises(ValueError, spsolve, A2, b2)
@sup_sparse_efficiency
def test_example_comparison(self):
row = array([0,0,1,2,2,2])
col = array([0,2,2,0,1,2])
data = array([1,2,3,-4,5,6])
sM = csr_matrix((data,(row,col)), shape=(3,3), dtype=float)
M = sM.todense()
row = array([0,0,1,1,0,0])
col = array([0,2,1,1,0,0])
data = array([1,1,1,1,1,1])
sN = csr_matrix((data, (row,col)), shape=(3,3), dtype=float)
N = sN.todense()
sX = spsolve(sM, sN)
X = scipy.linalg.solve(M, N)
assert_array_almost_equal(X, sX.todense())
@sup_sparse_efficiency
@pytest.mark.skipif(not has_umfpack, reason="umfpack not available")
def test_shape_compatibility(self):
use_solver(useUmfpack=True)
A = csc_matrix([[1., 0], [0, 2]])
bs = [
[1, 6],
array([1, 6]),
[[1], [6]],
array([[1], [6]]),
csc_matrix([[1], [6]]),
csr_matrix([[1], [6]]),
dok_matrix([[1], [6]]),
bsr_matrix([[1], [6]]),
array([[1., 2., 3.], [6., 8., 10.]]),
csc_matrix([[1., 2., 3.], [6., 8., 10.]]),
csr_matrix([[1., 2., 3.], [6., 8., 10.]]),
dok_matrix([[1., 2., 3.], [6., 8., 10.]]),
bsr_matrix([[1., 2., 3.], [6., 8., 10.]]),
]
for b in bs:
x = np.linalg.solve(A.toarray(), toarray(b))
for spmattype in [csc_matrix, csr_matrix, dok_matrix, lil_matrix]:
x1 = spsolve(spmattype(A), b, use_umfpack=True)
x2 = spsolve(spmattype(A), b, use_umfpack=False)
# check solution
if x.ndim == 2 and x.shape[1] == 1:
# interprets also these as "vectors"
x = x.ravel()
assert_array_almost_equal(toarray(x1), x, err_msg=repr((b, spmattype, 1)))
assert_array_almost_equal(toarray(x2), x, err_msg=repr((b, spmattype, 2)))
# dense vs. sparse output ("vectors" are always dense)
if isspmatrix(b) and x.ndim > 1:
assert_(isspmatrix(x1), repr((b, spmattype, 1)))
assert_(isspmatrix(x2), repr((b, spmattype, 2)))
else:
assert_(isinstance(x1, np.ndarray), repr((b, spmattype, 1)))
assert_(isinstance(x2, np.ndarray), repr((b, spmattype, 2)))
# check output shape
if x.ndim == 1:
# "vector"
assert_equal(x1.shape, (A.shape[1],))
assert_equal(x2.shape, (A.shape[1],))
else:
# "matrix"
assert_equal(x1.shape, x.shape)
assert_equal(x2.shape, x.shape)
A = csc_matrix((3, 3))
b = csc_matrix((1, 3))
assert_raises(ValueError, spsolve, A, b)
@sup_sparse_efficiency
def test_ndarray_support(self):
A = array([[1., 2.], [2., 0.]])
x = array([[1., 1.], [0.5, -0.5]])
b = array([[2., 0.], [2., 2.]])
assert_array_almost_equal(x, spsolve(A, b))
def test_gssv_badinput(self):
N = 10
d = arange(N) + 1.0
A = spdiags((d, 2*d, d[::-1]), (-3, 0, 5), N, N)
for spmatrix in (csc_matrix, csr_matrix):
A = spmatrix(A)
b = np.arange(N)
def not_c_contig(x):
return x.repeat(2)[::2]
def not_1dim(x):
return x[:,None]
def bad_type(x):
return x.astype(bool)
def too_short(x):
return x[:-1]
badops = [not_c_contig, not_1dim, bad_type, too_short]
for badop in badops:
msg = "%r %r" % (spmatrix, badop)
# Not C-contiguous
assert_raises((ValueError, TypeError), _superlu.gssv,
N, A.nnz, badop(A.data), A.indices, A.indptr,
b, int(spmatrix == csc_matrix), err_msg=msg)
assert_raises((ValueError, TypeError), _superlu.gssv,
N, A.nnz, A.data, badop(A.indices), A.indptr,
b, int(spmatrix == csc_matrix), err_msg=msg)
assert_raises((ValueError, TypeError), _superlu.gssv,
N, A.nnz, A.data, A.indices, badop(A.indptr),
b, int(spmatrix == csc_matrix), err_msg=msg)
def test_sparsity_preservation(self):
ident = csc_matrix([
[1, 0, 0],
[0, 1, 0],
[0, 0, 1]])
b = csc_matrix([
[0, 1],
[1, 0],
[0, 0]])
x = spsolve(ident, b)
assert_equal(ident.nnz, 3)
assert_equal(b.nnz, 2)
assert_equal(x.nnz, 2)
assert_allclose(x.A, b.A, atol=1e-12, rtol=1e-12)
def test_dtype_cast(self):
A_real = scipy.sparse.csr_matrix([[1, 2, 0],
[0, 0, 3],
[4, 0, 5]])
A_complex = scipy.sparse.csr_matrix([[1, 2, 0],
[0, 0, 3],
[4, 0, 5 + 1j]])
b_real = np.array([1,1,1])
b_complex = np.array([1,1,1]) + 1j*np.array([1,1,1])
x = spsolve(A_real, b_real)
assert_(np.issubdtype(x.dtype, np.floating))
x = spsolve(A_real, b_complex)
assert_(np.issubdtype(x.dtype, np.complexfloating))
x = spsolve(A_complex, b_real)
assert_(np.issubdtype(x.dtype, np.complexfloating))
x = spsolve(A_complex, b_complex)
assert_(np.issubdtype(x.dtype, np.complexfloating))
class TestSplu(object):
def setup_method(self):
use_solver(useUmfpack=False)
n = 40
d = arange(n) + 1
self.n = n
self.A = spdiags((d, 2*d, d[::-1]), (-3, 0, 5), n, n)
random.seed(1234)
def _smoketest(self, spxlu, check, dtype):
if np.issubdtype(dtype, np.complexfloating):
A = self.A + 1j*self.A.T
else:
A = self.A
A = A.astype(dtype)
lu = spxlu(A)
rng = random.RandomState(1234)
# Input shapes
for k in [None, 1, 2, self.n, self.n+2]:
msg = "k=%r" % (k,)
if k is None:
b = rng.rand(self.n)
else:
b = rng.rand(self.n, k)
if np.issubdtype(dtype, np.complexfloating):
b = b + 1j*rng.rand(*b.shape)
b = b.astype(dtype)
x = lu.solve(b)
check(A, b, x, msg)
x = lu.solve(b, 'T')
check(A.T, b, x, msg)
x = lu.solve(b, 'H')
check(A.T.conj(), b, x, msg)
@sup_sparse_efficiency
def test_splu_smoketest(self):
self._internal_test_splu_smoketest()
def _internal_test_splu_smoketest(self):
# Check that splu works at all
def check(A, b, x, msg=""):
eps = np.finfo(A.dtype).eps
r = A * x
assert_(abs(r - b).max() < 1e3*eps, msg)
self._smoketest(splu, check, np.float32)
self._smoketest(splu, check, np.float64)
self._smoketest(splu, check, np.complex64)
self._smoketest(splu, check, np.complex128)
@sup_sparse_efficiency
def test_spilu_smoketest(self):
self._internal_test_spilu_smoketest()
def _internal_test_spilu_smoketest(self):
errors = []
def check(A, b, x, msg=""):
r = A * x
err = abs(r - b).max()
assert_(err < 1e-2, msg)
if b.dtype in (np.float64, np.complex128):
errors.append(err)
self._smoketest(spilu, check, np.float32)
self._smoketest(spilu, check, np.float64)
self._smoketest(spilu, check, np.complex64)
self._smoketest(spilu, check, np.complex128)
assert_(max(errors) > 1e-5)
@sup_sparse_efficiency
def test_spilu_drop_rule(self):
# Test passing in the drop_rule argument to spilu.
A = identity(2)
rules = [
b'basic,area'.decode('ascii'), # unicode
b'basic,area', # ascii
[b'basic', b'area'.decode('ascii')]
]
for rule in rules:
# Argument should be accepted
assert_(isinstance(spilu(A, drop_rule=rule), SuperLU))
def test_splu_nnz0(self):
A = csc_matrix((5,5), dtype='d')
assert_raises(RuntimeError, splu, A)
def test_spilu_nnz0(self):
A = csc_matrix((5,5), dtype='d')
assert_raises(RuntimeError, spilu, A)
def test_splu_basic(self):
# Test basic splu functionality.
n = 30
rng = random.RandomState(12)
a = rng.rand(n, n)
a[a < 0.95] = 0
# First test with a singular matrix
a[:, 0] = 0
a_ = csc_matrix(a)
# Matrix is exactly singular
assert_raises(RuntimeError, splu, a_)
# Make a diagonal dominant, to make sure it is not singular
a += 4*eye(n)
a_ = csc_matrix(a)
lu = splu(a_)
b = ones(n)
x = lu.solve(b)
assert_almost_equal(dot(a, x), b)
def test_splu_perm(self):
# Test the permutation vectors exposed by splu.
n = 30
a = random.random((n, n))
a[a < 0.95] = 0
# Make a diagonal dominant, to make sure it is not singular
a += 4*eye(n)
a_ = csc_matrix(a)
lu = splu(a_)
# Check that the permutation indices do belong to [0, n-1].
for perm in (lu.perm_r, lu.perm_c):
assert_(all(perm > -1))
assert_(all(perm < n))
assert_equal(len(unique(perm)), len(perm))
# Now make a symmetric, and test that the two permutation vectors are
# the same
# Note: a += a.T relies on undefined behavior.
a = a + a.T
a_ = csc_matrix(a)
lu = splu(a_)
assert_array_equal(lu.perm_r, lu.perm_c)
@pytest.mark.skipif(not hasattr(sys, 'getrefcount'), reason="no sys.getrefcount")
def test_lu_refcount(self):
# Test that we are keeping track of the reference count with splu.
n = 30
a = random.random((n, n))
a[a < 0.95] = 0
# Make a diagonal dominant, to make sure it is not singular
a += 4*eye(n)
a_ = csc_matrix(a)
lu = splu(a_)
# And now test that we don't have a refcount bug
rc = sys.getrefcount(lu)
for attr in ('perm_r', 'perm_c'):
perm = getattr(lu, attr)
assert_equal(sys.getrefcount(lu), rc + 1)
del perm
assert_equal(sys.getrefcount(lu), rc)
def test_bad_inputs(self):
A = self.A.tocsc()
assert_raises(ValueError, splu, A[:,:4])
assert_raises(ValueError, spilu, A[:,:4])
for lu in [splu(A), spilu(A)]:
b = random.rand(42)
B = random.rand(42, 3)
BB = random.rand(self.n, 3, 9)
assert_raises(ValueError, lu.solve, b)
assert_raises(ValueError, lu.solve, B)
assert_raises(ValueError, lu.solve, BB)
assert_raises(TypeError, lu.solve,
b.astype(np.complex64))
assert_raises(TypeError, lu.solve,
b.astype(np.complex128))
@sup_sparse_efficiency
def test_superlu_dlamch_i386_nan(self):
# SuperLU 4.3 calls some functions returning floats without
# declaring them. On i386@linux call convention, this fails to
# clear floating point registers after call. As a result, NaN
# can appear in the next floating point operation made.
#
# Here's a test case that triggered the issue.
n = 8
d = np.arange(n) + 1
A = spdiags((d, 2*d, d[::-1]), (-3, 0, 5), n, n)
A = A.astype(np.float32)
spilu(A)
A = A + 1j*A
B = A.A
assert_(not np.isnan(B).any())
@sup_sparse_efficiency
def test_lu_attr(self):
def check(dtype, complex_2=False):
A = self.A.astype(dtype)
if complex_2:
A = A + 1j*A.T
n = A.shape[0]
lu = splu(A)
# Check that the decomposition is as advertized
Pc = np.zeros((n, n))
Pc[np.arange(n), lu.perm_c] = 1
Pr = np.zeros((n, n))
Pr[lu.perm_r, np.arange(n)] = 1
Ad = A.toarray()
lhs = Pr.dot(Ad).dot(Pc)
rhs = (lu.L * lu.U).toarray()
eps = np.finfo(dtype).eps
assert_allclose(lhs, rhs, atol=100*eps)
check(np.float32)
check(np.float64)
check(np.complex64)
check(np.complex128)
check(np.complex64, True)
check(np.complex128, True)
@pytest.mark.slow
@sup_sparse_efficiency
def test_threads_parallel(self):
oks = []
def worker():
try:
self.test_splu_basic()
self._internal_test_splu_smoketest()
self._internal_test_spilu_smoketest()
oks.append(True)
except Exception:
pass
threads = [threading.Thread(target=worker)
for k in range(20)]
for t in threads:
t.start()
for t in threads:
t.join()
assert_equal(len(oks), 20)
class TestSpsolveTriangular(object):
def setup_method(self):
use_solver(useUmfpack=False)
def test_singular(self):
n = 5
A = csr_matrix((n, n))
b = np.arange(n)
for lower in (True, False):
assert_raises(scipy.linalg.LinAlgError, spsolve_triangular, A, b, lower=lower)
@sup_sparse_efficiency
def test_bad_shape(self):
# A is not square.
A = np.zeros((3, 4))
b = ones((4, 1))
assert_raises(ValueError, spsolve_triangular, A, b)
# A2 and b2 have incompatible shapes.
A2 = csr_matrix(eye(3))
b2 = array([1.0, 2.0])
assert_raises(ValueError, spsolve_triangular, A2, b2)
@sup_sparse_efficiency
def test_input_types(self):
A = array([[1., 0.], [1., 2.]])
b = array([[2., 0.], [2., 2.]])
for matrix_type in (array, csc_matrix, csr_matrix):
x = spsolve_triangular(matrix_type(A), b, lower=True)
assert_array_almost_equal(A.dot(x), b)
@pytest.mark.slow
@sup_sparse_efficiency
def test_random(self):
def random_triangle_matrix(n, lower=True):
A = scipy.sparse.random(n, n, density=0.1, format='coo')
if lower:
A = scipy.sparse.tril(A)
else:
A = scipy.sparse.triu(A)
A = A.tocsr(copy=False)
for i in range(n):
A[i, i] = np.random.rand() + 1
return A
np.random.seed(1234)
for lower in (True, False):
for n in (10, 10**2, 10**3):
A = random_triangle_matrix(n, lower=lower)
for m in (1, 10):
for b in (np.random.rand(n, m),
np.random.randint(-9, 9, (n, m)),
np.random.randint(-9, 9, (n, m)) +
np.random.randint(-9, 9, (n, m)) * 1j):
x = spsolve_triangular(A, b, lower=lower)
assert_array_almost_equal(A.dot(x), b)