You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
62 lines
2.0 KiB
Python
62 lines
2.0 KiB
Python
6 years ago
|
"""Tests for _sketches.py."""
|
||
|
|
||
|
from __future__ import division, print_function, absolute_import
|
||
|
import numpy as np
|
||
|
from scipy.linalg import clarkson_woodruff_transform
|
||
|
|
||
|
from numpy.testing import assert_
|
||
|
|
||
|
|
||
|
def make_random_dense_gaussian_matrix(n_rows, n_columns, mu=0, sigma=0.01):
|
||
|
"""
|
||
|
Make some random data with Gaussian distributed values
|
||
|
"""
|
||
|
np.random.seed(142352345)
|
||
|
res = np.random.normal(mu, sigma, n_rows*n_columns)
|
||
|
return np.reshape(res, (n_rows, n_columns))
|
||
|
|
||
|
|
||
|
class TestClarksonWoodruffTransform(object):
|
||
|
"""
|
||
|
Testing the Clarkson Woodruff Transform
|
||
|
"""
|
||
|
# Big dense matrix dimensions
|
||
|
n_matrix_rows = 2000
|
||
|
n_matrix_columns = 100
|
||
|
|
||
|
# Sketch matrix dimensions
|
||
|
n_sketch_rows = 100
|
||
|
|
||
|
# Error threshold
|
||
|
threshold = 0.1
|
||
|
|
||
|
dense_big_matrix = make_random_dense_gaussian_matrix(n_matrix_rows,
|
||
|
n_matrix_columns)
|
||
|
|
||
|
def test_sketch_dimensions(self):
|
||
|
sketch = clarkson_woodruff_transform(self.dense_big_matrix,
|
||
|
self.n_sketch_rows)
|
||
|
|
||
|
assert_(sketch.shape == (self.n_sketch_rows,
|
||
|
self.dense_big_matrix.shape[1]))
|
||
|
|
||
|
def test_sketch_rows_norm(self):
|
||
|
# Given the probabilistic nature of the sketches
|
||
|
# we run the 'test' multiple times and check that
|
||
|
# we pass all/almost all the tries
|
||
|
n_errors = 0
|
||
|
|
||
|
seeds = [1755490010, 934377150, 1391612830, 1752708722, 2008891431,
|
||
|
1302443994, 1521083269, 1501189312, 1126232505, 1533465685]
|
||
|
|
||
|
for seed_ in seeds:
|
||
|
sketch = clarkson_woodruff_transform(self.dense_big_matrix,
|
||
|
self.n_sketch_rows, seed_)
|
||
|
|
||
|
# We could use other norms (like L2)
|
||
|
err = np.linalg.norm(self.dense_big_matrix) - np.linalg.norm(sketch)
|
||
|
if err > self.threshold:
|
||
|
n_errors += 1
|
||
|
|
||
|
assert_(n_errors == 0)
|