You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1346 lines
52 KiB
Python

6 years ago
"""
Unit tests for optimization routines from optimize.py
Authors:
Ed Schofield, Nov 2005
Andrew Straw, April 2008
To run it in its simplest form::
nosetests test_optimize.py
"""
from __future__ import division, print_function, absolute_import
import itertools
import numpy as np
from numpy.testing import (assert_allclose, assert_equal,
assert_,
assert_almost_equal, assert_warns,
assert_array_less)
import pytest
from pytest import raises as assert_raises
from scipy._lib._numpy_compat import suppress_warnings
from scipy import optimize
def test_check_grad():
# Verify if check_grad is able to estimate the derivative of the
# logistic function.
def logit(x):
return 1 / (1 + np.exp(-x))
def der_logit(x):
return np.exp(-x) / (1 + np.exp(-x))**2
x0 = np.array([1.5])
r = optimize.check_grad(logit, der_logit, x0)
assert_almost_equal(r, 0)
r = optimize.check_grad(logit, der_logit, x0, epsilon=1e-6)
assert_almost_equal(r, 0)
# Check if the epsilon parameter is being considered.
r = abs(optimize.check_grad(logit, der_logit, x0, epsilon=1e-1) - 0)
assert_(r > 1e-7)
class CheckOptimize(object):
""" Base test case for a simple constrained entropy maximization problem
(the machine translation example of Berger et al in
Computational Linguistics, vol 22, num 1, pp 39--72, 1996.)
"""
def setup_method(self):
self.F = np.array([[1,1,1],[1,1,0],[1,0,1],[1,0,0],[1,0,0]])
self.K = np.array([1., 0.3, 0.5])
self.startparams = np.zeros(3, np.float64)
self.solution = np.array([0., -0.524869316, 0.487525860])
self.maxiter = 1000
self.funccalls = 0
self.gradcalls = 0
self.trace = []
def func(self, x):
self.funccalls += 1
if self.funccalls > 6000:
raise RuntimeError("too many iterations in optimization routine")
log_pdot = np.dot(self.F, x)
logZ = np.log(sum(np.exp(log_pdot)))
f = logZ - np.dot(self.K, x)
self.trace.append(x)
return f
def grad(self, x):
self.gradcalls += 1
log_pdot = np.dot(self.F, x)
logZ = np.log(sum(np.exp(log_pdot)))
p = np.exp(log_pdot - logZ)
return np.dot(self.F.transpose(), p) - self.K
def hess(self, x):
log_pdot = np.dot(self.F, x)
logZ = np.log(sum(np.exp(log_pdot)))
p = np.exp(log_pdot - logZ)
return np.dot(self.F.T,
np.dot(np.diag(p), self.F - np.dot(self.F.T, p)))
def hessp(self, x, p):
return np.dot(self.hess(x), p)
class CheckOptimizeParameterized(CheckOptimize):
def test_cg(self):
# conjugate gradient optimization routine
if self.use_wrapper:
opts = {'maxiter': self.maxiter, 'disp': self.disp,
'return_all': False}
res = optimize.minimize(self.func, self.startparams, args=(),
method='CG', jac=self.grad,
options=opts)
params, fopt, func_calls, grad_calls, warnflag = \
res['x'], res['fun'], res['nfev'], res['njev'], res['status']
else:
retval = optimize.fmin_cg(self.func, self.startparams,
self.grad, (), maxiter=self.maxiter,
full_output=True, disp=self.disp,
retall=False)
(params, fopt, func_calls, grad_calls, warnflag) = retval
assert_allclose(self.func(params), self.func(self.solution),
atol=1e-6)
# Ensure that function call counts are 'known good'; these are from
# Scipy 0.7.0. Don't allow them to increase.
assert_(self.funccalls == 9, self.funccalls)
assert_(self.gradcalls == 7, self.gradcalls)
# Ensure that the function behaves the same; this is from Scipy 0.7.0
assert_allclose(self.trace[2:4],
[[0, -0.5, 0.5],
[0, -5.05700028e-01, 4.95985862e-01]],
atol=1e-14, rtol=1e-7)
def test_cg_cornercase(self):
def f(r):
return 2.5 * (1 - np.exp(-1.5*(r - 0.5)))**2
# Check several initial guesses. (Too far away from the
# minimum, the function ends up in the flat region of exp.)
for x0 in np.linspace(-0.75, 3, 71):
sol = optimize.minimize(f, [x0], method='CG')
assert_(sol.success)
assert_allclose(sol.x, [0.5], rtol=1e-5)
def test_bfgs(self):
# Broyden-Fletcher-Goldfarb-Shanno optimization routine
if self.use_wrapper:
opts = {'maxiter': self.maxiter, 'disp': self.disp,
'return_all': False}
res = optimize.minimize(self.func, self.startparams,
jac=self.grad, method='BFGS', args=(),
options=opts)
params, fopt, gopt, Hopt, func_calls, grad_calls, warnflag = (
res['x'], res['fun'], res['jac'], res['hess_inv'],
res['nfev'], res['njev'], res['status'])
else:
retval = optimize.fmin_bfgs(self.func, self.startparams, self.grad,
args=(), maxiter=self.maxiter,
full_output=True, disp=self.disp,
retall=False)
(params, fopt, gopt, Hopt, func_calls, grad_calls, warnflag) = retval
assert_allclose(self.func(params), self.func(self.solution),
atol=1e-6)
# Ensure that function call counts are 'known good'; these are from
# Scipy 0.7.0. Don't allow them to increase.
assert_(self.funccalls == 10, self.funccalls)
assert_(self.gradcalls == 8, self.gradcalls)
# Ensure that the function behaves the same; this is from Scipy 0.7.0
assert_allclose(self.trace[6:8],
[[0, -5.25060743e-01, 4.87748473e-01],
[0, -5.24885582e-01, 4.87530347e-01]],
atol=1e-14, rtol=1e-7)
def test_bfgs_infinite(self):
# Test corner case where -Inf is the minimum. See gh-2019.
func = lambda x: -np.e**-x
fprime = lambda x: -func(x)
x0 = [0]
olderr = np.seterr(over='ignore')
try:
if self.use_wrapper:
opts = {'disp': self.disp}
x = optimize.minimize(func, x0, jac=fprime, method='BFGS',
args=(), options=opts)['x']
else:
x = optimize.fmin_bfgs(func, x0, fprime, disp=self.disp)
assert_(not np.isfinite(func(x)))
finally:
np.seterr(**olderr)
def test_powell(self):
# Powell (direction set) optimization routine
if self.use_wrapper:
opts = {'maxiter': self.maxiter, 'disp': self.disp,
'return_all': False}
res = optimize.minimize(self.func, self.startparams, args=(),
method='Powell', options=opts)
params, fopt, direc, numiter, func_calls, warnflag = (
res['x'], res['fun'], res['direc'], res['nit'],
res['nfev'], res['status'])
else:
retval = optimize.fmin_powell(self.func, self.startparams,
args=(), maxiter=self.maxiter,
full_output=True, disp=self.disp,
retall=False)
(params, fopt, direc, numiter, func_calls, warnflag) = retval
assert_allclose(self.func(params), self.func(self.solution),
atol=1e-6)
# Ensure that function call counts are 'known good'; these are from
# Scipy 0.7.0. Don't allow them to increase.
#
# However, some leeway must be added: the exact evaluation
# count is sensitive to numerical error, and floating-point
# computations are not bit-for-bit reproducible across
# machines, and when using e.g. MKL, data alignment
# etc. affect the rounding error.
#
assert_(self.funccalls <= 116 + 20, self.funccalls)
assert_(self.gradcalls == 0, self.gradcalls)
# Ensure that the function behaves the same; this is from Scipy 0.7.0
assert_allclose(self.trace[34:39],
[[0.72949016, -0.44156936, 0.47100962],
[0.72949016, -0.44156936, 0.48052496],
[1.45898031, -0.88313872, 0.95153458],
[0.72949016, -0.44156936, 0.47576729],
[1.72949016, -0.44156936, 0.47576729]],
atol=1e-14, rtol=1e-7)
def test_neldermead(self):
# Nelder-Mead simplex algorithm
if self.use_wrapper:
opts = {'maxiter': self.maxiter, 'disp': self.disp,
'return_all': False}
res = optimize.minimize(self.func, self.startparams, args=(),
method='Nelder-mead', options=opts)
params, fopt, numiter, func_calls, warnflag, final_simplex = (
res['x'], res['fun'], res['nit'], res['nfev'],
res['status'], res['final_simplex'])
else:
retval = optimize.fmin(self.func, self.startparams,
args=(), maxiter=self.maxiter,
full_output=True, disp=self.disp,
retall=False)
(params, fopt, numiter, func_calls, warnflag) = retval
assert_allclose(self.func(params), self.func(self.solution),
atol=1e-6)
# Ensure that function call counts are 'known good'; these are from
# Scipy 0.7.0. Don't allow them to increase.
assert_(self.funccalls == 167, self.funccalls)
assert_(self.gradcalls == 0, self.gradcalls)
# Ensure that the function behaves the same; this is from Scipy 0.7.0
assert_allclose(self.trace[76:78],
[[0.1928968, -0.62780447, 0.35166118],
[0.19572515, -0.63648426, 0.35838135]],
atol=1e-14, rtol=1e-7)
def test_neldermead_initial_simplex(self):
# Nelder-Mead simplex algorithm
simplex = np.zeros((4, 3))
simplex[...] = self.startparams
for j in range(3):
simplex[j+1,j] += 0.1
if self.use_wrapper:
opts = {'maxiter': self.maxiter, 'disp': False,
'return_all': True, 'initial_simplex': simplex}
res = optimize.minimize(self.func, self.startparams, args=(),
method='Nelder-mead', options=opts)
params, fopt, numiter, func_calls, warnflag = \
res['x'], res['fun'], res['nit'], res['nfev'], \
res['status']
assert_allclose(res['allvecs'][0], simplex[0])
else:
retval = optimize.fmin(self.func, self.startparams,
args=(), maxiter=self.maxiter,
full_output=True, disp=False, retall=False,
initial_simplex=simplex)
(params, fopt, numiter, func_calls, warnflag) = retval
assert_allclose(self.func(params), self.func(self.solution),
atol=1e-6)
# Ensure that function call counts are 'known good'; these are from
# Scipy 0.17.0. Don't allow them to increase.
assert_(self.funccalls == 100, self.funccalls)
assert_(self.gradcalls == 0, self.gradcalls)
# Ensure that the function behaves the same; this is from Scipy 0.15.0
assert_allclose(self.trace[50:52],
[[0.14687474, -0.5103282, 0.48252111],
[0.14474003, -0.5282084, 0.48743951]],
atol=1e-14, rtol=1e-7)
def test_neldermead_initial_simplex_bad(self):
# Check it fails with a bad simplices
bad_simplices = []
simplex = np.zeros((3, 2))
simplex[...] = self.startparams[:2]
for j in range(2):
simplex[j+1,j] += 0.1
bad_simplices.append(simplex)
simplex = np.zeros((3, 3))
bad_simplices.append(simplex)
for simplex in bad_simplices:
if self.use_wrapper:
opts = {'maxiter': self.maxiter, 'disp': False,
'return_all': False, 'initial_simplex': simplex}
assert_raises(ValueError,
optimize.minimize, self.func, self.startparams, args=(),
method='Nelder-mead', options=opts)
else:
assert_raises(ValueError, optimize.fmin, self.func, self.startparams,
args=(), maxiter=self.maxiter,
full_output=True, disp=False, retall=False,
initial_simplex=simplex)
def test_ncg_negative_maxiter(self):
# Regression test for gh-8241
opts = {'maxiter': -1}
result = optimize.minimize(self.func, self.startparams,
method='Newton-CG', jac=self.grad,
args=(), options=opts)
assert_(result.status == 1)
def test_ncg(self):
# line-search Newton conjugate gradient optimization routine
if self.use_wrapper:
opts = {'maxiter': self.maxiter, 'disp': self.disp,
'return_all': False}
retval = optimize.minimize(self.func, self.startparams,
method='Newton-CG', jac=self.grad,
args=(), options=opts)['x']
else:
retval = optimize.fmin_ncg(self.func, self.startparams, self.grad,
args=(), maxiter=self.maxiter,
full_output=False, disp=self.disp,
retall=False)
params = retval
assert_allclose(self.func(params), self.func(self.solution),
atol=1e-6)
# Ensure that function call counts are 'known good'; these are from
# Scipy 0.7.0. Don't allow them to increase.
assert_(self.funccalls == 7, self.funccalls)
assert_(self.gradcalls <= 22, self.gradcalls) # 0.13.0
#assert_(self.gradcalls <= 18, self.gradcalls) # 0.9.0
#assert_(self.gradcalls == 18, self.gradcalls) # 0.8.0
#assert_(self.gradcalls == 22, self.gradcalls) # 0.7.0
# Ensure that the function behaves the same; this is from Scipy 0.7.0
assert_allclose(self.trace[3:5],
[[-4.35700753e-07, -5.24869435e-01, 4.87527480e-01],
[-4.35700753e-07, -5.24869401e-01, 4.87527774e-01]],
atol=1e-6, rtol=1e-7)
def test_ncg_hess(self):
# Newton conjugate gradient with Hessian
if self.use_wrapper:
opts = {'maxiter': self.maxiter, 'disp': self.disp,
'return_all': False}
retval = optimize.minimize(self.func, self.startparams,
method='Newton-CG', jac=self.grad,
hess=self.hess,
args=(), options=opts)['x']
else:
retval = optimize.fmin_ncg(self.func, self.startparams, self.grad,
fhess=self.hess,
args=(), maxiter=self.maxiter,
full_output=False, disp=self.disp,
retall=False)
params = retval
assert_allclose(self.func(params), self.func(self.solution),
atol=1e-6)
# Ensure that function call counts are 'known good'; these are from
# Scipy 0.7.0. Don't allow them to increase.
assert_(self.funccalls == 7, self.funccalls)
assert_(self.gradcalls <= 18, self.gradcalls) # 0.9.0
# assert_(self.gradcalls == 18, self.gradcalls) # 0.8.0
# assert_(self.gradcalls == 22, self.gradcalls) # 0.7.0
# Ensure that the function behaves the same; this is from Scipy 0.7.0
assert_allclose(self.trace[3:5],
[[-4.35700753e-07, -5.24869435e-01, 4.87527480e-01],
[-4.35700753e-07, -5.24869401e-01, 4.87527774e-01]],
atol=1e-6, rtol=1e-7)
def test_ncg_hessp(self):
# Newton conjugate gradient with Hessian times a vector p.
if self.use_wrapper:
opts = {'maxiter': self.maxiter, 'disp': self.disp,
'return_all': False}
retval = optimize.minimize(self.func, self.startparams,
method='Newton-CG', jac=self.grad,
hessp=self.hessp,
args=(), options=opts)['x']
else:
retval = optimize.fmin_ncg(self.func, self.startparams, self.grad,
fhess_p=self.hessp,
args=(), maxiter=self.maxiter,
full_output=False, disp=self.disp,
retall=False)
params = retval
assert_allclose(self.func(params), self.func(self.solution),
atol=1e-6)
# Ensure that function call counts are 'known good'; these are from
# Scipy 0.7.0. Don't allow them to increase.
assert_(self.funccalls == 7, self.funccalls)
assert_(self.gradcalls <= 18, self.gradcalls) # 0.9.0
# assert_(self.gradcalls == 18, self.gradcalls) # 0.8.0
# assert_(self.gradcalls == 22, self.gradcalls) # 0.7.0
# Ensure that the function behaves the same; this is from Scipy 0.7.0
assert_allclose(self.trace[3:5],
[[-4.35700753e-07, -5.24869435e-01, 4.87527480e-01],
[-4.35700753e-07, -5.24869401e-01, 4.87527774e-01]],
atol=1e-6, rtol=1e-7)
def test_neldermead_xatol_fatol():
# gh4484
# test we can call with fatol, xatol specified
func = lambda x: x[0]**2 + x[1]**2
optimize._minimize._minimize_neldermead(func, [1, 1], maxiter=2,
xatol=1e-3, fatol=1e-3)
assert_warns(DeprecationWarning,
optimize._minimize._minimize_neldermead,
func, [1, 1], xtol=1e-3, ftol=1e-3, maxiter=2)
def test_neldermead_adaptive():
func = lambda x: np.sum(x**2)
p0 = [0.15746215, 0.48087031, 0.44519198, 0.4223638, 0.61505159, 0.32308456,
0.9692297, 0.4471682, 0.77411992, 0.80441652, 0.35994957, 0.75487856,
0.99973421, 0.65063887, 0.09626474]
res = optimize.minimize(func, p0, method='Nelder-Mead')
assert_equal(res.success, False)
res = optimize.minimize(func, p0, method='Nelder-Mead',
options={'adaptive':True})
assert_equal(res.success, True)
class TestOptimizeWrapperDisp(CheckOptimizeParameterized):
use_wrapper = True
disp = True
class TestOptimizeWrapperNoDisp(CheckOptimizeParameterized):
use_wrapper = True
disp = False
class TestOptimizeNoWrapperDisp(CheckOptimizeParameterized):
use_wrapper = False
disp = True
class TestOptimizeNoWrapperNoDisp(CheckOptimizeParameterized):
use_wrapper = False
disp = False
class TestOptimizeSimple(CheckOptimize):
def test_bfgs_nan(self):
# Test corner case where nan is fed to optimizer. See gh-2067.
func = lambda x: x
fprime = lambda x: np.ones_like(x)
x0 = [np.nan]
with np.errstate(over='ignore', invalid='ignore'):
x = optimize.fmin_bfgs(func, x0, fprime, disp=False)
assert_(np.isnan(func(x)))
def test_bfgs_nan_return(self):
# Test corner cases where fun returns NaN. See gh-4793.
# First case: NaN from first call.
func = lambda x: np.nan
with np.errstate(invalid='ignore'):
result = optimize.minimize(func, 0)
assert_(np.isnan(result['fun']))
assert_(result['success'] is False)
# Second case: NaN from second call.
func = lambda x: 0 if x == 0 else np.nan
fprime = lambda x: np.ones_like(x) # Steer away from zero.
with np.errstate(invalid='ignore'):
result = optimize.minimize(func, 0, jac=fprime)
assert_(np.isnan(result['fun']))
assert_(result['success'] is False)
def test_bfgs_numerical_jacobian(self):
# BFGS with numerical jacobian and a vector epsilon parameter.
# define the epsilon parameter using a random vector
epsilon = np.sqrt(np.finfo(float).eps) * np.random.rand(len(self.solution))
params = optimize.fmin_bfgs(self.func, self.startparams,
epsilon=epsilon, args=(),
maxiter=self.maxiter, disp=False)
assert_allclose(self.func(params), self.func(self.solution),
atol=1e-6)
def test_bfgs_gh_2169(self):
def f(x):
if x < 0:
return 1.79769313e+308
else:
return x + 1./x
xs = optimize.fmin_bfgs(f, [10.], disp=False)
assert_allclose(xs, 1.0, rtol=1e-4, atol=1e-4)
def test_l_bfgs_b(self):
# limited-memory bound-constrained BFGS algorithm
retval = optimize.fmin_l_bfgs_b(self.func, self.startparams,
self.grad, args=(),
maxiter=self.maxiter)
(params, fopt, d) = retval
assert_allclose(self.func(params), self.func(self.solution),
atol=1e-6)
# Ensure that function call counts are 'known good'; these are from
# Scipy 0.7.0. Don't allow them to increase.
assert_(self.funccalls == 7, self.funccalls)
assert_(self.gradcalls == 5, self.gradcalls)
# Ensure that the function behaves the same; this is from Scipy 0.7.0
assert_allclose(self.trace[3:5],
[[0., -0.52489628, 0.48753042],
[0., -0.52489628, 0.48753042]],
atol=1e-14, rtol=1e-7)
def test_l_bfgs_b_numjac(self):
# L-BFGS-B with numerical jacobian
retval = optimize.fmin_l_bfgs_b(self.func, self.startparams,
approx_grad=True,
maxiter=self.maxiter)
(params, fopt, d) = retval
assert_allclose(self.func(params), self.func(self.solution),
atol=1e-6)
def test_l_bfgs_b_funjac(self):
# L-BFGS-B with combined objective function and jacobian
def fun(x):
return self.func(x), self.grad(x)
retval = optimize.fmin_l_bfgs_b(fun, self.startparams,
maxiter=self.maxiter)
(params, fopt, d) = retval
assert_allclose(self.func(params), self.func(self.solution),
atol=1e-6)
def test_l_bfgs_b_maxiter(self):
# gh7854
# Ensure that not more than maxiters are ever run.
class Callback(object):
def __init__(self):
self.nit = 0
self.fun = None
self.x = None
def __call__(self, x):
self.x = x
self.fun = optimize.rosen(x)
self.nit += 1
c = Callback()
res = optimize.minimize(optimize.rosen, [0., 0.], method='l-bfgs-b',
callback=c, options={'maxiter': 5})
assert_equal(res.nit, 5)
assert_almost_equal(res.x, c.x)
assert_almost_equal(res.fun, c.fun)
assert_equal(res.status, 1)
assert_(res.success is False)
assert_equal(res.message.decode(), 'STOP: TOTAL NO. of ITERATIONS REACHED LIMIT')
def test_minimize_l_bfgs_b(self):
# Minimize with L-BFGS-B method
opts = {'disp': False, 'maxiter': self.maxiter}
r = optimize.minimize(self.func, self.startparams,
method='L-BFGS-B', jac=self.grad,
options=opts)
assert_allclose(self.func(r.x), self.func(self.solution),
atol=1e-6)
# approximate jacobian
ra = optimize.minimize(self.func, self.startparams,
method='L-BFGS-B', options=opts)
assert_allclose(self.func(ra.x), self.func(self.solution),
atol=1e-6)
# check that function evaluations in approximate jacobian are counted
assert_(ra.nfev > r.nfev)
def test_minimize_l_bfgs_b_ftol(self):
# Check that the `ftol` parameter in l_bfgs_b works as expected
v0 = None
for tol in [1e-1, 1e-4, 1e-7, 1e-10]:
opts = {'disp': False, 'maxiter': self.maxiter, 'ftol': tol}
sol = optimize.minimize(self.func, self.startparams,
method='L-BFGS-B', jac=self.grad,
options=opts)
v = self.func(sol.x)
if v0 is None:
v0 = v
else:
assert_(v < v0)
assert_allclose(v, self.func(self.solution), rtol=tol)
def test_minimize_l_bfgs_maxls(self):
# check that the maxls is passed down to the Fortran routine
sol = optimize.minimize(optimize.rosen, np.array([-1.2,1.0]),
method='L-BFGS-B', jac=optimize.rosen_der,
options={'disp': False, 'maxls': 1})
assert_(not sol.success)
def test_minimize_l_bfgs_b_maxfun_interruption(self):
# gh-6162
f = optimize.rosen
g = optimize.rosen_der
values = []
x0 = np.ones(7) * 1000
def objfun(x):
value = f(x)
values.append(value)
return value
# Look for an interesting test case.
# Request a maxfun that stops at a particularly bad function
# evaluation somewhere between 100 and 300 evaluations.
low, medium, high = 30, 100, 300
optimize.fmin_l_bfgs_b(objfun, x0, fprime=g, maxfun=high)
v, k = max((y, i) for i, y in enumerate(values[medium:]))
maxfun = medium + k
# If the minimization strategy is reasonable,
# the minimize() result should not be worse than the best
# of the first 30 function evaluations.
target = min(values[:low])
xmin, fmin, d = optimize.fmin_l_bfgs_b(f, x0, fprime=g, maxfun=maxfun)
assert_array_less(fmin, target)
def test_custom(self):
# This function comes from the documentation example.
def custmin(fun, x0, args=(), maxfev=None, stepsize=0.1,
maxiter=100, callback=None, **options):
bestx = x0
besty = fun(x0)
funcalls = 1
niter = 0
improved = True
stop = False
while improved and not stop and niter < maxiter:
improved = False
niter += 1
for dim in range(np.size(x0)):
for s in [bestx[dim] - stepsize, bestx[dim] + stepsize]:
testx = np.copy(bestx)
testx[dim] = s
testy = fun(testx, *args)
funcalls += 1
if testy < besty:
besty = testy
bestx = testx
improved = True
if callback is not None:
callback(bestx)
if maxfev is not None and funcalls >= maxfev:
stop = True
break
return optimize.OptimizeResult(fun=besty, x=bestx, nit=niter,
nfev=funcalls, success=(niter > 1))
x0 = [1.35, 0.9, 0.8, 1.1, 1.2]
res = optimize.minimize(optimize.rosen, x0, method=custmin,
options=dict(stepsize=0.05))
assert_allclose(res.x, 1.0, rtol=1e-4, atol=1e-4)
def test_minimize_tol_parameter(self):
# Check that the minimize() tol= argument does something
def func(z):
x, y = z
return x**2*y**2 + x**4 + 1
def dfunc(z):
x, y = z
return np.array([2*x*y**2 + 4*x**3, 2*x**2*y])
for method in ['nelder-mead', 'powell', 'cg', 'bfgs',
'newton-cg', 'l-bfgs-b', 'tnc',
'cobyla', 'slsqp']:
if method in ('nelder-mead', 'powell', 'cobyla'):
jac = None
else:
jac = dfunc
sol1 = optimize.minimize(func, [1, 1], jac=jac, tol=1e-10,
method=method)
sol2 = optimize.minimize(func, [1, 1], jac=jac, tol=1.0,
method=method)
assert_(func(sol1.x) < func(sol2.x),
"%s: %s vs. %s" % (method, func(sol1.x), func(sol2.x)))
@pytest.mark.parametrize('method', ['fmin', 'fmin_powell', 'fmin_cg', 'fmin_bfgs',
'fmin_ncg', 'fmin_l_bfgs_b', 'fmin_tnc',
'fmin_slsqp',
'Nelder-Mead', 'Powell', 'CG', 'BFGS', 'Newton-CG', 'L-BFGS-B',
'TNC', 'SLSQP', 'trust-constr', 'dogleg', 'trust-ncg',
'trust-exact', 'trust-krylov'])
def test_minimize_callback_copies_array(self, method):
# Check that arrays passed to callbacks are not modified
# inplace by the optimizer afterward
if method in ('fmin_tnc', 'fmin_l_bfgs_b'):
func = lambda x: (optimize.rosen(x), optimize.rosen_der(x))
else:
func = optimize.rosen
jac = optimize.rosen_der
hess = optimize.rosen_hess
x0 = np.zeros(10)
# Set options
kwargs = {}
if method.startswith('fmin'):
routine = getattr(optimize, method)
if method == 'fmin_slsqp':
kwargs['iter'] = 5
elif method == 'fmin_tnc':
kwargs['maxfun'] = 100
else:
kwargs['maxiter'] = 5
else:
def routine(*a, **kw):
kw['method'] = method
return optimize.minimize(*a, **kw)
if method == 'TNC':
kwargs['options'] = dict(maxiter=100)
else:
kwargs['options'] = dict(maxiter=5)
if method in ('fmin_ncg',):
kwargs['fprime'] = jac
elif method in ('Newton-CG',):
kwargs['jac'] = jac
elif method in ('trust-krylov', 'trust-exact', 'trust-ncg', 'dogleg',
'trust-constr'):
kwargs['jac'] = jac
kwargs['hess'] = hess
# Run with callback
results = []
def callback(x, *args, **kwargs):
results.append((x, np.copy(x)))
sol = routine(func, x0, callback=callback, **kwargs)
# Check returned arrays coincide with their copies and have no memory overlap
assert_(len(results) > 2)
assert_(all(np.all(x == y) for x, y in results))
assert_(not any(np.may_share_memory(x[0], y[0]) for x, y in itertools.combinations(results, 2)))
@pytest.mark.parametrize('method', ['nelder-mead', 'powell', 'cg', 'bfgs', 'newton-cg',
'l-bfgs-b', 'tnc', 'cobyla', 'slsqp'])
def test_no_increase(self, method):
# Check that the solver doesn't return a value worse than the
# initial point.
def func(x):
return (x - 1)**2
def bad_grad(x):
# purposefully invalid gradient function, simulates a case
# where line searches start failing
return 2*(x - 1) * (-1) - 2
x0 = np.array([2.0])
f0 = func(x0)
jac = bad_grad
if method in ['nelder-mead', 'powell', 'cobyla']:
jac = None
sol = optimize.minimize(func, x0, jac=jac, method=method,
options=dict(maxiter=20))
assert_equal(func(sol.x), sol.fun)
if method == 'slsqp':
pytest.xfail("SLSQP returns slightly worse")
assert_(func(sol.x) <= f0)
def test_slsqp_respect_bounds(self):
# Regression test for gh-3108
def f(x):
return sum((x - np.array([1., 2., 3., 4.]))**2)
def cons(x):
a = np.array([[-1, -1, -1, -1], [-3, -3, -2, -1]])
return np.concatenate([np.dot(a, x) + np.array([5, 10]), x])
x0 = np.array([0.5, 1., 1.5, 2.])
res = optimize.minimize(f, x0, method='slsqp',
constraints={'type': 'ineq', 'fun': cons})
assert_allclose(res.x, np.array([0., 2, 5, 8])/3, atol=1e-12)
def test_minimize_automethod(self):
def f(x):
return x**2
def cons(x):
return x - 2
x0 = np.array([10.])
sol_0 = optimize.minimize(f, x0)
sol_1 = optimize.minimize(f, x0, constraints=[{'type': 'ineq', 'fun': cons}])
sol_2 = optimize.minimize(f, x0, bounds=[(5, 10)])
sol_3 = optimize.minimize(f, x0, constraints=[{'type': 'ineq', 'fun': cons}], bounds=[(5, 10)])
sol_4 = optimize.minimize(f, x0, constraints=[{'type': 'ineq', 'fun': cons}], bounds=[(1, 10)])
for sol in [sol_0, sol_1, sol_2, sol_3, sol_4]:
assert_(sol.success)
assert_allclose(sol_0.x, 0, atol=1e-7)
assert_allclose(sol_1.x, 2, atol=1e-7)
assert_allclose(sol_2.x, 5, atol=1e-7)
assert_allclose(sol_3.x, 5, atol=1e-7)
assert_allclose(sol_4.x, 2, atol=1e-7)
def test_minimize_coerce_args_param(self):
# Regression test for gh-3503
def Y(x, c):
return np.sum((x-c)**2)
def dY_dx(x, c=None):
return 2*(x-c)
c = np.array([3, 1, 4, 1, 5, 9, 2, 6, 5, 3, 5])
xinit = np.random.randn(len(c))
optimize.minimize(Y, xinit, jac=dY_dx, args=(c), method="BFGS")
def test_initial_step_scaling(self):
# Check that optimizer initial step is not huge even if the
# function and gradients are
scales = [1e-50, 1, 1e50]
methods = ['CG', 'BFGS', 'L-BFGS-B', 'Newton-CG']
def f(x):
if first_step_size[0] is None and x[0] != x0[0]:
first_step_size[0] = abs(x[0] - x0[0])
if abs(x).max() > 1e4:
raise AssertionError("Optimization stepped far away!")
return scale*(x[0] - 1)**2
def g(x):
return np.array([scale*(x[0] - 1)])
for scale, method in itertools.product(scales, methods):
if method in ('CG', 'BFGS'):
options = dict(gtol=scale*1e-8)
else:
options = dict()
if scale < 1e-10 and method in ('L-BFGS-B', 'Newton-CG'):
# XXX: return initial point if they see small gradient
continue
x0 = [-1.0]
first_step_size = [None]
res = optimize.minimize(f, x0, jac=g, method=method,
options=options)
err_msg = "{0} {1}: {2}: {3}".format(method, scale, first_step_size,
res)
assert_(res.success, err_msg)
assert_allclose(res.x, [1.0], err_msg=err_msg)
assert_(res.nit <= 3, err_msg)
if scale > 1e-10:
if method in ('CG', 'BFGS'):
assert_allclose(first_step_size[0], 1.01, err_msg=err_msg)
else:
# Newton-CG and L-BFGS-B use different logic for the first step,
# but are both scaling invariant with step sizes ~ 1
assert_(first_step_size[0] > 0.5 and first_step_size[0] < 3,
err_msg)
else:
# step size has upper bound of ||grad||, so line
# search makes many small steps
pass
class TestLBFGSBBounds(object):
def setup_method(self):
self.bounds = ((1, None), (None, None))
self.solution = (1, 0)
def fun(self, x, p=2.0):
return 1.0 / p * (x[0]**p + x[1]**p)
def jac(self, x, p=2.0):
return x**(p - 1)
def fj(self, x, p=2.0):
return self.fun(x, p), self.jac(x, p)
def test_l_bfgs_b_bounds(self):
x, f, d = optimize.fmin_l_bfgs_b(self.fun, [0, -1],
fprime=self.jac,
bounds=self.bounds)
assert_(d['warnflag'] == 0, d['task'])
assert_allclose(x, self.solution, atol=1e-6)
def test_l_bfgs_b_funjac(self):
# L-BFGS-B with fun and jac combined and extra arguments
x, f, d = optimize.fmin_l_bfgs_b(self.fj, [0, -1], args=(2.0, ),
bounds=self.bounds)
assert_(d['warnflag'] == 0, d['task'])
assert_allclose(x, self.solution, atol=1e-6)
def test_minimize_l_bfgs_b_bounds(self):
# Minimize with method='L-BFGS-B' with bounds
res = optimize.minimize(self.fun, [0, -1], method='L-BFGS-B',
jac=self.jac, bounds=self.bounds)
assert_(res['success'], res['message'])
assert_allclose(res.x, self.solution, atol=1e-6)
class TestOptimizeScalar(object):
def setup_method(self):
self.solution = 1.5
def fun(self, x, a=1.5):
"""Objective function"""
return (x - a)**2 - 0.8
def test_brent(self):
x = optimize.brent(self.fun)
assert_allclose(x, self.solution, atol=1e-6)
x = optimize.brent(self.fun, brack=(-3, -2))
assert_allclose(x, self.solution, atol=1e-6)
x = optimize.brent(self.fun, full_output=True)
assert_allclose(x[0], self.solution, atol=1e-6)
x = optimize.brent(self.fun, brack=(-15, -1, 15))
assert_allclose(x, self.solution, atol=1e-6)
def test_golden(self):
x = optimize.golden(self.fun)
assert_allclose(x, self.solution, atol=1e-6)
x = optimize.golden(self.fun, brack=(-3, -2))
assert_allclose(x, self.solution, atol=1e-6)
x = optimize.golden(self.fun, full_output=True)
assert_allclose(x[0], self.solution, atol=1e-6)
x = optimize.golden(self.fun, brack=(-15, -1, 15))
assert_allclose(x, self.solution, atol=1e-6)
x = optimize.golden(self.fun, tol=0)
assert_allclose(x, self.solution)
maxiter_test_cases = [0, 1, 5]
for maxiter in maxiter_test_cases:
x0 = optimize.golden(self.fun, maxiter=0, full_output=True)
x = optimize.golden(self.fun, maxiter=maxiter, full_output=True)
nfev0, nfev = x0[2], x[2]
assert_equal(nfev - nfev0, maxiter)
def test_fminbound(self):
x = optimize.fminbound(self.fun, 0, 1)
assert_allclose(x, 1, atol=1e-4)
x = optimize.fminbound(self.fun, 1, 5)
assert_allclose(x, self.solution, atol=1e-6)
x = optimize.fminbound(self.fun, np.array([1]), np.array([5]))
assert_allclose(x, self.solution, atol=1e-6)
assert_raises(ValueError, optimize.fminbound, self.fun, 5, 1)
def test_fminbound_scalar(self):
with pytest.raises(ValueError, match='.*must be scalar.*'):
optimize.fminbound(self.fun, np.zeros((1, 2)), 1)
x = optimize.fminbound(self.fun, 1, np.array(5))
assert_allclose(x, self.solution, atol=1e-6)
def test_minimize_scalar(self):
# combine all tests above for the minimize_scalar wrapper
x = optimize.minimize_scalar(self.fun).x
assert_allclose(x, self.solution, atol=1e-6)
x = optimize.minimize_scalar(self.fun, method='Brent')
assert_(x.success)
x = optimize.minimize_scalar(self.fun, method='Brent',
options=dict(maxiter=3))
assert_(not x.success)
x = optimize.minimize_scalar(self.fun, bracket=(-3, -2),
args=(1.5, ), method='Brent').x
assert_allclose(x, self.solution, atol=1e-6)
x = optimize.minimize_scalar(self.fun, method='Brent',
args=(1.5,)).x
assert_allclose(x, self.solution, atol=1e-6)
x = optimize.minimize_scalar(self.fun, bracket=(-15, -1, 15),
args=(1.5, ), method='Brent').x
assert_allclose(x, self.solution, atol=1e-6)
x = optimize.minimize_scalar(self.fun, bracket=(-3, -2),
args=(1.5, ), method='golden').x
assert_allclose(x, self.solution, atol=1e-6)
x = optimize.minimize_scalar(self.fun, method='golden',
args=(1.5,)).x
assert_allclose(x, self.solution, atol=1e-6)
x = optimize.minimize_scalar(self.fun, bracket=(-15, -1, 15),
args=(1.5, ), method='golden').x
assert_allclose(x, self.solution, atol=1e-6)
x = optimize.minimize_scalar(self.fun, bounds=(0, 1), args=(1.5,),
method='Bounded').x
assert_allclose(x, 1, atol=1e-4)
x = optimize.minimize_scalar(self.fun, bounds=(1, 5), args=(1.5, ),
method='bounded').x
assert_allclose(x, self.solution, atol=1e-6)
x = optimize.minimize_scalar(self.fun, bounds=(np.array([1]),
np.array([5])),
args=(np.array([1.5]), ),
method='bounded').x
assert_allclose(x, self.solution, atol=1e-6)
assert_raises(ValueError, optimize.minimize_scalar, self.fun,
bounds=(5, 1), method='bounded', args=(1.5, ))
assert_raises(ValueError, optimize.minimize_scalar, self.fun,
bounds=(np.zeros(2), 1), method='bounded', args=(1.5, ))
x = optimize.minimize_scalar(self.fun, bounds=(1, np.array(5)),
method='bounded').x
assert_allclose(x, self.solution, atol=1e-6)
def test_minimize_scalar_custom(self):
# This function comes from the documentation example.
def custmin(fun, bracket, args=(), maxfev=None, stepsize=0.1,
maxiter=100, callback=None, **options):
bestx = (bracket[1] + bracket[0]) / 2.0
besty = fun(bestx)
funcalls = 1
niter = 0
improved = True
stop = False
while improved and not stop and niter < maxiter:
improved = False
niter += 1
for testx in [bestx - stepsize, bestx + stepsize]:
testy = fun(testx, *args)
funcalls += 1
if testy < besty:
besty = testy
bestx = testx
improved = True
if callback is not None:
callback(bestx)
if maxfev is not None and funcalls >= maxfev:
stop = True
break
return optimize.OptimizeResult(fun=besty, x=bestx, nit=niter,
nfev=funcalls, success=(niter > 1))
res = optimize.minimize_scalar(self.fun, bracket=(0, 4), method=custmin,
options=dict(stepsize=0.05))
assert_allclose(res.x, self.solution, atol=1e-6)
def test_minimize_scalar_coerce_args_param(self):
# Regression test for gh-3503
optimize.minimize_scalar(self.fun, args=1.5)
def test_brent_negative_tolerance():
assert_raises(ValueError, optimize.brent, np.cos, tol=-.01)
class TestNewtonCg(object):
def test_rosenbrock(self):
x0 = np.array([-1.2, 1.0])
sol = optimize.minimize(optimize.rosen, x0,
jac=optimize.rosen_der,
hess=optimize.rosen_hess,
tol=1e-5,
method='Newton-CG')
assert_(sol.success, sol.message)
assert_allclose(sol.x, np.array([1, 1]), rtol=1e-4)
def test_himmelblau(self):
x0 = np.array(himmelblau_x0)
sol = optimize.minimize(himmelblau,
x0,
jac=himmelblau_grad,
hess=himmelblau_hess,
method='Newton-CG',
tol=1e-6)
assert_(sol.success, sol.message)
assert_allclose(sol.x, himmelblau_xopt, rtol=1e-4)
assert_allclose(sol.fun, himmelblau_min, atol=1e-4)
class TestRosen(object):
def test_hess(self):
# Compare rosen_hess(x) times p with rosen_hess_prod(x,p). See gh-1775
x = np.array([3, 4, 5])
p = np.array([2, 2, 2])
hp = optimize.rosen_hess_prod(x, p)
dothp = np.dot(optimize.rosen_hess(x), p)
assert_equal(hp, dothp)
def himmelblau(p):
"""
R^2 -> R^1 test function for optimization. The function has four local
minima where himmelblau(xopt) == 0.
"""
x, y = p
a = x*x + y - 11
b = x + y*y - 7
return a*a + b*b
def himmelblau_grad(p):
x, y = p
return np.array([4*x**3 + 4*x*y - 42*x + 2*y**2 - 14,
2*x**2 + 4*x*y + 4*y**3 - 26*y - 22])
def himmelblau_hess(p):
x, y = p
return np.array([[12*x**2 + 4*y - 42, 4*x + 4*y],
[4*x + 4*y, 4*x + 12*y**2 - 26]])
himmelblau_x0 = [-0.27, -0.9]
himmelblau_xopt = [3, 2]
himmelblau_min = 0.0
def test_minimize_multiple_constraints():
# Regression test for gh-4240.
def func(x):
return np.array([25 - 0.2 * x[0] - 0.4 * x[1] - 0.33 * x[2]])
def func1(x):
return np.array([x[1]])
def func2(x):
return np.array([x[2]])
cons = ({'type': 'ineq', 'fun': func},
{'type': 'ineq', 'fun': func1},
{'type': 'ineq', 'fun': func2})
f = lambda x: -1 * (x[0] + x[1] + x[2])
res = optimize.minimize(f, [0, 0, 0], method='SLSQP', constraints=cons)
assert_allclose(res.x, [125, 0, 0], atol=1e-10)
class TestOptimizeResultAttributes(object):
# Test that all minimizers return an OptimizeResult containing
# all the OptimizeResult attributes
def setup_method(self):
self.x0 = [5, 5]
self.func = optimize.rosen
self.jac = optimize.rosen_der
self.hess = optimize.rosen_hess
self.hessp = optimize.rosen_hess_prod
self.bounds = [(0., 10.), (0., 10.)]
def test_attributes_present(self):
methods = ['Nelder-Mead', 'Powell', 'CG', 'BFGS', 'Newton-CG',
'L-BFGS-B', 'TNC', 'COBYLA', 'SLSQP', 'dogleg',
'trust-ncg']
attributes = ['nit', 'nfev', 'x', 'success', 'status', 'fun',
'message']
skip = {'COBYLA': ['nit']}
for method in methods:
with suppress_warnings() as sup:
sup.filter(RuntimeWarning,
"Method .+ does not use (gradient|Hessian.*) information")
res = optimize.minimize(self.func, self.x0, method=method,
jac=self.jac, hess=self.hess,
hessp=self.hessp)
for attribute in attributes:
if method in skip and attribute in skip[method]:
continue
assert_(hasattr(res, attribute))
assert_(attribute in dir(res))
class TestBrute:
# Test the "brute force" method
def setup_method(self):
self.params = (2, 3, 7, 8, 9, 10, 44, -1, 2, 26, 1, -2, 0.5)
self.rranges = (slice(-4, 4, 0.25), slice(-4, 4, 0.25))
self.solution = np.array([-1.05665192, 1.80834843])
def f1(self, z, *params):
x, y = z
a, b, c, d, e, f, g, h, i, j, k, l, scale = params
return (a * x**2 + b * x * y + c * y**2 + d*x + e*y + f)
def f2(self, z, *params):
x, y = z
a, b, c, d, e, f, g, h, i, j, k, l, scale = params
return (-g*np.exp(-((x-h)**2 + (y-i)**2) / scale))
def f3(self, z, *params):
x, y = z
a, b, c, d, e, f, g, h, i, j, k, l, scale = params
return (-j*np.exp(-((x-k)**2 + (y-l)**2) / scale))
def func(self, z, *params):
return self.f1(z, *params) + self.f2(z, *params) + self.f3(z, *params)
def test_brute(self):
# test fmin
resbrute = optimize.brute(self.func, self.rranges, args=self.params,
full_output=True, finish=optimize.fmin)
assert_allclose(resbrute[0], self.solution, atol=1e-3)
assert_allclose(resbrute[1], self.func(self.solution, *self.params),
atol=1e-3)
# test minimize
resbrute = optimize.brute(self.func, self.rranges, args=self.params,
full_output=True,
finish=optimize.minimize)
assert_allclose(resbrute[0], self.solution, atol=1e-3)
assert_allclose(resbrute[1], self.func(self.solution, *self.params),
atol=1e-3)
def test_1D(self):
# test that for a 1D problem the test function is passed an array,
# not a scalar.
def f(x):
assert_(len(x.shape) == 1)
assert_(x.shape[0] == 1)
return x ** 2
optimize.brute(f, [(-1, 1)], Ns=3, finish=None)
class TestIterationLimits(object):
# Tests that optimisation does not give up before trying requested
# number of iterations or evaluations. And that it does not succeed
# by exceeding the limits.
def setup_method(self):
self.funcalls = 0
def slow_func(self, v):
self.funcalls += 1
r,t = np.sqrt(v[0]**2+v[1]**2), np.arctan2(v[0],v[1])
return np.sin(r*20 + t)+r*0.5
def test_neldermead_limit(self):
self.check_limits("Nelder-Mead", 200)
def test_powell_limit(self):
self.check_limits("powell", 1000)
def check_limits(self, method, default_iters):
for start_v in [[0.1,0.1], [1,1], [2,2]]:
for mfev in [50, 500, 5000]:
self.funcalls = 0
res = optimize.minimize(self.slow_func, start_v,
method=method, options={"maxfev":mfev})
assert_(self.funcalls == res["nfev"])
if res["success"]:
assert_(res["nfev"] < mfev)
else:
assert_(res["nfev"] >= mfev)
for mit in [50, 500,5000]:
res = optimize.minimize(self.slow_func, start_v,
method=method, options={"maxiter":mit})
if res["success"]:
assert_(res["nit"] <= mit)
else:
assert_(res["nit"] >= mit)
for mfev,mit in [[50,50], [5000,5000],[5000,np.inf]]:
self.funcalls = 0
res = optimize.minimize(self.slow_func, start_v,
method=method, options={"maxiter":mit, "maxfev":mfev})
assert_(self.funcalls == res["nfev"])
if res["success"]:
assert_(res["nfev"] < mfev and res["nit"] <= mit)
else:
assert_(res["nfev"] >= mfev or res["nit"] >= mit)
for mfev,mit in [[np.inf,None], [None,np.inf]]:
self.funcalls = 0
res = optimize.minimize(self.slow_func, start_v,
method=method, options={"maxiter":mit, "maxfev":mfev})
assert_(self.funcalls == res["nfev"])
if res["success"]:
if mfev is None:
assert_(res["nfev"] < default_iters*2)
else:
assert_(res["nit"] <= default_iters*2)
else:
assert_(res["nfev"] >= default_iters*2 or
res["nit"] >= default_iters*2)