You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1468 lines
48 KiB
Python
1468 lines
48 KiB
Python
6 years ago
|
# Copyright (C) 2003-2005 Peter J. Verveer
|
||
|
#
|
||
|
# Redistribution and use in source and binary forms, with or without
|
||
|
# modification, are permitted provided that the following conditions
|
||
|
# are met:
|
||
|
#
|
||
|
# 1. Redistributions of source code must retain the above copyright
|
||
|
# notice, this list of conditions and the following disclaimer.
|
||
|
#
|
||
|
# 2. Redistributions in binary form must reproduce the above
|
||
|
# copyright notice, this list of conditions and the following
|
||
|
# disclaimer in the documentation and/or other materials provided
|
||
|
# with the distribution.
|
||
|
#
|
||
|
# 3. The name of the author may not be used to endorse or promote
|
||
|
# products derived from this software without specific prior
|
||
|
# written permission.
|
||
|
#
|
||
|
# THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
|
||
|
# OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
|
||
|
# WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||
|
# ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
|
||
|
# DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
||
|
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
|
||
|
# GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
||
|
# INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
|
||
|
# WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
|
||
|
# NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
||
|
# SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||
|
|
||
|
from __future__ import division, print_function, absolute_import
|
||
|
|
||
|
import numpy
|
||
|
import numpy as np
|
||
|
from . import _ni_support
|
||
|
from . import _ni_label
|
||
|
from . import _nd_image
|
||
|
from . import morphology
|
||
|
|
||
|
__all__ = ['label', 'find_objects', 'labeled_comprehension', 'sum', 'mean',
|
||
|
'variance', 'standard_deviation', 'minimum', 'maximum', 'median',
|
||
|
'minimum_position', 'maximum_position', 'extrema', 'center_of_mass',
|
||
|
'histogram', 'watershed_ift']
|
||
|
|
||
|
|
||
|
def label(input, structure=None, output=None):
|
||
|
"""
|
||
|
Label features in an array.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
input : array_like
|
||
|
An array-like object to be labeled. Any non-zero values in `input` are
|
||
|
counted as features and zero values are considered the background.
|
||
|
structure : array_like, optional
|
||
|
A structuring element that defines feature connections.
|
||
|
`structure` must be symmetric. If no structuring element is provided,
|
||
|
one is automatically generated with a squared connectivity equal to
|
||
|
one. That is, for a 2-D `input` array, the default structuring element
|
||
|
is::
|
||
|
|
||
|
[[0,1,0],
|
||
|
[1,1,1],
|
||
|
[0,1,0]]
|
||
|
|
||
|
output : (None, data-type, array_like), optional
|
||
|
If `output` is a data type, it specifies the type of the resulting
|
||
|
labeled feature array
|
||
|
If `output` is an array-like object, then `output` will be updated
|
||
|
with the labeled features from this function. This function can
|
||
|
operate in-place, by passing output=input.
|
||
|
Note that the output must be able to store the largest label, or this
|
||
|
function will raise an Exception.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
label : ndarray or int
|
||
|
An integer ndarray where each unique feature in `input` has a unique
|
||
|
label in the returned array.
|
||
|
num_features : int
|
||
|
How many objects were found.
|
||
|
|
||
|
If `output` is None, this function returns a tuple of
|
||
|
(`labeled_array`, `num_features`).
|
||
|
|
||
|
If `output` is a ndarray, then it will be updated with values in
|
||
|
`labeled_array` and only `num_features` will be returned by this
|
||
|
function.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
find_objects : generate a list of slices for the labeled features (or
|
||
|
objects); useful for finding features' position or
|
||
|
dimensions
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
Create an image with some features, then label it using the default
|
||
|
(cross-shaped) structuring element:
|
||
|
|
||
|
>>> from scipy.ndimage import label, generate_binary_structure
|
||
|
>>> a = np.array([[0,0,1,1,0,0],
|
||
|
... [0,0,0,1,0,0],
|
||
|
... [1,1,0,0,1,0],
|
||
|
... [0,0,0,1,0,0]])
|
||
|
>>> labeled_array, num_features = label(a)
|
||
|
|
||
|
Each of the 4 features are labeled with a different integer:
|
||
|
|
||
|
>>> num_features
|
||
|
4
|
||
|
>>> labeled_array
|
||
|
array([[0, 0, 1, 1, 0, 0],
|
||
|
[0, 0, 0, 1, 0, 0],
|
||
|
[2, 2, 0, 0, 3, 0],
|
||
|
[0, 0, 0, 4, 0, 0]])
|
||
|
|
||
|
Generate a structuring element that will consider features connected even
|
||
|
if they touch diagonally:
|
||
|
|
||
|
>>> s = generate_binary_structure(2,2)
|
||
|
|
||
|
or,
|
||
|
|
||
|
>>> s = [[1,1,1],
|
||
|
... [1,1,1],
|
||
|
... [1,1,1]]
|
||
|
|
||
|
Label the image using the new structuring element:
|
||
|
|
||
|
>>> labeled_array, num_features = label(a, structure=s)
|
||
|
|
||
|
Show the 2 labeled features (note that features 1, 3, and 4 from above are
|
||
|
now considered a single feature):
|
||
|
|
||
|
>>> num_features
|
||
|
2
|
||
|
>>> labeled_array
|
||
|
array([[0, 0, 1, 1, 0, 0],
|
||
|
[0, 0, 0, 1, 0, 0],
|
||
|
[2, 2, 0, 0, 1, 0],
|
||
|
[0, 0, 0, 1, 0, 0]])
|
||
|
|
||
|
"""
|
||
|
input = numpy.asarray(input)
|
||
|
if numpy.iscomplexobj(input):
|
||
|
raise TypeError('Complex type not supported')
|
||
|
if structure is None:
|
||
|
structure = morphology.generate_binary_structure(input.ndim, 1)
|
||
|
structure = numpy.asarray(structure, dtype=bool)
|
||
|
if structure.ndim != input.ndim:
|
||
|
raise RuntimeError('structure and input must have equal rank')
|
||
|
for ii in structure.shape:
|
||
|
if ii != 3:
|
||
|
raise ValueError('structure dimensions must be equal to 3')
|
||
|
|
||
|
# Use 32 bits if it's large enough for this image.
|
||
|
# _ni_label.label() needs two entries for background and
|
||
|
# foreground tracking
|
||
|
need_64bits = input.size >= (2**31 - 2)
|
||
|
|
||
|
if isinstance(output, numpy.ndarray):
|
||
|
if output.shape != input.shape:
|
||
|
raise ValueError("output shape not correct")
|
||
|
caller_provided_output = True
|
||
|
else:
|
||
|
caller_provided_output = False
|
||
|
if output is None:
|
||
|
output = np.empty(input.shape, np.intp if need_64bits else np.int32)
|
||
|
else:
|
||
|
output = np.empty(input.shape, output)
|
||
|
|
||
|
# handle scalars, 0-dim arrays
|
||
|
if input.ndim == 0 or input.size == 0:
|
||
|
if input.ndim == 0:
|
||
|
# scalar
|
||
|
maxlabel = 1 if (input != 0) else 0
|
||
|
output[...] = maxlabel
|
||
|
else:
|
||
|
# 0-dim
|
||
|
maxlabel = 0
|
||
|
if caller_provided_output:
|
||
|
return maxlabel
|
||
|
else:
|
||
|
return output, maxlabel
|
||
|
|
||
|
try:
|
||
|
max_label = _ni_label._label(input, structure, output)
|
||
|
except _ni_label.NeedMoreBits:
|
||
|
# Make another attempt with enough bits, then try to cast to the
|
||
|
# new type.
|
||
|
tmp_output = np.empty(input.shape, np.intp if need_64bits else np.int32)
|
||
|
max_label = _ni_label._label(input, structure, tmp_output)
|
||
|
output[...] = tmp_output[...]
|
||
|
if not np.all(output == tmp_output):
|
||
|
# refuse to return bad results
|
||
|
raise RuntimeError("insufficient bit-depth in requested output type")
|
||
|
|
||
|
if caller_provided_output:
|
||
|
# result was written in-place
|
||
|
return max_label
|
||
|
else:
|
||
|
return output, max_label
|
||
|
|
||
|
|
||
|
def find_objects(input, max_label=0):
|
||
|
"""
|
||
|
Find objects in a labeled array.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
input : ndarray of ints
|
||
|
Array containing objects defined by different labels. Labels with
|
||
|
value 0 are ignored.
|
||
|
max_label : int, optional
|
||
|
Maximum label to be searched for in `input`. If max_label is not
|
||
|
given, the positions of all objects are returned.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
object_slices : list of tuples
|
||
|
A list of tuples, with each tuple containing N slices (with N the
|
||
|
dimension of the input array). Slices correspond to the minimal
|
||
|
parallelepiped that contains the object. If a number is missing,
|
||
|
None is returned instead of a slice.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
label, center_of_mass
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
This function is very useful for isolating a volume of interest inside
|
||
|
a 3-D array, that cannot be "seen through".
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> from scipy import ndimage
|
||
|
>>> a = np.zeros((6,6), dtype=int)
|
||
|
>>> a[2:4, 2:4] = 1
|
||
|
>>> a[4, 4] = 1
|
||
|
>>> a[:2, :3] = 2
|
||
|
>>> a[0, 5] = 3
|
||
|
>>> a
|
||
|
array([[2, 2, 2, 0, 0, 3],
|
||
|
[2, 2, 2, 0, 0, 0],
|
||
|
[0, 0, 1, 1, 0, 0],
|
||
|
[0, 0, 1, 1, 0, 0],
|
||
|
[0, 0, 0, 0, 1, 0],
|
||
|
[0, 0, 0, 0, 0, 0]])
|
||
|
>>> ndimage.find_objects(a)
|
||
|
[(slice(2, 5, None), slice(2, 5, None)), (slice(0, 2, None), slice(0, 3, None)), (slice(0, 1, None), slice(5, 6, None))]
|
||
|
>>> ndimage.find_objects(a, max_label=2)
|
||
|
[(slice(2, 5, None), slice(2, 5, None)), (slice(0, 2, None), slice(0, 3, None))]
|
||
|
>>> ndimage.find_objects(a == 1, max_label=2)
|
||
|
[(slice(2, 5, None), slice(2, 5, None)), None]
|
||
|
|
||
|
>>> loc = ndimage.find_objects(a)[0]
|
||
|
>>> a[loc]
|
||
|
array([[1, 1, 0],
|
||
|
[1, 1, 0],
|
||
|
[0, 0, 1]])
|
||
|
|
||
|
"""
|
||
|
input = numpy.asarray(input)
|
||
|
if numpy.iscomplexobj(input):
|
||
|
raise TypeError('Complex type not supported')
|
||
|
|
||
|
if max_label < 1:
|
||
|
max_label = input.max()
|
||
|
|
||
|
return _nd_image.find_objects(input, max_label)
|
||
|
|
||
|
|
||
|
def labeled_comprehension(input, labels, index, func, out_dtype, default, pass_positions=False):
|
||
|
"""
|
||
|
Roughly equivalent to [func(input[labels == i]) for i in index].
|
||
|
|
||
|
Sequentially applies an arbitrary function (that works on array_like input)
|
||
|
to subsets of an n-D image array specified by `labels` and `index`.
|
||
|
The option exists to provide the function with positional parameters as the
|
||
|
second argument.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
input : array_like
|
||
|
Data from which to select `labels` to process.
|
||
|
labels : array_like or None
|
||
|
Labels to objects in `input`.
|
||
|
If not None, array must be same shape as `input`.
|
||
|
If None, `func` is applied to raveled `input`.
|
||
|
index : int, sequence of ints or None
|
||
|
Subset of `labels` to which to apply `func`.
|
||
|
If a scalar, a single value is returned.
|
||
|
If None, `func` is applied to all non-zero values of `labels`.
|
||
|
func : callable
|
||
|
Python function to apply to `labels` from `input`.
|
||
|
out_dtype : dtype
|
||
|
Dtype to use for `result`.
|
||
|
default : int, float or None
|
||
|
Default return value when a element of `index` does not exist
|
||
|
in `labels`.
|
||
|
pass_positions : bool, optional
|
||
|
If True, pass linear indices to `func` as a second argument.
|
||
|
Default is False.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
result : ndarray
|
||
|
Result of applying `func` to each of `labels` to `input` in `index`.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> a = np.array([[1, 2, 0, 0],
|
||
|
... [5, 3, 0, 4],
|
||
|
... [0, 0, 0, 7],
|
||
|
... [9, 3, 0, 0]])
|
||
|
>>> from scipy import ndimage
|
||
|
>>> lbl, nlbl = ndimage.label(a)
|
||
|
>>> lbls = np.arange(1, nlbl+1)
|
||
|
>>> ndimage.labeled_comprehension(a, lbl, lbls, np.mean, float, 0)
|
||
|
array([ 2.75, 5.5 , 6. ])
|
||
|
|
||
|
Falling back to `default`:
|
||
|
|
||
|
>>> lbls = np.arange(1, nlbl+2)
|
||
|
>>> ndimage.labeled_comprehension(a, lbl, lbls, np.mean, float, -1)
|
||
|
array([ 2.75, 5.5 , 6. , -1. ])
|
||
|
|
||
|
Passing positions:
|
||
|
|
||
|
>>> def fn(val, pos):
|
||
|
... print("fn says: %s : %s" % (val, pos))
|
||
|
... return (val.sum()) if (pos.sum() % 2 == 0) else (-val.sum())
|
||
|
...
|
||
|
>>> ndimage.labeled_comprehension(a, lbl, lbls, fn, float, 0, True)
|
||
|
fn says: [1 2 5 3] : [0 1 4 5]
|
||
|
fn says: [4 7] : [ 7 11]
|
||
|
fn says: [9 3] : [12 13]
|
||
|
array([ 11., 11., -12., 0.])
|
||
|
|
||
|
"""
|
||
|
|
||
|
as_scalar = numpy.isscalar(index)
|
||
|
input = numpy.asarray(input)
|
||
|
|
||
|
if pass_positions:
|
||
|
positions = numpy.arange(input.size).reshape(input.shape)
|
||
|
|
||
|
if labels is None:
|
||
|
if index is not None:
|
||
|
raise ValueError("index without defined labels")
|
||
|
if not pass_positions:
|
||
|
return func(input.ravel())
|
||
|
else:
|
||
|
return func(input.ravel(), positions.ravel())
|
||
|
|
||
|
try:
|
||
|
input, labels = numpy.broadcast_arrays(input, labels)
|
||
|
except ValueError:
|
||
|
raise ValueError("input and labels must have the same shape "
|
||
|
"(excepting dimensions with width 1)")
|
||
|
|
||
|
if index is None:
|
||
|
if not pass_positions:
|
||
|
return func(input[labels > 0])
|
||
|
else:
|
||
|
return func(input[labels > 0], positions[labels > 0])
|
||
|
|
||
|
index = numpy.atleast_1d(index)
|
||
|
if np.any(index.astype(labels.dtype).astype(index.dtype) != index):
|
||
|
raise ValueError("Cannot convert index values from <%s> to <%s> "
|
||
|
"(labels' type) without loss of precision" %
|
||
|
(index.dtype, labels.dtype))
|
||
|
|
||
|
index = index.astype(labels.dtype)
|
||
|
|
||
|
# optimization: find min/max in index, and select those parts of labels, input, and positions
|
||
|
lo = index.min()
|
||
|
hi = index.max()
|
||
|
mask = (labels >= lo) & (labels <= hi)
|
||
|
|
||
|
# this also ravels the arrays
|
||
|
labels = labels[mask]
|
||
|
input = input[mask]
|
||
|
if pass_positions:
|
||
|
positions = positions[mask]
|
||
|
|
||
|
# sort everything by labels
|
||
|
label_order = labels.argsort()
|
||
|
labels = labels[label_order]
|
||
|
input = input[label_order]
|
||
|
if pass_positions:
|
||
|
positions = positions[label_order]
|
||
|
|
||
|
index_order = index.argsort()
|
||
|
sorted_index = index[index_order]
|
||
|
|
||
|
def do_map(inputs, output):
|
||
|
"""labels must be sorted"""
|
||
|
nidx = sorted_index.size
|
||
|
|
||
|
# Find boundaries for each stretch of constant labels
|
||
|
# This could be faster, but we already paid N log N to sort labels.
|
||
|
lo = numpy.searchsorted(labels, sorted_index, side='left')
|
||
|
hi = numpy.searchsorted(labels, sorted_index, side='right')
|
||
|
|
||
|
for i, l, h in zip(range(nidx), lo, hi):
|
||
|
if l == h:
|
||
|
continue
|
||
|
output[i] = func(*[inp[l:h] for inp in inputs])
|
||
|
|
||
|
temp = numpy.empty(index.shape, out_dtype)
|
||
|
temp[:] = default
|
||
|
if not pass_positions:
|
||
|
do_map([input], temp)
|
||
|
else:
|
||
|
do_map([input, positions], temp)
|
||
|
|
||
|
output = numpy.zeros(index.shape, out_dtype)
|
||
|
output[index_order] = temp
|
||
|
if as_scalar:
|
||
|
output = output[0]
|
||
|
|
||
|
return output
|
||
|
|
||
|
|
||
|
def _safely_castable_to_int(dt):
|
||
|
"""Test whether the numpy data type `dt` can be safely cast to an int."""
|
||
|
int_size = np.dtype(int).itemsize
|
||
|
safe = ((np.issubdtype(dt, np.signedinteger) and dt.itemsize <= int_size) or
|
||
|
(np.issubdtype(dt, np.unsignedinteger) and dt.itemsize < int_size))
|
||
|
return safe
|
||
|
|
||
|
|
||
|
def _stats(input, labels=None, index=None, centered=False):
|
||
|
"""Count, sum, and optionally compute (sum - centre)^2 of input by label
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
input : array_like, n-dimensional
|
||
|
The input data to be analyzed.
|
||
|
labels : array_like (n-dimensional), optional
|
||
|
The labels of the data in `input`. This array must be broadcast
|
||
|
compatible with `input`; typically it is the same shape as `input`.
|
||
|
If `labels` is None, all nonzero values in `input` are treated as
|
||
|
the single labeled group.
|
||
|
index : label or sequence of labels, optional
|
||
|
These are the labels of the groups for which the stats are computed.
|
||
|
If `index` is None, the stats are computed for the single group where
|
||
|
`labels` is greater than 0.
|
||
|
centered : bool, optional
|
||
|
If True, the centered sum of squares for each labeled group is
|
||
|
also returned. Default is False.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
counts : int or ndarray of ints
|
||
|
The number of elements in each labeled group.
|
||
|
sums : scalar or ndarray of scalars
|
||
|
The sums of the values in each labeled group.
|
||
|
sums_c : scalar or ndarray of scalars, optional
|
||
|
The sums of mean-centered squares of the values in each labeled group.
|
||
|
This is only returned if `centered` is True.
|
||
|
|
||
|
"""
|
||
|
def single_group(vals):
|
||
|
if centered:
|
||
|
vals_c = vals - vals.mean()
|
||
|
return vals.size, vals.sum(), (vals_c * vals_c.conjugate()).sum()
|
||
|
else:
|
||
|
return vals.size, vals.sum()
|
||
|
|
||
|
if labels is None:
|
||
|
return single_group(input)
|
||
|
|
||
|
# ensure input and labels match sizes
|
||
|
input, labels = numpy.broadcast_arrays(input, labels)
|
||
|
|
||
|
if index is None:
|
||
|
return single_group(input[labels > 0])
|
||
|
|
||
|
if numpy.isscalar(index):
|
||
|
return single_group(input[labels == index])
|
||
|
|
||
|
def _sum_centered(labels):
|
||
|
# `labels` is expected to be an ndarray with the same shape as `input`.
|
||
|
# It must contain the label indices (which are not necessarily the labels
|
||
|
# themselves).
|
||
|
means = sums / counts
|
||
|
centered_input = input - means[labels]
|
||
|
# bincount expects 1d inputs, so we ravel the arguments.
|
||
|
bc = numpy.bincount(labels.ravel(),
|
||
|
weights=(centered_input *
|
||
|
centered_input.conjugate()).ravel())
|
||
|
return bc
|
||
|
|
||
|
# Remap labels to unique integers if necessary, or if the largest
|
||
|
# label is larger than the number of values.
|
||
|
|
||
|
if (not _safely_castable_to_int(labels.dtype) or
|
||
|
labels.min() < 0 or labels.max() > labels.size):
|
||
|
# Use numpy.unique to generate the label indices. `new_labels` will
|
||
|
# be 1-d, but it should be interpreted as the flattened n-d array of
|
||
|
# label indices.
|
||
|
unique_labels, new_labels = numpy.unique(labels, return_inverse=True)
|
||
|
counts = numpy.bincount(new_labels)
|
||
|
sums = numpy.bincount(new_labels, weights=input.ravel())
|
||
|
if centered:
|
||
|
# Compute the sum of the mean-centered squares.
|
||
|
# We must reshape new_labels to the n-d shape of `input` before
|
||
|
# passing it _sum_centered.
|
||
|
sums_c = _sum_centered(new_labels.reshape(labels.shape))
|
||
|
idxs = numpy.searchsorted(unique_labels, index)
|
||
|
# make all of idxs valid
|
||
|
idxs[idxs >= unique_labels.size] = 0
|
||
|
found = (unique_labels[idxs] == index)
|
||
|
else:
|
||
|
# labels are an integer type allowed by bincount, and there aren't too
|
||
|
# many, so call bincount directly.
|
||
|
counts = numpy.bincount(labels.ravel())
|
||
|
sums = numpy.bincount(labels.ravel(), weights=input.ravel())
|
||
|
if centered:
|
||
|
sums_c = _sum_centered(labels)
|
||
|
# make sure all index values are valid
|
||
|
idxs = numpy.asanyarray(index, numpy.int).copy()
|
||
|
found = (idxs >= 0) & (idxs < counts.size)
|
||
|
idxs[~found] = 0
|
||
|
|
||
|
counts = counts[idxs]
|
||
|
counts[~found] = 0
|
||
|
sums = sums[idxs]
|
||
|
sums[~found] = 0
|
||
|
|
||
|
if not centered:
|
||
|
return (counts, sums)
|
||
|
else:
|
||
|
sums_c = sums_c[idxs]
|
||
|
sums_c[~found] = 0
|
||
|
return (counts, sums, sums_c)
|
||
|
|
||
|
|
||
|
def sum(input, labels=None, index=None):
|
||
|
"""
|
||
|
Calculate the sum of the values of the array.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
input : array_like
|
||
|
Values of `input` inside the regions defined by `labels`
|
||
|
are summed together.
|
||
|
labels : array_like of ints, optional
|
||
|
Assign labels to the values of the array. Has to have the same shape as
|
||
|
`input`.
|
||
|
index : array_like, optional
|
||
|
A single label number or a sequence of label numbers of
|
||
|
the objects to be measured.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
sum : ndarray or scalar
|
||
|
An array of the sums of values of `input` inside the regions defined
|
||
|
by `labels` with the same shape as `index`. If 'index' is None or scalar,
|
||
|
a scalar is returned.
|
||
|
|
||
|
See also
|
||
|
--------
|
||
|
mean, median
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> from scipy import ndimage
|
||
|
>>> input = [0,1,2,3]
|
||
|
>>> labels = [1,1,2,2]
|
||
|
>>> ndimage.sum(input, labels, index=[1,2])
|
||
|
[1.0, 5.0]
|
||
|
>>> ndimage.sum(input, labels, index=1)
|
||
|
1
|
||
|
>>> ndimage.sum(input, labels)
|
||
|
6
|
||
|
|
||
|
|
||
|
"""
|
||
|
count, sum = _stats(input, labels, index)
|
||
|
return sum
|
||
|
|
||
|
|
||
|
def mean(input, labels=None, index=None):
|
||
|
"""
|
||
|
Calculate the mean of the values of an array at labels.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
input : array_like
|
||
|
Array on which to compute the mean of elements over distinct
|
||
|
regions.
|
||
|
labels : array_like, optional
|
||
|
Array of labels of same shape, or broadcastable to the same shape as
|
||
|
`input`. All elements sharing the same label form one region over
|
||
|
which the mean of the elements is computed.
|
||
|
index : int or sequence of ints, optional
|
||
|
Labels of the objects over which the mean is to be computed.
|
||
|
Default is None, in which case the mean for all values where label is
|
||
|
greater than 0 is calculated.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
out : list
|
||
|
Sequence of same length as `index`, with the mean of the different
|
||
|
regions labeled by the labels in `index`.
|
||
|
|
||
|
See also
|
||
|
--------
|
||
|
ndimage.variance, ndimage.standard_deviation, ndimage.minimum,
|
||
|
ndimage.maximum, ndimage.sum
|
||
|
ndimage.label
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> from scipy import ndimage
|
||
|
>>> a = np.arange(25).reshape((5,5))
|
||
|
>>> labels = np.zeros_like(a)
|
||
|
>>> labels[3:5,3:5] = 1
|
||
|
>>> index = np.unique(labels)
|
||
|
>>> labels
|
||
|
array([[0, 0, 0, 0, 0],
|
||
|
[0, 0, 0, 0, 0],
|
||
|
[0, 0, 0, 0, 0],
|
||
|
[0, 0, 0, 1, 1],
|
||
|
[0, 0, 0, 1, 1]])
|
||
|
>>> index
|
||
|
array([0, 1])
|
||
|
>>> ndimage.mean(a, labels=labels, index=index)
|
||
|
[10.285714285714286, 21.0]
|
||
|
|
||
|
"""
|
||
|
|
||
|
count, sum = _stats(input, labels, index)
|
||
|
return sum / numpy.asanyarray(count).astype(numpy.float)
|
||
|
|
||
|
|
||
|
def variance(input, labels=None, index=None):
|
||
|
"""
|
||
|
Calculate the variance of the values of an n-D image array, optionally at
|
||
|
specified sub-regions.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
input : array_like
|
||
|
Nd-image data to process.
|
||
|
labels : array_like, optional
|
||
|
Labels defining sub-regions in `input`.
|
||
|
If not None, must be same shape as `input`.
|
||
|
index : int or sequence of ints, optional
|
||
|
`labels` to include in output. If None (default), all values where
|
||
|
`labels` is non-zero are used.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
variance : float or ndarray
|
||
|
Values of variance, for each sub-region if `labels` and `index` are
|
||
|
specified.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
label, standard_deviation, maximum, minimum, extrema
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> a = np.array([[1, 2, 0, 0],
|
||
|
... [5, 3, 0, 4],
|
||
|
... [0, 0, 0, 7],
|
||
|
... [9, 3, 0, 0]])
|
||
|
>>> from scipy import ndimage
|
||
|
>>> ndimage.variance(a)
|
||
|
7.609375
|
||
|
|
||
|
Features to process can be specified using `labels` and `index`:
|
||
|
|
||
|
>>> lbl, nlbl = ndimage.label(a)
|
||
|
>>> ndimage.variance(a, lbl, index=np.arange(1, nlbl+1))
|
||
|
array([ 2.1875, 2.25 , 9. ])
|
||
|
|
||
|
If no index is given, all non-zero `labels` are processed:
|
||
|
|
||
|
>>> ndimage.variance(a, lbl)
|
||
|
6.1875
|
||
|
|
||
|
"""
|
||
|
count, sum, sum_c_sq = _stats(input, labels, index, centered=True)
|
||
|
return sum_c_sq / np.asanyarray(count).astype(float)
|
||
|
|
||
|
|
||
|
def standard_deviation(input, labels=None, index=None):
|
||
|
"""
|
||
|
Calculate the standard deviation of the values of an n-D image array,
|
||
|
optionally at specified sub-regions.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
input : array_like
|
||
|
Nd-image data to process.
|
||
|
labels : array_like, optional
|
||
|
Labels to identify sub-regions in `input`.
|
||
|
If not None, must be same shape as `input`.
|
||
|
index : int or sequence of ints, optional
|
||
|
`labels` to include in output. If None (default), all values where
|
||
|
`labels` is non-zero are used.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
standard_deviation : float or ndarray
|
||
|
Values of standard deviation, for each sub-region if `labels` and
|
||
|
`index` are specified.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
label, variance, maximum, minimum, extrema
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> a = np.array([[1, 2, 0, 0],
|
||
|
... [5, 3, 0, 4],
|
||
|
... [0, 0, 0, 7],
|
||
|
... [9, 3, 0, 0]])
|
||
|
>>> from scipy import ndimage
|
||
|
>>> ndimage.standard_deviation(a)
|
||
|
2.7585095613392387
|
||
|
|
||
|
Features to process can be specified using `labels` and `index`:
|
||
|
|
||
|
>>> lbl, nlbl = ndimage.label(a)
|
||
|
>>> ndimage.standard_deviation(a, lbl, index=np.arange(1, nlbl+1))
|
||
|
array([ 1.479, 1.5 , 3. ])
|
||
|
|
||
|
If no index is given, non-zero `labels` are processed:
|
||
|
|
||
|
>>> ndimage.standard_deviation(a, lbl)
|
||
|
2.4874685927665499
|
||
|
|
||
|
"""
|
||
|
return numpy.sqrt(variance(input, labels, index))
|
||
|
|
||
|
|
||
|
def _select(input, labels=None, index=None, find_min=False, find_max=False,
|
||
|
find_min_positions=False, find_max_positions=False,
|
||
|
find_median=False):
|
||
|
"""Returns min, max, or both, plus their positions (if requested), and
|
||
|
median."""
|
||
|
|
||
|
input = numpy.asanyarray(input)
|
||
|
|
||
|
find_positions = find_min_positions or find_max_positions
|
||
|
positions = None
|
||
|
if find_positions:
|
||
|
positions = numpy.arange(input.size).reshape(input.shape)
|
||
|
|
||
|
def single_group(vals, positions):
|
||
|
result = []
|
||
|
if find_min:
|
||
|
result += [vals.min()]
|
||
|
if find_min_positions:
|
||
|
result += [positions[vals == vals.min()][0]]
|
||
|
if find_max:
|
||
|
result += [vals.max()]
|
||
|
if find_max_positions:
|
||
|
result += [positions[vals == vals.max()][0]]
|
||
|
if find_median:
|
||
|
result += [numpy.median(vals)]
|
||
|
return result
|
||
|
|
||
|
if labels is None:
|
||
|
return single_group(input, positions)
|
||
|
|
||
|
# ensure input and labels match sizes
|
||
|
input, labels = numpy.broadcast_arrays(input, labels)
|
||
|
|
||
|
if index is None:
|
||
|
mask = (labels > 0)
|
||
|
masked_positions = None
|
||
|
if find_positions:
|
||
|
masked_positions = positions[mask]
|
||
|
return single_group(input[mask], masked_positions)
|
||
|
|
||
|
if numpy.isscalar(index):
|
||
|
mask = (labels == index)
|
||
|
masked_positions = None
|
||
|
if find_positions:
|
||
|
masked_positions = positions[mask]
|
||
|
return single_group(input[mask], masked_positions)
|
||
|
|
||
|
# remap labels to unique integers if necessary, or if the largest
|
||
|
# label is larger than the number of values.
|
||
|
if (not _safely_castable_to_int(labels.dtype) or
|
||
|
labels.min() < 0 or labels.max() > labels.size):
|
||
|
# remap labels, and indexes
|
||
|
unique_labels, labels = numpy.unique(labels, return_inverse=True)
|
||
|
idxs = numpy.searchsorted(unique_labels, index)
|
||
|
|
||
|
# make all of idxs valid
|
||
|
idxs[idxs >= unique_labels.size] = 0
|
||
|
found = (unique_labels[idxs] == index)
|
||
|
else:
|
||
|
# labels are an integer type, and there aren't too many.
|
||
|
idxs = numpy.asanyarray(index, numpy.int).copy()
|
||
|
found = (idxs >= 0) & (idxs <= labels.max())
|
||
|
|
||
|
idxs[~ found] = labels.max() + 1
|
||
|
|
||
|
if find_median:
|
||
|
order = numpy.lexsort((input.ravel(), labels.ravel()))
|
||
|
else:
|
||
|
order = input.ravel().argsort()
|
||
|
input = input.ravel()[order]
|
||
|
labels = labels.ravel()[order]
|
||
|
if find_positions:
|
||
|
positions = positions.ravel()[order]
|
||
|
|
||
|
result = []
|
||
|
if find_min:
|
||
|
mins = numpy.zeros(labels.max() + 2, input.dtype)
|
||
|
mins[labels[::-1]] = input[::-1]
|
||
|
result += [mins[idxs]]
|
||
|
if find_min_positions:
|
||
|
minpos = numpy.zeros(labels.max() + 2, int)
|
||
|
minpos[labels[::-1]] = positions[::-1]
|
||
|
result += [minpos[idxs]]
|
||
|
if find_max:
|
||
|
maxs = numpy.zeros(labels.max() + 2, input.dtype)
|
||
|
maxs[labels] = input
|
||
|
result += [maxs[idxs]]
|
||
|
if find_max_positions:
|
||
|
maxpos = numpy.zeros(labels.max() + 2, int)
|
||
|
maxpos[labels] = positions
|
||
|
result += [maxpos[idxs]]
|
||
|
if find_median:
|
||
|
locs = numpy.arange(len(labels))
|
||
|
lo = numpy.zeros(labels.max() + 2, numpy.int)
|
||
|
lo[labels[::-1]] = locs[::-1]
|
||
|
hi = numpy.zeros(labels.max() + 2, numpy.int)
|
||
|
hi[labels] = locs
|
||
|
lo = lo[idxs]
|
||
|
hi = hi[idxs]
|
||
|
# lo is an index to the lowest value in input for each label,
|
||
|
# hi is an index to the largest value.
|
||
|
# move them to be either the same ((hi - lo) % 2 == 0) or next
|
||
|
# to each other ((hi - lo) % 2 == 1), then average.
|
||
|
step = (hi - lo) // 2
|
||
|
lo += step
|
||
|
hi -= step
|
||
|
result += [(input[lo] + input[hi]) / 2.0]
|
||
|
|
||
|
return result
|
||
|
|
||
|
|
||
|
def minimum(input, labels=None, index=None):
|
||
|
"""
|
||
|
Calculate the minimum of the values of an array over labeled regions.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
input : array_like
|
||
|
Array_like of values. For each region specified by `labels`, the
|
||
|
minimal values of `input` over the region is computed.
|
||
|
labels : array_like, optional
|
||
|
An array_like of integers marking different regions over which the
|
||
|
minimum value of `input` is to be computed. `labels` must have the
|
||
|
same shape as `input`. If `labels` is not specified, the minimum
|
||
|
over the whole array is returned.
|
||
|
index : array_like, optional
|
||
|
A list of region labels that are taken into account for computing the
|
||
|
minima. If index is None, the minimum over all elements where `labels`
|
||
|
is non-zero is returned.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
minimum : float or list of floats
|
||
|
List of minima of `input` over the regions determined by `labels` and
|
||
|
whose index is in `index`. If `index` or `labels` are not specified, a
|
||
|
float is returned: the minimal value of `input` if `labels` is None,
|
||
|
and the minimal value of elements where `labels` is greater than zero
|
||
|
if `index` is None.
|
||
|
|
||
|
See also
|
||
|
--------
|
||
|
label, maximum, median, minimum_position, extrema, sum, mean, variance,
|
||
|
standard_deviation
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
The function returns a Python list and not a Numpy array, use
|
||
|
`np.array` to convert the list to an array.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> from scipy import ndimage
|
||
|
>>> a = np.array([[1, 2, 0, 0],
|
||
|
... [5, 3, 0, 4],
|
||
|
... [0, 0, 0, 7],
|
||
|
... [9, 3, 0, 0]])
|
||
|
>>> labels, labels_nb = ndimage.label(a)
|
||
|
>>> labels
|
||
|
array([[1, 1, 0, 0],
|
||
|
[1, 1, 0, 2],
|
||
|
[0, 0, 0, 2],
|
||
|
[3, 3, 0, 0]])
|
||
|
>>> ndimage.minimum(a, labels=labels, index=np.arange(1, labels_nb + 1))
|
||
|
[1.0, 4.0, 3.0]
|
||
|
>>> ndimage.minimum(a)
|
||
|
0.0
|
||
|
>>> ndimage.minimum(a, labels=labels)
|
||
|
1.0
|
||
|
|
||
|
"""
|
||
|
return _select(input, labels, index, find_min=True)[0]
|
||
|
|
||
|
|
||
|
def maximum(input, labels=None, index=None):
|
||
|
"""
|
||
|
Calculate the maximum of the values of an array over labeled regions.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
input : array_like
|
||
|
Array_like of values. For each region specified by `labels`, the
|
||
|
maximal values of `input` over the region is computed.
|
||
|
labels : array_like, optional
|
||
|
An array of integers marking different regions over which the
|
||
|
maximum value of `input` is to be computed. `labels` must have the
|
||
|
same shape as `input`. If `labels` is not specified, the maximum
|
||
|
over the whole array is returned.
|
||
|
index : array_like, optional
|
||
|
A list of region labels that are taken into account for computing the
|
||
|
maxima. If index is None, the maximum over all elements where `labels`
|
||
|
is non-zero is returned.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
output : float or list of floats
|
||
|
List of maxima of `input` over the regions determined by `labels` and
|
||
|
whose index is in `index`. If `index` or `labels` are not specified, a
|
||
|
float is returned: the maximal value of `input` if `labels` is None,
|
||
|
and the maximal value of elements where `labels` is greater than zero
|
||
|
if `index` is None.
|
||
|
|
||
|
See also
|
||
|
--------
|
||
|
label, minimum, median, maximum_position, extrema, sum, mean, variance,
|
||
|
standard_deviation
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
The function returns a Python list and not a Numpy array, use
|
||
|
`np.array` to convert the list to an array.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> a = np.arange(16).reshape((4,4))
|
||
|
>>> a
|
||
|
array([[ 0, 1, 2, 3],
|
||
|
[ 4, 5, 6, 7],
|
||
|
[ 8, 9, 10, 11],
|
||
|
[12, 13, 14, 15]])
|
||
|
>>> labels = np.zeros_like(a)
|
||
|
>>> labels[:2,:2] = 1
|
||
|
>>> labels[2:, 1:3] = 2
|
||
|
>>> labels
|
||
|
array([[1, 1, 0, 0],
|
||
|
[1, 1, 0, 0],
|
||
|
[0, 2, 2, 0],
|
||
|
[0, 2, 2, 0]])
|
||
|
>>> from scipy import ndimage
|
||
|
>>> ndimage.maximum(a)
|
||
|
15.0
|
||
|
>>> ndimage.maximum(a, labels=labels, index=[1,2])
|
||
|
[5.0, 14.0]
|
||
|
>>> ndimage.maximum(a, labels=labels)
|
||
|
14.0
|
||
|
|
||
|
>>> b = np.array([[1, 2, 0, 0],
|
||
|
... [5, 3, 0, 4],
|
||
|
... [0, 0, 0, 7],
|
||
|
... [9, 3, 0, 0]])
|
||
|
>>> labels, labels_nb = ndimage.label(b)
|
||
|
>>> labels
|
||
|
array([[1, 1, 0, 0],
|
||
|
[1, 1, 0, 2],
|
||
|
[0, 0, 0, 2],
|
||
|
[3, 3, 0, 0]])
|
||
|
>>> ndimage.maximum(b, labels=labels, index=np.arange(1, labels_nb + 1))
|
||
|
[5.0, 7.0, 9.0]
|
||
|
|
||
|
"""
|
||
|
return _select(input, labels, index, find_max=True)[0]
|
||
|
|
||
|
|
||
|
def median(input, labels=None, index=None):
|
||
|
"""
|
||
|
Calculate the median of the values of an array over labeled regions.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
input : array_like
|
||
|
Array_like of values. For each region specified by `labels`, the
|
||
|
median value of `input` over the region is computed.
|
||
|
labels : array_like, optional
|
||
|
An array_like of integers marking different regions over which the
|
||
|
median value of `input` is to be computed. `labels` must have the
|
||
|
same shape as `input`. If `labels` is not specified, the median
|
||
|
over the whole array is returned.
|
||
|
index : array_like, optional
|
||
|
A list of region labels that are taken into account for computing the
|
||
|
medians. If index is None, the median over all elements where `labels`
|
||
|
is non-zero is returned.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
median : float or list of floats
|
||
|
List of medians of `input` over the regions determined by `labels` and
|
||
|
whose index is in `index`. If `index` or `labels` are not specified, a
|
||
|
float is returned: the median value of `input` if `labels` is None,
|
||
|
and the median value of elements where `labels` is greater than zero
|
||
|
if `index` is None.
|
||
|
|
||
|
See also
|
||
|
--------
|
||
|
label, minimum, maximum, extrema, sum, mean, variance, standard_deviation
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
The function returns a Python list and not a Numpy array, use
|
||
|
`np.array` to convert the list to an array.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> from scipy import ndimage
|
||
|
>>> a = np.array([[1, 2, 0, 1],
|
||
|
... [5, 3, 0, 4],
|
||
|
... [0, 0, 0, 7],
|
||
|
... [9, 3, 0, 0]])
|
||
|
>>> labels, labels_nb = ndimage.label(a)
|
||
|
>>> labels
|
||
|
array([[1, 1, 0, 2],
|
||
|
[1, 1, 0, 2],
|
||
|
[0, 0, 0, 2],
|
||
|
[3, 3, 0, 0]])
|
||
|
>>> ndimage.median(a, labels=labels, index=np.arange(1, labels_nb + 1))
|
||
|
[2.5, 4.0, 6.0]
|
||
|
>>> ndimage.median(a)
|
||
|
1.0
|
||
|
>>> ndimage.median(a, labels=labels)
|
||
|
3.0
|
||
|
|
||
|
"""
|
||
|
return _select(input, labels, index, find_median=True)[0]
|
||
|
|
||
|
|
||
|
def minimum_position(input, labels=None, index=None):
|
||
|
"""
|
||
|
Find the positions of the minimums of the values of an array at labels.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
input : array_like
|
||
|
Array_like of values.
|
||
|
labels : array_like, optional
|
||
|
An array of integers marking different regions over which the
|
||
|
position of the minimum value of `input` is to be computed.
|
||
|
`labels` must have the same shape as `input`. If `labels` is not
|
||
|
specified, the location of the first minimum over the whole
|
||
|
array is returned.
|
||
|
|
||
|
The `labels` argument only works when `index` is specified.
|
||
|
index : array_like, optional
|
||
|
A list of region labels that are taken into account for finding the
|
||
|
location of the minima. If `index` is None, the ``first`` minimum
|
||
|
over all elements where `labels` is non-zero is returned.
|
||
|
|
||
|
The `index` argument only works when `labels` is specified.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
output : list of tuples of ints
|
||
|
Tuple of ints or list of tuples of ints that specify the location
|
||
|
of minima of `input` over the regions determined by `labels` and
|
||
|
whose index is in `index`.
|
||
|
|
||
|
If `index` or `labels` are not specified, a tuple of ints is
|
||
|
returned specifying the location of the first minimal value of `input`.
|
||
|
|
||
|
See also
|
||
|
--------
|
||
|
label, minimum, median, maximum_position, extrema, sum, mean, variance,
|
||
|
standard_deviation
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> a = np.array([[10, 20, 30],
|
||
|
... [40, 80, 100],
|
||
|
... [1, 100, 200]])
|
||
|
>>> b = np.array([[1, 2, 0, 1],
|
||
|
... [5, 3, 0, 4],
|
||
|
... [0, 0, 0, 7],
|
||
|
... [9, 3, 0, 0]])
|
||
|
|
||
|
>>> from scipy import ndimage
|
||
|
|
||
|
>>> ndimage.minimum_position(a)
|
||
|
(2, 0)
|
||
|
>>> ndimage.minimum_position(b)
|
||
|
(0, 2)
|
||
|
|
||
|
Features to process can be specified using `labels` and `index`:
|
||
|
|
||
|
>>> label, pos = ndimage.label(a)
|
||
|
>>> ndimage.minimum_position(a, label, index=np.arange(1, pos+1))
|
||
|
[(2, 0)]
|
||
|
|
||
|
>>> label, pos = ndimage.label(b)
|
||
|
>>> ndimage.minimum_position(b, label, index=np.arange(1, pos+1))
|
||
|
[(0, 0), (0, 3), (3, 1)]
|
||
|
|
||
|
"""
|
||
|
dims = numpy.array(numpy.asarray(input).shape)
|
||
|
# see numpy.unravel_index to understand this line.
|
||
|
dim_prod = numpy.cumprod([1] + list(dims[:0:-1]))[::-1]
|
||
|
|
||
|
result = _select(input, labels, index, find_min_positions=True)[0]
|
||
|
|
||
|
if numpy.isscalar(result):
|
||
|
return tuple((result // dim_prod) % dims)
|
||
|
|
||
|
return [tuple(v) for v in (result.reshape(-1, 1) // dim_prod) % dims]
|
||
|
|
||
|
|
||
|
def maximum_position(input, labels=None, index=None):
|
||
|
"""
|
||
|
Find the positions of the maximums of the values of an array at labels.
|
||
|
|
||
|
For each region specified by `labels`, the position of the maximum
|
||
|
value of `input` within the region is returned.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
input : array_like
|
||
|
Array_like of values.
|
||
|
labels : array_like, optional
|
||
|
An array of integers marking different regions over which the
|
||
|
position of the maximum value of `input` is to be computed.
|
||
|
`labels` must have the same shape as `input`. If `labels` is not
|
||
|
specified, the location of the first maximum over the whole
|
||
|
array is returned.
|
||
|
|
||
|
The `labels` argument only works when `index` is specified.
|
||
|
index : array_like, optional
|
||
|
A list of region labels that are taken into account for finding the
|
||
|
location of the maxima. If `index` is None, the first maximum
|
||
|
over all elements where `labels` is non-zero is returned.
|
||
|
|
||
|
The `index` argument only works when `labels` is specified.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
output : list of tuples of ints
|
||
|
List of tuples of ints that specify the location of maxima of
|
||
|
`input` over the regions determined by `labels` and whose index
|
||
|
is in `index`.
|
||
|
|
||
|
If `index` or `labels` are not specified, a tuple of ints is
|
||
|
returned specifying the location of the ``first`` maximal value
|
||
|
of `input`.
|
||
|
|
||
|
See also
|
||
|
--------
|
||
|
label, minimum, median, maximum_position, extrema, sum, mean, variance,
|
||
|
standard_deviation
|
||
|
|
||
|
"""
|
||
|
dims = numpy.array(numpy.asarray(input).shape)
|
||
|
# see numpy.unravel_index to understand this line.
|
||
|
dim_prod = numpy.cumprod([1] + list(dims[:0:-1]))[::-1]
|
||
|
|
||
|
result = _select(input, labels, index, find_max_positions=True)[0]
|
||
|
|
||
|
if numpy.isscalar(result):
|
||
|
return tuple((result // dim_prod) % dims)
|
||
|
|
||
|
return [tuple(v) for v in (result.reshape(-1, 1) // dim_prod) % dims]
|
||
|
|
||
|
|
||
|
def extrema(input, labels=None, index=None):
|
||
|
"""
|
||
|
Calculate the minimums and maximums of the values of an array
|
||
|
at labels, along with their positions.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
input : ndarray
|
||
|
Nd-image data to process.
|
||
|
labels : ndarray, optional
|
||
|
Labels of features in input.
|
||
|
If not None, must be same shape as `input`.
|
||
|
index : int or sequence of ints, optional
|
||
|
Labels to include in output. If None (default), all values where
|
||
|
non-zero `labels` are used.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
minimums, maximums : int or ndarray
|
||
|
Values of minimums and maximums in each feature.
|
||
|
min_positions, max_positions : tuple or list of tuples
|
||
|
Each tuple gives the n-D coordinates of the corresponding minimum
|
||
|
or maximum.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
maximum, minimum, maximum_position, minimum_position, center_of_mass
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> a = np.array([[1, 2, 0, 0],
|
||
|
... [5, 3, 0, 4],
|
||
|
... [0, 0, 0, 7],
|
||
|
... [9, 3, 0, 0]])
|
||
|
>>> from scipy import ndimage
|
||
|
>>> ndimage.extrema(a)
|
||
|
(0, 9, (0, 2), (3, 0))
|
||
|
|
||
|
Features to process can be specified using `labels` and `index`:
|
||
|
|
||
|
>>> lbl, nlbl = ndimage.label(a)
|
||
|
>>> ndimage.extrema(a, lbl, index=np.arange(1, nlbl+1))
|
||
|
(array([1, 4, 3]),
|
||
|
array([5, 7, 9]),
|
||
|
[(0, 0), (1, 3), (3, 1)],
|
||
|
[(1, 0), (2, 3), (3, 0)])
|
||
|
|
||
|
If no index is given, non-zero `labels` are processed:
|
||
|
|
||
|
>>> ndimage.extrema(a, lbl)
|
||
|
(1, 9, (0, 0), (3, 0))
|
||
|
|
||
|
"""
|
||
|
dims = numpy.array(numpy.asarray(input).shape)
|
||
|
# see numpy.unravel_index to understand this line.
|
||
|
dim_prod = numpy.cumprod([1] + list(dims[:0:-1]))[::-1]
|
||
|
|
||
|
minimums, min_positions, maximums, max_positions = _select(input, labels,
|
||
|
index,
|
||
|
find_min=True,
|
||
|
find_max=True,
|
||
|
find_min_positions=True,
|
||
|
find_max_positions=True)
|
||
|
|
||
|
if numpy.isscalar(minimums):
|
||
|
return (minimums, maximums, tuple((min_positions // dim_prod) % dims),
|
||
|
tuple((max_positions // dim_prod) % dims))
|
||
|
|
||
|
min_positions = [tuple(v) for v in (min_positions.reshape(-1, 1) // dim_prod) % dims]
|
||
|
max_positions = [tuple(v) for v in (max_positions.reshape(-1, 1) // dim_prod) % dims]
|
||
|
|
||
|
return minimums, maximums, min_positions, max_positions
|
||
|
|
||
|
|
||
|
def center_of_mass(input, labels=None, index=None):
|
||
|
"""
|
||
|
Calculate the center of mass of the values of an array at labels.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
input : ndarray
|
||
|
Data from which to calculate center-of-mass. The masses can either
|
||
|
be positive or negative.
|
||
|
labels : ndarray, optional
|
||
|
Labels for objects in `input`, as generated by `ndimage.label`.
|
||
|
Only used with `index`. Dimensions must be the same as `input`.
|
||
|
index : int or sequence of ints, optional
|
||
|
Labels for which to calculate centers-of-mass. If not specified,
|
||
|
all labels greater than zero are used. Only used with `labels`.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
center_of_mass : tuple, or list of tuples
|
||
|
Coordinates of centers-of-mass.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> a = np.array(([0,0,0,0],
|
||
|
... [0,1,1,0],
|
||
|
... [0,1,1,0],
|
||
|
... [0,1,1,0]))
|
||
|
>>> from scipy import ndimage
|
||
|
>>> ndimage.measurements.center_of_mass(a)
|
||
|
(2.0, 1.5)
|
||
|
|
||
|
Calculation of multiple objects in an image
|
||
|
|
||
|
>>> b = np.array(([0,1,1,0],
|
||
|
... [0,1,0,0],
|
||
|
... [0,0,0,0],
|
||
|
... [0,0,1,1],
|
||
|
... [0,0,1,1]))
|
||
|
>>> lbl = ndimage.label(b)[0]
|
||
|
>>> ndimage.measurements.center_of_mass(b, lbl, [1,2])
|
||
|
[(0.33333333333333331, 1.3333333333333333), (3.5, 2.5)]
|
||
|
|
||
|
Negative masses are also accepted, which can occur for example when
|
||
|
bias is removed from measured data due to random noise.
|
||
|
|
||
|
>>> c = np.array(([-1,0,0,0],
|
||
|
... [0,-1,-1,0],
|
||
|
... [0,1,-1,0],
|
||
|
... [0,1,1,0]))
|
||
|
>>> ndimage.measurements.center_of_mass(c)
|
||
|
(-4.0, 1.0)
|
||
|
|
||
|
If there are division by zero issues, the function does not raise an
|
||
|
error but rather issues a RuntimeWarning before returning inf and/or NaN.
|
||
|
|
||
|
>>> d = np.array([-1, 1])
|
||
|
>>> ndimage.measurements.center_of_mass(d)
|
||
|
(inf,)
|
||
|
"""
|
||
|
normalizer = sum(input, labels, index)
|
||
|
grids = numpy.ogrid[[slice(0, i) for i in input.shape]]
|
||
|
|
||
|
results = [sum(input * grids[dir].astype(float), labels, index) / normalizer
|
||
|
for dir in range(input.ndim)]
|
||
|
|
||
|
if numpy.isscalar(results[0]):
|
||
|
return tuple(results)
|
||
|
|
||
|
return [tuple(v) for v in numpy.array(results).T]
|
||
|
|
||
|
|
||
|
def histogram(input, min, max, bins, labels=None, index=None):
|
||
|
"""
|
||
|
Calculate the histogram of the values of an array, optionally at labels.
|
||
|
|
||
|
Histogram calculates the frequency of values in an array within bins
|
||
|
determined by `min`, `max`, and `bins`. The `labels` and `index`
|
||
|
keywords can limit the scope of the histogram to specified sub-regions
|
||
|
within the array.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
input : array_like
|
||
|
Data for which to calculate histogram.
|
||
|
min, max : int
|
||
|
Minimum and maximum values of range of histogram bins.
|
||
|
bins : int
|
||
|
Number of bins.
|
||
|
labels : array_like, optional
|
||
|
Labels for objects in `input`.
|
||
|
If not None, must be same shape as `input`.
|
||
|
index : int or sequence of ints, optional
|
||
|
Label or labels for which to calculate histogram. If None, all values
|
||
|
where label is greater than zero are used
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
hist : ndarray
|
||
|
Histogram counts.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> a = np.array([[ 0. , 0.2146, 0.5962, 0. ],
|
||
|
... [ 0. , 0.7778, 0. , 0. ],
|
||
|
... [ 0. , 0. , 0. , 0. ],
|
||
|
... [ 0. , 0. , 0.7181, 0.2787],
|
||
|
... [ 0. , 0. , 0.6573, 0.3094]])
|
||
|
>>> from scipy import ndimage
|
||
|
>>> ndimage.measurements.histogram(a, 0, 1, 10)
|
||
|
array([13, 0, 2, 1, 0, 1, 1, 2, 0, 0])
|
||
|
|
||
|
With labels and no indices, non-zero elements are counted:
|
||
|
|
||
|
>>> lbl, nlbl = ndimage.label(a)
|
||
|
>>> ndimage.measurements.histogram(a, 0, 1, 10, lbl)
|
||
|
array([0, 0, 2, 1, 0, 1, 1, 2, 0, 0])
|
||
|
|
||
|
Indices can be used to count only certain objects:
|
||
|
|
||
|
>>> ndimage.measurements.histogram(a, 0, 1, 10, lbl, 2)
|
||
|
array([0, 0, 1, 1, 0, 0, 1, 1, 0, 0])
|
||
|
|
||
|
"""
|
||
|
_bins = numpy.linspace(min, max, bins + 1)
|
||
|
|
||
|
def _hist(vals):
|
||
|
return numpy.histogram(vals, _bins)[0]
|
||
|
|
||
|
return labeled_comprehension(input, labels, index, _hist, object, None,
|
||
|
pass_positions=False)
|
||
|
|
||
|
|
||
|
def watershed_ift(input, markers, structure=None, output=None):
|
||
|
"""
|
||
|
Apply watershed from markers using image foresting transform algorithm.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
input : array_like
|
||
|
Input.
|
||
|
markers : array_like
|
||
|
Markers are points within each watershed that form the beginning
|
||
|
of the process. Negative markers are considered background markers
|
||
|
which are processed after the other markers.
|
||
|
structure : structure element, optional
|
||
|
A structuring element defining the connectivity of the object can be
|
||
|
provided. If None, an element is generated with a squared
|
||
|
connectivity equal to one.
|
||
|
output : ndarray, optional
|
||
|
An output array can optionally be provided. The same shape as input.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
watershed_ift : ndarray
|
||
|
Output. Same shape as `input`.
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] A.X. Falcao, J. Stolfi and R. de Alencar Lotufo, "The image
|
||
|
foresting transform: theory, algorithms, and applications",
|
||
|
Pattern Analysis and Machine Intelligence, vol. 26, pp. 19-29, 2004.
|
||
|
|
||
|
"""
|
||
|
input = numpy.asarray(input)
|
||
|
if input.dtype.type not in [numpy.uint8, numpy.uint16]:
|
||
|
raise TypeError('only 8 and 16 unsigned inputs are supported')
|
||
|
|
||
|
if structure is None:
|
||
|
structure = morphology.generate_binary_structure(input.ndim, 1)
|
||
|
structure = numpy.asarray(structure, dtype=bool)
|
||
|
if structure.ndim != input.ndim:
|
||
|
raise RuntimeError('structure and input must have equal rank')
|
||
|
for ii in structure.shape:
|
||
|
if ii != 3:
|
||
|
raise RuntimeError('structure dimensions must be equal to 3')
|
||
|
|
||
|
if not structure.flags.contiguous:
|
||
|
structure = structure.copy()
|
||
|
markers = numpy.asarray(markers)
|
||
|
if input.shape != markers.shape:
|
||
|
raise RuntimeError('input and markers must have equal shape')
|
||
|
|
||
|
integral_types = [numpy.int0,
|
||
|
numpy.int8,
|
||
|
numpy.int16,
|
||
|
numpy.int32,
|
||
|
numpy.int_,
|
||
|
numpy.int64,
|
||
|
numpy.intc,
|
||
|
numpy.intp]
|
||
|
|
||
|
if markers.dtype.type not in integral_types:
|
||
|
raise RuntimeError('marker should be of integer type')
|
||
|
|
||
|
if isinstance(output, numpy.ndarray):
|
||
|
if output.dtype.type not in integral_types:
|
||
|
raise RuntimeError('output should be of integer type')
|
||
|
else:
|
||
|
output = markers.dtype
|
||
|
|
||
|
output = _ni_support._get_output(output, input)
|
||
|
_nd_image.watershed_ift(input, markers, structure, output)
|
||
|
return output
|