You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

564 lines
19 KiB
Python

6 years ago
from __future__ import division, print_function, absolute_import
import numpy as np
from scipy.linalg import lu_factor, lu_solve
from scipy.sparse import csc_matrix, issparse, eye
from scipy.sparse.linalg import splu
from scipy.optimize._numdiff import group_columns
from .common import (validate_max_step, validate_tol, select_initial_step,
norm, num_jac, EPS, warn_extraneous,
validate_first_step)
from .base import OdeSolver, DenseOutput
S6 = 6 ** 0.5
# Butcher tableau. A is not used directly, see below.
C = np.array([(4 - S6) / 10, (4 + S6) / 10, 1])
E = np.array([-13 - 7 * S6, -13 + 7 * S6, -1]) / 3
# Eigendecomposition of A is done: A = T L T**-1. There is 1 real eigenvalue
# and a complex conjugate pair. They are written below.
MU_REAL = 3 + 3 ** (2 / 3) - 3 ** (1 / 3)
MU_COMPLEX = (3 + 0.5 * (3 ** (1 / 3) - 3 ** (2 / 3))
- 0.5j * (3 ** (5 / 6) + 3 ** (7 / 6)))
# These are transformation matrices.
T = np.array([
[0.09443876248897524, -0.14125529502095421, 0.03002919410514742],
[0.25021312296533332, 0.20412935229379994, -0.38294211275726192],
[1, 1, 0]])
TI = np.array([
[4.17871859155190428, 0.32768282076106237, 0.52337644549944951],
[-4.17871859155190428, -0.32768282076106237, 0.47662355450055044],
[0.50287263494578682, -2.57192694985560522, 0.59603920482822492]])
# These linear combinations are used in the algorithm.
TI_REAL = TI[0]
TI_COMPLEX = TI[1] + 1j * TI[2]
# Interpolator coefficients.
P = np.array([
[13/3 + 7*S6/3, -23/3 - 22*S6/3, 10/3 + 5 * S6],
[13/3 - 7*S6/3, -23/3 + 22*S6/3, 10/3 - 5 * S6],
[1/3, -8/3, 10/3]])
NEWTON_MAXITER = 6 # Maximum number of Newton iterations.
MIN_FACTOR = 0.2 # Minimum allowed decrease in a step size.
MAX_FACTOR = 10 # Maximum allowed increase in a step size.
def solve_collocation_system(fun, t, y, h, Z0, scale, tol,
LU_real, LU_complex, solve_lu):
"""Solve the collocation system.
Parameters
----------
fun : callable
Right-hand side of the system.
t : float
Current time.
y : ndarray, shape (n,)
Current state.
h : float
Step to try.
Z0 : ndarray, shape (3, n)
Initial guess for the solution. It determines new values of `y` at
``t + h * C`` as ``y + Z0``, where ``C`` is the Radau method constants.
scale : float
Problem tolerance scale, i.e. ``rtol * abs(y) + atol``.
tol : float
Tolerance to which solve the system. This value is compared with
the normalized by `scale` error.
LU_real, LU_complex
LU decompositions of the system Jacobians.
solve_lu : callable
Callable which solves a linear system given a LU decomposition. The
signature is ``solve_lu(LU, b)``.
Returns
-------
converged : bool
Whether iterations converged.
n_iter : int
Number of completed iterations.
Z : ndarray, shape (3, n)
Found solution.
rate : float
The rate of convergence.
"""
n = y.shape[0]
M_real = MU_REAL / h
M_complex = MU_COMPLEX / h
W = TI.dot(Z0)
Z = Z0
F = np.empty((3, n))
ch = h * C
dW_norm_old = None
dW = np.empty_like(W)
converged = False
for k in range(NEWTON_MAXITER):
for i in range(3):
F[i] = fun(t + ch[i], y + Z[i])
if not np.all(np.isfinite(F)):
break
f_real = F.T.dot(TI_REAL) - M_real * W[0]
f_complex = F.T.dot(TI_COMPLEX) - M_complex * (W[1] + 1j * W[2])
dW_real = solve_lu(LU_real, f_real)
dW_complex = solve_lu(LU_complex, f_complex)
dW[0] = dW_real
dW[1] = dW_complex.real
dW[2] = dW_complex.imag
dW_norm = norm(dW / scale)
if dW_norm_old is not None:
rate = dW_norm / dW_norm_old
else:
rate = None
if (rate is not None and (rate >= 1 or
rate ** (NEWTON_MAXITER - k) / (1 - rate) * dW_norm > tol)):
break
W += dW
Z = T.dot(W)
if (dW_norm == 0 or
rate is not None and rate / (1 - rate) * dW_norm < tol):
converged = True
break
dW_norm_old = dW_norm
return converged, k + 1, Z, rate
def predict_factor(h_abs, h_abs_old, error_norm, error_norm_old):
"""Predict by which factor to increase/decrease the step size.
The algorithm is described in [1]_.
Parameters
----------
h_abs, h_abs_old : float
Current and previous values of the step size, `h_abs_old` can be None
(see Notes).
error_norm, error_norm_old : float
Current and previous values of the error norm, `error_norm_old` can
be None (see Notes).
Returns
-------
factor : float
Predicted factor.
Notes
-----
If `h_abs_old` and `error_norm_old` are both not None then a two-step
algorithm is used, otherwise a one-step algorithm is used.
References
----------
.. [1] E. Hairer, S. P. Norsett G. Wanner, "Solving Ordinary Differential
Equations II: Stiff and Differential-Algebraic Problems", Sec. IV.8.
"""
if error_norm_old is None or h_abs_old is None or error_norm == 0:
multiplier = 1
else:
multiplier = h_abs / h_abs_old * (error_norm_old / error_norm) ** 0.25
with np.errstate(divide='ignore'):
factor = min(1, multiplier) * error_norm ** -0.25
return factor
class Radau(OdeSolver):
"""Implicit Runge-Kutta method of Radau IIA family of order 5.
The implementation follows [1]_. The error is controlled with a
third-order accurate embedded formula. A cubic polynomial which satisfies
the collocation conditions is used for the dense output.
Parameters
----------
fun : callable
Right-hand side of the system. The calling signature is ``fun(t, y)``.
Here ``t`` is a scalar, and there are two options for the ndarray ``y``:
It can either have shape (n,); then ``fun`` must return array_like with
shape (n,). Alternatively it can have shape (n, k); then ``fun``
must return an array_like with shape (n, k), i.e. each column
corresponds to a single column in ``y``. The choice between the two
options is determined by `vectorized` argument (see below). The
vectorized implementation allows a faster approximation of the Jacobian
by finite differences (required for this solver).
t0 : float
Initial time.
y0 : array_like, shape (n,)
Initial state.
t_bound : float
Boundary time - the integration won't continue beyond it. It also
determines the direction of the integration.
first_step : float or None, optional
Initial step size. Default is ``None`` which means that the algorithm
should choose.
max_step : float, optional
Maximum allowed step size. Default is np.inf, i.e. the step size is not
bounded and determined solely by the solver.
rtol, atol : float and array_like, optional
Relative and absolute tolerances. The solver keeps the local error
estimates less than ``atol + rtol * abs(y)``. Here `rtol` controls a
relative accuracy (number of correct digits). But if a component of `y`
is approximately below `atol`, the error only needs to fall within
the same `atol` threshold, and the number of correct digits is not
guaranteed. If components of y have different scales, it might be
beneficial to set different `atol` values for different components by
passing array_like with shape (n,) for `atol`. Default values are
1e-3 for `rtol` and 1e-6 for `atol`.
jac : {None, array_like, sparse_matrix, callable}, optional
Jacobian matrix of the right-hand side of the system with respect to
y, required by this method. The Jacobian matrix has shape (n, n) and
its element (i, j) is equal to ``d f_i / d y_j``.
There are three ways to define the Jacobian:
* If array_like or sparse_matrix, the Jacobian is assumed to
be constant.
* If callable, the Jacobian is assumed to depend on both
t and y; it will be called as ``jac(t, y)`` as necessary.
For the 'Radau' and 'BDF' methods, the return value might be a
sparse matrix.
* If None (default), the Jacobian will be approximated by
finite differences.
It is generally recommended to provide the Jacobian rather than
relying on a finite-difference approximation.
jac_sparsity : {None, array_like, sparse matrix}, optional
Defines a sparsity structure of the Jacobian matrix for a
finite-difference approximation. Its shape must be (n, n). This argument
is ignored if `jac` is not `None`. If the Jacobian has only few non-zero
elements in *each* row, providing the sparsity structure will greatly
speed up the computations [2]_. A zero entry means that a corresponding
element in the Jacobian is always zero. If None (default), the Jacobian
is assumed to be dense.
vectorized : bool, optional
Whether `fun` is implemented in a vectorized fashion. Default is False.
Attributes
----------
n : int
Number of equations.
status : string
Current status of the solver: 'running', 'finished' or 'failed'.
t_bound : float
Boundary time.
direction : float
Integration direction: +1 or -1.
t : float
Current time.
y : ndarray
Current state.
t_old : float
Previous time. None if no steps were made yet.
step_size : float
Size of the last successful step. None if no steps were made yet.
nfev : int
Number of evaluations of the right-hand side.
njev : int
Number of evaluations of the Jacobian.
nlu : int
Number of LU decompositions.
References
----------
.. [1] E. Hairer, G. Wanner, "Solving Ordinary Differential Equations II:
Stiff and Differential-Algebraic Problems", Sec. IV.8.
.. [2] A. Curtis, M. J. D. Powell, and J. Reid, "On the estimation of
sparse Jacobian matrices", Journal of the Institute of Mathematics
and its Applications, 13, pp. 117-120, 1974.
"""
def __init__(self, fun, t0, y0, t_bound, max_step=np.inf,
rtol=1e-3, atol=1e-6, jac=None, jac_sparsity=None,
vectorized=False, first_step=None, **extraneous):
warn_extraneous(extraneous)
super(Radau, self).__init__(fun, t0, y0, t_bound, vectorized)
self.y_old = None
self.max_step = validate_max_step(max_step)
self.rtol, self.atol = validate_tol(rtol, atol, self.n)
self.f = self.fun(self.t, self.y)
# Select initial step assuming the same order which is used to control
# the error.
if first_step is None:
self.h_abs = select_initial_step(
self.fun, self.t, self.y, self.f, self.direction,
3, self.rtol, self.atol)
else:
self.h_abs = validate_first_step(first_step, t0, t_bound)
self.h_abs_old = None
self.error_norm_old = None
self.newton_tol = max(10 * EPS / rtol, min(0.03, rtol ** 0.5))
self.sol = None
self.jac_factor = None
self.jac, self.J = self._validate_jac(jac, jac_sparsity)
if issparse(self.J):
def lu(A):
self.nlu += 1
return splu(A)
def solve_lu(LU, b):
return LU.solve(b)
I = eye(self.n, format='csc')
else:
def lu(A):
self.nlu += 1
return lu_factor(A, overwrite_a=True)
def solve_lu(LU, b):
return lu_solve(LU, b, overwrite_b=True)
I = np.identity(self.n)
self.lu = lu
self.solve_lu = solve_lu
self.I = I
self.current_jac = True
self.LU_real = None
self.LU_complex = None
self.Z = None
def _validate_jac(self, jac, sparsity):
t0 = self.t
y0 = self.y
if jac is None:
if sparsity is not None:
if issparse(sparsity):
sparsity = csc_matrix(sparsity)
groups = group_columns(sparsity)
sparsity = (sparsity, groups)
def jac_wrapped(t, y, f):
self.njev += 1
J, self.jac_factor = num_jac(self.fun_vectorized, t, y, f,
self.atol, self.jac_factor,
sparsity)
return J
J = jac_wrapped(t0, y0, self.f)
elif callable(jac):
J = jac(t0, y0)
self.njev = 1
if issparse(J):
J = csc_matrix(J)
def jac_wrapped(t, y, _=None):
self.njev += 1
return csc_matrix(jac(t, y), dtype=float)
else:
J = np.asarray(J, dtype=float)
def jac_wrapped(t, y, _=None):
self.njev += 1
return np.asarray(jac(t, y), dtype=float)
if J.shape != (self.n, self.n):
raise ValueError("`jac` is expected to have shape {}, but "
"actually has {}."
.format((self.n, self.n), J.shape))
else:
if issparse(jac):
J = csc_matrix(jac)
else:
J = np.asarray(jac, dtype=float)
if J.shape != (self.n, self.n):
raise ValueError("`jac` is expected to have shape {}, but "
"actually has {}."
.format((self.n, self.n), J.shape))
jac_wrapped = None
return jac_wrapped, J
def _step_impl(self):
t = self.t
y = self.y
f = self.f
max_step = self.max_step
atol = self.atol
rtol = self.rtol
min_step = 10 * np.abs(np.nextafter(t, self.direction * np.inf) - t)
if self.h_abs > max_step:
h_abs = max_step
h_abs_old = None
error_norm_old = None
elif self.h_abs < min_step:
h_abs = min_step
h_abs_old = None
error_norm_old = None
else:
h_abs = self.h_abs
h_abs_old = self.h_abs_old
error_norm_old = self.error_norm_old
J = self.J
LU_real = self.LU_real
LU_complex = self.LU_complex
current_jac = self.current_jac
jac = self.jac
rejected = False
step_accepted = False
message = None
while not step_accepted:
if h_abs < min_step:
return False, self.TOO_SMALL_STEP
h = h_abs * self.direction
t_new = t + h
if self.direction * (t_new - self.t_bound) > 0:
t_new = self.t_bound
h = t_new - t
h_abs = np.abs(h)
if self.sol is None:
Z0 = np.zeros((3, y.shape[0]))
else:
Z0 = self.sol(t + h * C).T - y
scale = atol + np.abs(y) * rtol
converged = False
while not converged:
if LU_real is None or LU_complex is None:
LU_real = self.lu(MU_REAL / h * self.I - J)
LU_complex = self.lu(MU_COMPLEX / h * self.I - J)
converged, n_iter, Z, rate = solve_collocation_system(
self.fun, t, y, h, Z0, scale, self.newton_tol,
LU_real, LU_complex, self.solve_lu)
if not converged:
if current_jac:
break
J = self.jac(t, y, f)
current_jac = True
LU_real = None
LU_complex = None
if not converged:
h_abs *= 0.5
LU_real = None
LU_complex = None
continue
y_new = y + Z[-1]
ZE = Z.T.dot(E) / h
error = self.solve_lu(LU_real, f + ZE)
scale = atol + np.maximum(np.abs(y), np.abs(y_new)) * rtol
error_norm = norm(error / scale)
safety = 0.9 * (2 * NEWTON_MAXITER + 1) / (2 * NEWTON_MAXITER
+ n_iter)
if rejected and error_norm > 1:
error = self.solve_lu(LU_real, self.fun(t, y + error) + ZE)
error_norm = norm(error / scale)
if error_norm > 1:
factor = predict_factor(h_abs, h_abs_old,
error_norm, error_norm_old)
h_abs *= max(MIN_FACTOR, safety * factor)
LU_real = None
LU_complex = None
rejected = True
else:
step_accepted = True
recompute_jac = jac is not None and n_iter > 2 and rate > 1e-3
factor = predict_factor(h_abs, h_abs_old, error_norm, error_norm_old)
factor = min(MAX_FACTOR, safety * factor)
if not recompute_jac and factor < 1.2:
factor = 1
else:
LU_real = None
LU_complex = None
f_new = self.fun(t_new, y_new)
if recompute_jac:
J = jac(t_new, y_new, f_new)
current_jac = True
elif jac is not None:
current_jac = False
self.h_abs_old = self.h_abs
self.error_norm_old = error_norm
self.h_abs = h_abs * factor
self.y_old = y
self.t = t_new
self.y = y_new
self.f = f_new
self.Z = Z
self.LU_real = LU_real
self.LU_complex = LU_complex
self.current_jac = current_jac
self.J = J
self.t_old = t
self.sol = self._compute_dense_output()
return step_accepted, message
def _compute_dense_output(self):
Q = np.dot(self.Z.T, P)
return RadauDenseOutput(self.t_old, self.t, self.y_old, Q)
def _dense_output_impl(self):
return self.sol
class RadauDenseOutput(DenseOutput):
def __init__(self, t_old, t, y_old, Q):
super(RadauDenseOutput, self).__init__(t_old, t)
self.h = t - t_old
self.Q = Q
self.order = Q.shape[1] - 1
self.y_old = y_old
def _call_impl(self, t):
x = (t - self.t_old) / self.h
if t.ndim == 0:
p = np.tile(x, self.order + 1)
p = np.cumprod(p)
else:
p = np.tile(x, (self.order + 1, 1))
p = np.cumprod(p, axis=0)
# Here we don't multiply by h, not a mistake.
y = np.dot(self.Q, p)
if y.ndim == 2:
y += self.y_old[:, None]
else:
y += self.y_old
return y